

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

Nominal Schema Absorption
Technical Report

Andreas Steigmiller, Birte Glimm, Thorsten Liebig

Ulmer Informatik-Berichte
Nr. 2013-06
Juni 2013

Nominal Schema Absorption
Technical Report

Andreas Steigmiller1, Birte Glimm1, and Thorsten Liebig2

1 Ulm University, Ulm, Germany, <first name>.<last name>@uni-ulm.de
2 derivo GmbH, Ulm, Germany, liebig@derivo.de

Abstract. Nominal schemas have recently been introduced as a new approach
for the integration of DL-safe rules into the Description Logic framework. The
efficient processing of knowledge bases with nominal schemas remains, how-
ever, challenging. We address this by extending the well-known optimisation of
absorption as well as the standard tableau calculus to directly handle the (ab-
sorbed) nominal schema axioms. We implement the resulting extension of stan-
dard tableau calculi in the novel reasoning system Konclude and present further
optimisations. In our empirical evaluation, we show the effect of these optimisa-
tions and we find that the proposed nominal schema handling performs well even
when compared to (hyper)tableau systems with dedicated rule support.

1 Introduction

We address the problem of an efficient handling of so-called nominal schema axioms in
tableau calculi for Description Logics (DLs). Nominal schemas have been introduced
recently [14] as a feature for expressing arbitrary DL-safe rules (as specified in the W3C
standards SWRL [7] or RIF [12]) natively in DLs and, consequently, in OWL ontolo-
gies [17]. Hence, DLs with nominal schemas provide a unified basis for OWL and rules.
Although some attempts (see, e.g., [13]) have been made to improve the performance
of tableau calculi when extended with nominal schemas, handling of nominal schemas
remains challenging. We tackle this problem by extending the well-know tableau opti-
misation of absorption [10]. The resulting calculus extends a standard tableau calculus
by additional rules to deal with the absorbed nominal schema axioms and shows a con-
siderable performance improvement over existing techniques.

Nominal schemas extend the nominal constructor that is present in many DLs and
which allows for specifying a concept as a singleton set with a named individual as
member, e.g., the interpretation of the concept {a} consists of the element that represents
the named individual a. Nominal schemas introduce a new concept constructor {x},
where x is a variable that can only be bound to a named individual from the ABox of
the knowledge base. This restriction ensures decidability and is common for nominal
schemas as well as for SWRL rules.

We use the same running example (or parts thereof) as Krisnadhi and Hitzler [13],
which describes a conflicting review assignment between a person and a paper if the
individual has to review a paper x that has an author (y) with whom that individual has

a joint publication in the same venue (z):

∃hasReviewAssignment.({x} u ∃hasAuthor.{y} u ∃atVenue.{z})
u ∃hasSubmittedPaper.(∃hasAuthor.{y} u ∃atVenue.{z})
v ∃hasConflictingAssignedPaper.{x}.

For brevity, we shorten hasReviewAssignment to r, hasAuthor to a, atVenue to v, has-
SubmittedPaper to s, and hasConflictingAssignedPaper to c in the remainder. Obvi-
ously, this axiom can neither be directly expressed in a DL knowledge base nor as
ordinary DL-safe rule (e.g., if we were to express the complex concepts as role atoms,
we would have to introduce a variable for the submitted paper, which then would only
bind to known ABox individuals). However, such nominal schema axioms can easily be
eliminated by replacing them with all corresponding grounded axioms, i.e., the axioms
that are obtained by replacing each nominal schema by a nominal, in all possible com-
binations, where all nominal schemas with the same variable are replaced by the same
nominal. Thus, a knowledge base for a DL with nominal schema constructs, which is
denoted by an additional V in the DL nomenclature, can be reduced, with this upfront
grounding approach, to a knowledge base without nominal schema axioms. The upfront
grounding is, however, very inefficient. For example, a nominal schema axiom with 3
variables can be grounded for a knowledge base with 100 ABox individuals in 1003

different ways, which is prohibitive even for small examples. One way to restrict the ef-
fort of reasoning with nominal schemas is to restrict the expressiveness of the nominal
schema axioms, whereby it is possible to achieve that the grounding adds only linearly
or polynomially many new axioms [14].

For efficient reasoning in OWL ontologies extended with nominal schemas, i.e.,
SROIQV knowledge bases, it is more promising to adapt the established tableau algo-
rithms, which are dominantly used for sound and complete reasoning systems. One such
approach extends a tableau algorithm such that grounding is delayed until it is required
[13]. The standard rules are blocked until the new grounding rules ensure that a concept
with nominal schemas can be processed safely, e.g., the concept ∃r.({x} u C) has to be
grounded before the ∃-rule can be applied. However, this requires significant changes to
the tableau algorithm and, thus, existing optimisations, which are crucial for a reason-
able performance on real-world ontologies, have to be adapted as well. Furthermore, it
is not clear in which way concepts have to be grounded to achieve a well-performing im-
plementation and some concepts even cannot be grounded efficiently, e.g., disjunctions
that have the same nominal schema variable in several disjuncts have to be grounded
before the disjunction can be processed.

In this paper, we present a new approach that works more from the opposite di-
rection by collecting possible bindings for the nominal schema variables during the
application of rules and, then, these bindings are used to complete the processing of the
nominal schema axioms. To implement this idea, we extend the absorption, which is a
widely used preprocessing step (Section 2.3 and 3), to handle nominal schemas (Sec-
tion 4.1), and we adapt or add new rules to the tableau calculus, which create and prop-
agate bindings of variables through the completion graph constructed by the tableau
algorithm (Section 4.2). These bindings are then used to ground the remaining, non-
absorbable part of the nominal schema axioms. Our rules can be completely separated

2

from other standard rules and, thus, can be integrated well into existing implementa-
tions without any adaptation of other optimisations. We have implemented our nominal
schema absorption technique into the novel SROIQ reasoning system Konclude and
the empirical evaluation shows that our approach works well, even if we convert ordi-
nary DL-safe rules to nominal schema axioms and compare our approach to other DL
reasoners with dedicated rule support.

The paper is organised as follows: Section 2 summarises some preliminaries about
model construction calculi and absorption. In Section 4 we present our new nominal
schema absorption technique, which is then further optimised in Section 5 and Sec-
tion 6. The empirical evaluation is shown in Section 7 and we conclude in Section 8.

2 Preliminaries

In this section, we first give a brief introduction into Description Logics extended with
nominal schemas. For ease of presentation, we introduce only the DL ALCOIQ with
its extension to nominal schemas here instead of SROIQ [6], which underpins OWL 2,
but our technique to handle nominal schemas can easily be used with SROIQV too,
since we simply add a number of additional rules to an existing tableau calculus.

2.1 The Description LogicALCOIQV

We first define the syntax and semantics of roles, and then go on to ALCOIQV-
concepts, individuals, and ontologies/knowledge bases.

Definition 1 (Syntax of ALCOIQV). Let NC, NR, NI , and NV be countable, infinite,
and pairwise disjoint sets of concept names, role names, individual names, and vari-
able names, respectively. We call S = (NC,NR,NI ,NV) a signature. The set rol(S) of
ALCOIQV-roles over S (or roles for short) is NR ∪ {r− | r ∈ NR}, where roles of the
form r− are called inverse roles.

The set of ALCOIQV-concepts (or concepts for short) over S is the smallest set
built inductively over symbols from S using the following grammar, where a ∈ NI , x ∈
NV , n ∈ IN0, A ∈ NC, and r ∈ rol(S):

C ::= > | ⊥ | {a} | {x} | A | ¬C | C1 uC2 | C1 tC2 | ∀r.C | ∃r.C | 6n r.C | >n r.C.

Definition 2 (Semantics of ALCOIQV-concepts). An interpretation I = (∆I, ·I)
consists of a non-empty set ∆I, the domain of I, and a function ·I, which maps ev-
ery concept name A ∈ NC to a subset AI ⊆ ∆I, every role name r ∈ NR to a binary
relation rI ⊆ ∆I × ∆I, and every individual name a ∈ NI to an element aI ∈ ∆I.
For each role name r ∈ NR, the interpretation of its inverse role (r−)I consists of all
pairs 〈δ, δ′〉 ∈ ∆I × ∆I for which 〈δ′, δ〉 ∈ rI. A variable assignment for I is a function
µ : NV → ∆I such that, for each x ∈ NV , µ(x) = aI for some a ∈ NI .

3

For any interpretation I and assignment µ, the semantics ofALCOIQV-concepts
over a signature S is defined by the function ·I,µ as follows:

>I,µ = ∆I AI,µ = AI ({a})I,µ = {aI}
⊥I,µ = ∅ rI,µ = rI ({x})I,µ = {µ(x)}

(¬C)I,µ = ∆I \CI,µ (C u D)I,µ = CI,µ ∩ DI,µ (C t D)I,µ = CI,µ ∪ DI,µ

(∀r.C)I,µ = {δ ∈ ∆I | if 〈δ, δ′〉 ∈ rI, then δ′ ∈ CI,µ}
(∃r.C)I,µ = {δ ∈ ∆I | there is a 〈δ, δ′〉 ∈ rI with δ′ ∈ CI,µ}

(6n r.C)I,µ = {δ ∈ ∆I |]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rI and δ′ ∈ CI,µ} ≤ n}
(>n r.C)I,µ = {δ ∈ ∆I |]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rI and δ′ ∈ CI,µ} ≥ n}

where]M denotes the cardinality of the set M.

Definition 3 (Syntax and Semantics of Axioms and Ontologies). For C,D concepts,
a general concept inclusion (GCI) is an expression C v D. We introduce C ≡ D as an
abbreviation for C v D and D v C. A finite set of GCIs is called a TBox. An (ABox)
assertion is an expression of the form C(a) or r(a, b), where C is a concept, r is a role,
and a, b ∈ NI are individual names. An ABox is a finite set of assertions. A knowledge
base K is a pair (T ,A) with T a TBox andA an ABox.

Let I = (∆I, ·I) be an interpretation and µ an assignment, then I and µ satisfy an
axiom or assertion α, written I, µ |= α if (i) α is a GCI C v D and CI,µ ⊆ DI,µ, (ii) α
is an assertion C(a) and aI ∈ CI,µ or (iii) α is an assertion r(a, b) and 〈aI, bI〉 ∈ rI.
The interpretation I satisfies α if I, µ |= α for every assignment µ. I satisfies a TBox
T (ABox A) if it satisfies each GCI in T (each assertion in A). We say that I satisfies
K if I satisfies T andA. In this case, we say that I is a model of K and write I |= K .
We say that K is consistent if K has a model.

Note, if the knowledge base does not contain any nominal schemas, then we do
not have to consider the variable assignments for the satisfiability of axioms, TBoxes,
ABoxes and knowledge bases.

2.2 Tableau Calculus

Model construction calculi, such as tableau, decide the consistency of a knowledge
base K by trying to construct an abstraction of a model for K , a so-called “completion
graph”.

Definition 4 (Completion Graph). A completion graph forK is a directed graph G =

(V, E,L, ,̇). Each node v ∈ V (edge 〈v, v′〉 ∈ E) is labelled with a set of concepts (roles)
occurring in K . The symmetric binary relation ,̇ is used to keep track of inequalities
between nodes in V.

In the following, we often use r ∈ L(〈v1, v2〉) as an abbreviation for 〈v1, v2〉 ∈ E and
r ∈ L(〈v1, v2〉).

Definition 5 (Successor, Predecessor, Neighbour). If 〈v1, v2〉 ∈ E, then v2 is called a
successor of v1 and v1 is called a predecessor of v2. Ancestor is the transitive closure of

4

Table 1. Basic expansion rules forALC TBoxes

v1-rule: if A ∈ L(v), A v C ∈ K , v not indirectly blocked, and {C} < L(v)
then L(v) −→ L(v) ∪ {C}

u-rule: if C1 uC2 ∈ L(v), v not indirectly blocked, and {C1,C2} * L(v)
then L(v) −→ L(v) ∪ {C1,C2}

t-rule: if C1 tC2 ∈ L(v), v not indirectly blocked, and {C1,C2} ∩ L(v) = ∅

then L(v) −→ L(v) ∪ {H} for some H ∈ {C1,C2}

∃-rule: if ∃r.C ∈ L(v), v not blocked, and n has no r-neighbour v′ with C ∈ L(v′)
then create new node v′ and edge 〈v, v′〉 with L(v′) := {>,C} and L(〈v, v′〉) := {r}

∀-rule: if ∀r.C ∈ L(v), v not indirectly blocked, and
there is an r-neighbour v′ of v with C < L(v′)

then L(v′) −→ L(v′) ∪ {C}

predecessor, and descendant is the transitive closure of successor. A node v2 is called
an r-successor of a node v1 if r ∈ L(〈v1, v2〉); v2 is called an r-predecessor of v1 if v1 is
an r-successor of v2. A node v2 is called a neighbour (r-neighbour) of a node v1 if v2 is
a successor (r-successor) of v1 or if v1 is a successor (r−- successor) of v2.

The completion graph is initialised for the tableau algorithm by creating one node
for each ABox individual/nominal in the input knowledge base (w.l.o.g. we assume that
the ABox is non-empty, should this not be the case, we can always add an assertion>(a)
for a fresh individual a) and by adding the concept and role facts for the ABox assertions
ofK . If v1, . . . , v` are the nodes for the ABox individuals a1, . . . , a` ofK , then the initial
completion graph G = ({v1, . . . , v`}, E,L, ∅) has to contain (i) for each ABox assertion
of the form C(ai) the concept fact C(vi), i.e., C ∈ L(vi), (ii) for each ABox assertion of
the form r(ai, a j) the role fact r(vi, v j), i.e., 〈vi, v j〉 ∈ E and r ∈ L(〈vi, v j〉). Furthermore,
we add for each ABox individual ai the nominal {ai} and the concept > to the label of
vi, i.e., {{ai},>} ⊆ L(vi).

Additionally, we assume all concepts to be in negation normal form (NNF). Each
concept can be transformed into an equivalent one in NNF by pushing negation in-
wards, making use of de Morgan’s laws and the duality between existential and univer-
sal restrictions, and between atmost and atleast number restrictions [9]. For C a concept
possibly not in NNF, let nnf(C) be the equivalent concept to C in NNF.

The tableau algorithm works by decomposing concepts in the completion graph
with a set of expansion rules (see Table 1). Note, Table 1 shows only the expansion
rules forALC, i.e., to support the concept constructors of more expressive Description
Logics, we have to add the corresponding expansion rules, e.g., forALCOIQ also the
o-, ch-, >-, 6- and NN-rules are necessary. However, these rules are not affected by
our extension for handling absorbed nominal schema axioms and, thus, we omit their
presentation here.

Each rule application can add new concepts to node labels and/or new nodes and
edges to the completion graph, thereby explicating the structure of a model for the input
knowledge base. The rules are repeatedly applied until either the graph is fully expanded
(no more rules are applicable), in which case the graph can be used to construct a model
that is a witness to the consistency of K , or an obvious contradiction (called a clash) is

5

discovered (e.g., both C and ¬C in a node label), proving that the completion graph does
not correspond to a model. The input knowledge baseK is consistent if the rules (some
of which are non-deterministic) can be applied such that they build a fully expanded
and clash free completion graph.

Unrestricted application of the ∃-rule and >-rule can lead to the introduction of
infinitely many new tableau nodes and, thus, prevent the calculus from terminating.
To counteract that, a cycle detection technique called (pairwise) blocking [8] is used
that restricts the application of these rules. To apply blocking, we distinguish blockable
nodes from nominal nodes, which have either an original nominal from the knowledge
base or a new nominal introduced by the calculus in their label.

Definition 6 (Pairwise Blocking). A node is blocked if either it is directly or indirectly
blocked. A node v is indirectly blocked if an ancestor of v is blocked; and v with prede-
cessor v′ is directly blocked if there exists a node w with predecessor w′ such that

1. v, v′,w,w′ are all blockable,
2. w,w′ are not blocked,
3. L(v) = L(w) and L(v′) = L(w′),
4. L(〈v′, v〉) = L(〈w′,w〉).

In this case, we say that w directly blocks v and w is the blocker of v.

In order to guarantee that each node of the completion graph indeed satisfies all
axioms of the TBox, one can “internalise” the TBox into a concept that is added to each
node label. For example, if the TBox contains the axioms

A1 v ∃r.(B1 u B2) (1)
∃r.(B1 t B2) v ∃s.A2 (2)

the internalised concept CI contains one conjunct for each axiom that is a disjunction
with the negated left-hand side of the axiom and the right-hand side:

CI = nnf(((¬A1 t ∃r.(B1 u B2)) u (¬(∃r.(B1 t B2)) t ∃s.A2))).

A tableau algorithm based on the expansion rules of Table 1 indirectly adds the in-
ternalised concept with an auxiliary axiom > v CI by the v1-rule, since the concept
> is added to every node of a completion graph. Clearly, internalisation introduces a
large number of disjunctions in each node label, which possibly require several non-
deterministic choices and backtracking if the choice resulted in a clash.

It would be more efficient to integrate a rule into the tableau calculus that checks for
each GCI C v D whether C is satisfied for a node and if this is the case, then D is added
to the label of the node. For Axiom (1), for example, it is easy to check whether the
atomic concept A1 is satisfied at a node and if this is the case, then ∃r.(B1 u B2) has to
be added to the node label. This lazy unfolding for atomic concepts is already realised
with the v1-rule of Table 1, whereby we do not have to internalize axioms of the form
A v C.

Checking whether a complex left-hand side of an axiom is satisfied can, however,
be non-trivial. For example, it can often not be verified syntactically, whether a node

6

satisfies ∃r.(B1 t B2), which would be required for Axiom (2). For example, any in-
stance of A1 has an r-successor that satisfies B1 u B2 and, therefore, this A1 instance
(semantically) also satisfies ∃r.(B1 t B2). In order to, nevertheless, avoid the handling
of > v nnf(¬C t D) one uses elaborate transformations in practise. Such transforma-
tions are performed in a preprocessing step called absorption, which we describe in
more detail in Section 2.3 and 3.

2.3 Absorption

The absorption algorithm extracts those conditions of a disjunction for which it can
be ensured that if one of these conditions is not satisfied for a node in a completion
graph, then at least one alternative of the disjunction is trivially satisfiable. The ex-
tracted conditions are then used for expressing the disjunction in such a way that non-
determinism can be avoided as much as possible in the tableau algorithm. For example,
one would like to avoid treating Axiom (2) as > v ∀r.(¬B1u¬B2)t∃s.A2 as motivated
in the previous section. Any node that does not have an r-neighbour trivially satisfies
∀r.(¬B1 u ¬B2) and, hence, the overall disjunction. Thus, we could only add the dis-
junction to nodes that have at least one r-successor. We can, however, go even further
by first identifying nodes that satisfy B1 or B2. If we find such a node, we can make sure
that its r−-neighbour has to satisfy ∃s.A2. This is captured by the following axioms:

B1 v T B2 v T T v ∀r−.(∃s.A2),

where T is a fresh atomic concept. Here, B1 and B2 have been absorbed (i.e., moved to
the left-hand side of the axiom) and the concept T is used to enforce the semantics of
the original axiom. We call ∀r.(¬B1 u ¬B2) completely absorbable since it no longer
contributes a disjunct. The goal of the absorption preprocessing step is, therefore, the
extraction of such easy to verify conditions that allow for expressing a GCI by possibly
several inclusion axioms that ideally do not require a disjunction, e.g., as in the case of
Axiom (2) above.

For the absorption of more complex concepts it is often necessary to join several
conditions, say A1 to An. A possibility to do this in an efficient way is binary absorption
[11], where two concepts A1 and A2 imply a new concept T1 by the axiom (A1 u A2) v
T1. We can then combine T1 with the next condition A3 and so on, until (Tn−2 u An) v
Tn−1, where Tn−1 can then be used for further absorption or to initiate the addition of the
remaining and non-absorbed part of the disjunction. By joining the conditions binary,
it is possible to reuse more of these joins for several axioms if the axioms have some
common conditions. Note, a binary absorption axiom (A1 u A2) v C is usually handled
by a separate v2-rule, which adds the concept C to a label only if A1 and A2 are already
present.

3 Absorption Algorithm

Since our handling of nominal schemas is based on absorption methods, we next present
an improved variant of a recursive binary absorption algorithm, which we then extend

7

Algorithm 1 isCA(C) and isPA(C)
Output: Returns whether the concept C is

completely absorbable
1: procedure isCA(C)
2: if C = C1 tC2 then
3: return isCA(C1) ∧ isCA(C2) .

4: else if C = C1 uC2 then
5: return isCA(C1) ∧ isCA(C2)
6: else if C = ∀r.C′ then
7: return isCA(C′) .

8: else if C = 6 n r.C′ then
9: return false .

10: else if C = ¬{a} then
11: return true

. . .
12: else if C = ¬A then
13: if A is not acyclic then
14: return false
15: end if
16: for all A ≡ C′ ∈ T do
17: if ¬isCA(nnf(¬C′)) then
18: return false
19: end if
20: end for
21: return true
22: end if
23: return false
24: end procedure

Output: Returns whether the concept C is par-
tially absorbable

1: procedure isPA(C)
2: if C = C1 tC2 then
3: return isPA(C1) ∨ isPA(C2) .

4: else if C = C1 uC2 then
5: return isPA(C1) ∧ isPA(C2)
6: else if C = ∀r.C′ then
7: return true .

8: else if C = 6 n r.C′ then
9: return n > 0 .

10: else if C = ¬{a} then
11: return true

. . .
12: else if C = ¬A then
13: if A is not acyclic then
14: return false
15: end if
16: for all A ≡ C′ ∈ T do
17: if ¬isPA(nnf(¬C′)) then
18: return false
19: end if
20: end for
21: return true
22: end if
23: return false
24: end procedure

to nominal schemas in the next section. Our algorithm is well-suited for further opti-
misations (e.g., backward chaining) and it improves the original binary absorption by
allowing the partial absorption of parts of the axioms without creating additional dis-
junctions. For example, the TBox axiom ∃r.(Au∀r.C) v D is, without absorption, han-
dled as > v ∀r.(¬A t ∃r.¬C) t D. None of the disjuncts can be absorbed completely,
but it is nevertheless possible to delay the processing of the disjunction until there is
an r-neighbour with the concept A in its label. In order to capture this, the absorption
rewrites the axiom such that the disjunction is propagated from a node with A in its label
to all r−-neighbours (if there are any), which results in A v ∀r−.(∀r.(¬At∃r.¬C)tD).

In the following, C(i),D(i) are (possibly complex) concepts, A(i),T(i) are atomic con-
cepts with T(i) used for fresh concepts and S is a set of concepts. Our algorithm uses the
following functions to absorb axioms of a (global) TBox T into the new (global) TBox
T ′ (T and T ′ are considered to be global for the ease of presentation):

• isCA(C) (isPA(C)), shown in Algorithm 1, returns whether the concept C is com-
pletely (partially) absorbable. Note, if a concept C is completely absorbable, then it
is also partially absorbable, and moreover, if a concept C is not partially absorbable,
then it is also not completely absorbable. We have tagged the lines 3, 7 and 9 with

8

Algorithm 2 collectDisjuncts(C, absorbable)
Output: Returns the absorbable/not absorbable disjuncts of the concept C
1: S ← {C}
2: while (C1 tC2) ∈ S do
3: S ← (S \ (C1 tC2)) ∪ {C1,C2}

4: end while
5: if absorbable then
6: return { C ∈ S | isPA(C) }
7: else
8: return { C ∈ S | ¬isCA(C) }
9: end if

Algorithm 3 absorbJoined(S)
Output: Returns the atomic concept that is implied by the join of the absorptions of S
1: S ′ ← ∅
2: for all C ∈ S do
3: A′ ← absorbConcept(C)
4: S ′ ← S ′ ∪ {A′}
5: end for
6: while A1 ∈ S ′ and A2 ∈ S ′ and A1 , A2 do
7: T ← fresh atomic concept
8: T ′ ← T ′ ∪ {(A1 u A2) v T }
9: S ′ ← (S ′ ∪ {T }) \ {A1, A2}

10: end while
11: if S ′ = ∅ then return >
12: else return the element A′ ∈ S ′ . S ′ is a singleton
13: end if

a comment symbol to highlight where isPA might allow additional absorption in
comparison to isCA. In order to avoid an infinite recursion, we require that the
concepts are acyclic for the absorption, where acyclicity is defined as follows: A1
directly uses A2 w.r.t. a TBox T if A1 ≡ C ∈ T or A1 v C ∈ T and A2 occurs in C;
uses is the transitive closure of “directly uses”. Then, a concept D is acyclic w.r.t. a
TBox T if it contains no concept A that uses itself. We use the acyclicity restriction
to keep the absorption algorithm simple, however, this restriction is not relevant in
practise, because a cyclic concept A with the definition A v C can simply be made
acyclic by representing A v C as > v ¬A tC.

• collectDisjuncts(C, absorbable), shown in Algorithm 2, returns a set of (partially
or completely) absorbable disjuncts for a concept C if absorbable = true and a set
of not completely absorbable disjuncts otherwise. If C is not a disjunction, then {C}
itself is returned, in case it conforms to the specified absorbable condition.

The absorption itself is invoked by the absorbTBox procedure (see Algorithm 5).
Each axiom of T is processed and the resulting axioms are added to T ′. For a possibly
absorbable axiom the set of all absorbable disjuncts is extracted with collectDisjuncts
from the corresponding disjunction and then absorbJoined is called for generating the
absorption. Please note that if all disjuncts of an axiom can be completely absorbed, then

9

Algorithm 4 absorbConcept(C)
Output: Returns the atomic concept for the absorption of C
1: if C = C1 uC2 then
2: A1 ← absorbJoined(collectDisjuncts(C1, true))
3: A2 ← absorbJoined(collectDisjuncts(C2, true))
4: T ← fresh atomic concept
5: T ′ ← T ′ ∪ {A1 v T, A2 v T }
6: return T
7: else if C = ∀r.C′ then
8: Anb ← absorbJoined(collectDisjuncts(C′, true))
9: T ← fresh atomic concept

10: T ′ ← T ′ ∪ {Anb v ∀r−.T }
11: return T
12: else if C = 6 n r.C′ then
13: Anb ← absorbJoined(collectDisjuncts(nnf(¬C′), true))
14: T ← fresh atomic concept
15: T ′ ← T ′ ∪ {Anb v ∀r−.T }
16: return T
17: else if C = ¬{a} then
18: T ← fresh atomic concept
19: T ′ ← T ′ ∪ {{a} v T }
20: return T

. . .
21: else if C = ¬A then
22: if A ≡ C′ < T then
23: return A
24: else
25: for all A ≡ C′ ∈ T do
26: A′ ← absorbJoined(collectDisjuncts(nnf(¬C′), true))
27: T ′ ← T ′ ∪ {A′ v A+}

28: end for
29: return A+

30: end if
31: end if

an empty disjunction is created (line 16 and 20, which corresponds to ⊥. The methods
absorbJoined (Algorithm 3) and absorbConcept (Algorithm 4) are recursively calling
each other, whereby absorbJoined is joining several atomic concepts with binary ab-
sorption axioms and absorbConcept creates the absorption for a specific, absorbable
concept, i.e., absorbJoined handles the absorbable disjunctions, whereas the remain-
ing absorbable concepts are handled by absorbConcept. For instance, a concept of the
form ∀r.C′ can be absorbed (lines 7–11 of Algorithm 4) by creating a propagation from
the atomic concept Anb, which is obtained by the absorption of the concept C′, back
over the r-edge, to trigger a fresh atomic concept T . Note, if C′ cannot be absorbed,
then absorbJoined returns > and the axiom > v ∀r−.T is created, which corresponds
to ∃r.> v T and, thus, is similar to the well known role absorption technique [20]. Of
course, the absorption can be extended to concept constructors of more expressive DLs

10

Algorithm 5 absorbTBox
Output: Creates a new TBox T ′ with absorbed axioms for the original TBox T
1: for all X ∈ T do
2: if X = A v C then
3: T ′ ← T ′ ∪ {A v C}
4: else if X = A ≡ C then
5: A′ ← absorbJoined(collectDisjuncts(nnf(¬C), true))
6: if isCA(nnf(¬C)) then
7: T ′ ← T ′ ∪ {A v C, A′ v A, A′ v A+}

8: else if | {A v C′ ∈ T } ∪ {A ≡ C′ ∈ T } | > 1 then
9: T ′ ← T ′ ∪ {A v C, A′ v nnf(¬C t A), A′ v A+}

10: else
11: T ′ ← T ′ ∪ {A ≡ C, A′ v A+}

12: end if
13: else if X = C v D or X = C ≡ D then
14: A′ ← absorbJoined(collectDisjuncts(nnf(¬C t D), true))
15: {D1, . . . ,Dn} ← collectDisjuncts(nnf(¬C t D), false)
16: T ′ ← T ′ ∪ {A′ v D1 t . . . t Dn}

17: if X = C ≡ D then
18: A′′ ← absorbJoined(collectDisjuncts(nnf(¬D tC), true))
19: {C1, . . . ,Cm} ← collectDisjuncts(nnf(¬D tC), false)
20: T ′ ← T ′ ∪ {A′′ v C1 t . . . tCm}

21: end if
22: end if
23: end for

(which we have denoted by “. . .” in the algorithms), for example, the ¬∃r.Self concept
of SROIQ can be partially absorbed with > v ∀r−.A.

For an atomic concept A, which is completely defined by an axiom of the form
A ≡ C in T , it is often inefficient to decompose the axiom A ≡ C in A v C and C v A,
because nnf(¬C) might not be completely absorbable and then the disjunction (¬CtA)
has to be processed for the nodes in the completion graph. In order to determine the
satisfiability of a concept, it is, however, for many nodes not relevant whether A or ¬A
is in their label as long as it can be ensured that one of both alternatives is not causing
a clash. Obviously, if the atomic concept A is only defined once in the knowledge base,
then C or ¬C and therefore also A or ¬A must be satisfiable and only in this case the
axiom A ≡ C can be directly handled by a separate rule, which unfolds A to C and ¬A
to ¬C. Thus, there is no need to rewrite the axiom A ≡ C for an efficient handling in
T ′ (Algorithm 5, line 11). If there are more definitions for A, then A v C as well as
C v A must be explicitly represented in the new TBox T ′ so that possible interactions
between these several definitions can be handled. Of course, if nnf(¬C) is partially
absorbable, then the disjunction ¬C t A can be triggered with A′, which is generated
for the absorption of nnf(¬C) (Algorithm 5, line 8.

Furthermore, for each atomic concept A, which is completely defined by an axiom
A ≡ C in T , a candidate concept A+ is generated (line 7,9 and 11 of Algorithm 5). An
occurrence of A+ in the label of a node signalises that the node might be an instance of

11

the concept A, which is obviously the case if A itself is in the label, but this is also the
case if ¬A cannot safely be added. As described above, we are, however, not interested
in forcing the decision between A and ¬A for all nodes in the completion graph. In con-
trast, we generate the candidate concept A+ that can be used in the absorption instead
of A if ¬A occurs, whereby it is often possible to delay branching significantly. The
creation of A+ is realised by absorbing the concept nnf(¬C) for the axiom A ≡ C for
which the disjunction ¬C t A is represented as ¬A v ¬C. The absorption of nnf(¬C)
generates the atomic concept A′ and the axiom A′ v A+ is added to T ′ (line 9 of Algo-
rithm 5). If nnf(¬C) is not absorbable, then the absorption returns > for A′ and > v A+

is added to T ′. Note, we also generate the candidate concepts in the absorbConcept
function (lines 25-28 of Algorithm 4) in order to make the absorption of a separate con-
cept complete for the proofs. Of course, if a candidate concept is already created, then
it is not necessary to create it again. Besides using candidate concepts in the absorption,
they can also be used to identify completely defined concepts as possible subsumers
and, therefore, it is almost always useful to generate the candidate concepts [5].

The absorbJoined function creates binary absorption axioms (Algorithm 3, lines 6-
10) for the atomic concepts returned by absorbConcept. Thus, absorbJoined is joining
several conditions into one fresh atomic concept, which can be used for further absorp-
tion or to initiate the addition of the remaining and non-absorbable part of the axiom.
In principle, it is not necessary to always create new axioms with fresh atomic concepts
for the absorption of identical concepts. In practise, the binary absorption axioms as
well as the axioms for absorbing specific concepts can be reused.

Example 1. As an example, the TBox T = {∃r.({a} u ∃r.{b} u ∃r.{c}) v ∃s.{a}} is
rewritten to T ′ by the absorbTBox procedure, where the new axioms in T ′ are:

{a} v T1 {b} v T2 T2 v ∀r−.T3

{c} v T4 T4 v ∀r−.T5 (T1 u T3) v T6

(T5 u T6) v T7 T7 v ∀r−.T8 T8 v ∃s.{a}.

T1, . . . ,T8 are fresh atomic concepts generated by the absorption. To process the one
and only axiom ∃r.({a} u ∃r.{b} u ∃r.{c}) v ∃s.{a} in T the absorbJoined function is
called for the absorbable parts of ∀r.(¬{a}t∀r.¬{b}t∀r.¬{c})t∃s.{a}, which is only the
disjunct ∀r.(¬{a}t∀r.¬{b}t∀r.¬{c}). An atomic concept for this disjunct is created with
the absorbConcept function by processing the ∀-concept and recursively absorbing
its qualification ¬{a} t ∀r.¬{b} t ∀r.¬{c}, where the qualification can be simplified
into the disjuncts ¬{a},∀r.¬{b} and ∀r.¬{c}. The disjunct ¬{a} can be directly absorbed
to {a} v T1, for the other disjuncts another recursion is necessary to firstly generate
{b} v T2 and {c} v T4 and afterwards the associated propagation of the triggers T3 and
T5 over the r−-role with T2 v ∀r−.T3 and T4 v ∀r−.T5. The absorbJoined function is
joining the atomic concepts T1,T3 and T5 by the new binary axioms (T1 u T3) v T6
and (T5 u T6) v T7. Now, the absorption of the outer ∀-concept can be finished by
adding the axiom T7 v ∀r−.T8. The remaining non-absorbable part of the disjunction
is handled with T8 v ∃s.{a}. The new axioms are not causing any non-determinism
and, furthermore, they can be handled very efficiently as assertions (e.g., {a} v C is
equivalent to the assertion C(a)), by lazy unfolding [1] (for axioms of the form A v C)
and by a binary absorption rule (for axioms of the form (A1 u A2) v C).

12

Example 2. For a more complex example, let T = {A1 ≡ ∃r.A2 u ∀r.A3, (A4 t {a}) u
∃s.(A1u > 3 r.A5) v A6} , which is rewritten to T ′ with the axioms:

A2 v ∀r−.T1 A1 ≡ ∃r.A2 u ∀r.A3 T1 v A+
1

{a} v T2 A4 v T3 T2 v T3

A5 v ∀r.T4 (A+
1 u T4) v T5 T5 v ∀s−.T6

(T3 u T6) v T7 T7 v ∀s.(¬A1t 6 2 r.A5) t A6.

First, the axiom A1 ≡ ∃r.A2u∀r.A3 is absorbed, which generates the first three axioms of
T ′, where A2 v ∀r−.T1 and T1 v A+

1 are triggering the candidate concept A+
1 of the com-

pletely defined concept A1, and the axiom A1 ≡ ∃r.A2 u ∀r.A3 is used for the unfolding
of A1. The other eight axioms of T ′ are created for the absorption of (A4t{a})u∃s.(A1u

> 3 r.A5) v A6, similar to the previous example. Again, T1, . . . ,T7 are the fresh atomic
concepts and although not all disjunctions can be eliminated for these axioms, it is nev-
ertheless possible to optimise their structure for a more efficient handling in the tableau
algorithm. Additionally to the axioms of the form {a} v C, A v C, (A1 u A2) v C,
which are also created in the previous example, the absorption ensures that all remain-
ing axioms of the form A ≡ C can also be efficiently handled by lazy unfolding, i.e.,
A can be unfolded to C and ¬A to ¬C. Moreover, the new axioms dramatically de-
lay or completely avoid non-deterministic branching caused by disjunctions. For ex-
ample, without absorption, the disjunction (¬A4 u ¬{a}) t ∀s.(¬A1t 6 2 r.A4) t A5
obtained from the second axiom in the unprocessed TBox T has to be processed for
each node in a completion graph. With absorption, we have one remaining disjunction,
∀s.(¬A2t 6 2 r.A3) t A4, which is triggered by T7. The concept T7 is only added to
the label of a node if the original disjunction is not trivially satisfiable. For example,
if a node does not have any s-neighbours, then T6 would not be added to the label and
as a consequence of the axiom (T3 u T6) v T7, T7 would also not be added. In this
case, it would not be necessary to make non-deterministic decisions since the second
disjunct ∀s.(¬A1t 6 2 r.A4) of the original disjunction is trivially satisfiable. Please
also note that the decision between ¬A1 and A1 is not enforced for every node in a com-
pletion graph for T ′ and, nevertheless, A1 can be partially used in the absorption by
replacing it with A+

1 . As long A+
1 is not in the label of a node of a fully expanded com-

pletion graph, we know that ¬A1 must be satisfiable, because ∀r.¬A2 of the disjunction
∀r.¬A2 t ∃r.¬A3 cannot not cause a clash. This can be utilised in the absorption of the
other axiom, because as long as we know that ¬A1 can be added to a s-neighbour with-
out causing a clash, we also know that the axiom (A4 t {a}) u ∃s.(A1u > 3 r.A5) v A6
can be trivially satisfied.

3.1 Correctness

Termination for the absorption algorithm itself is ensured by the acyclicity of the ax-
ioms. However, if it is ensured that the candidate concepts are exclusively created by
the absorbTBox procedure for all atomic concepts, which are completely defined with
axioms of the form A ≡ C in T , then in the recursion between absorbJoined and
absorbConcept only the current axiom has to be processed. Since we generate the

13

candidate concepts in absorbConcept only to make the functions absorbJoined and
absorbConcept complete for the absorption of a concept for the proofs, the acyclicity
restriction would not be necessary for termination.

In the following we prove the correctness of our modified absorption algorithm.
We first show that the complete absorption of a disjunct of an axiom is correct, i.e., it
preserves the satisfiability (Lemma 1 and Lemma 2), and then we show that the correct-
ness of a partially absorbed concept disjunct can be reduced to the complete absorption
(Lemma 3).

Lemma 1 Let T denote a TBox, I = (∆I, ·I) an interpretation such that I |= T , C a
concept that is completely absorbable, A the concept returned by absorbJoined({C}),
and T ′ the extension of T with all the axioms created by absorbJoined({C}), then

1. for every extension I′ of I such that I′ |= T ′, it holds that I′ |= T ,
2. for every extension I′ of I such that I′ |= T ′, it holds for all δ ∈ ∆I

′

that δ ∈ AI
′

if δ < CI
′

, and
3. there exists an interpretation I′ = (∆I

′

, ·I
′

) such that I′ |= T ′ with ∆I
′

= ∆I and
δ ∈ AI

′

only if δ < CI
′

.

Proof. (Claim 1) Since T ′ is an extension of T , it trivially follows that I′ |= T .
(Claim 2) We first prove the simple cases where C is completely absorbable and after-
wards we show by induction that the lemma also holds for the complex cases.

• If C is of the form ¬A and A ≡ C′ < T , then absorbConcept(C) directly returns
A, which is then also returned by absorbJoined({C}). Thus, if δ ∈ ∆I

′

and δ < CI
′

,
i.e., δ < (¬A)I

′

, then δ ∈ AI
′

. Hence, the lemma holds if C is of the form ¬A.
• If C is of the form ¬{a}, then absorbConcept(C) adds the axiom {a} v A to T ′ and

returns A, which is then also returned by absorbJoined({C}). Thus, if δ < CI
′

, i.e.,
δ < (¬{a})I

′

, then δ ∈ aI
′

and because, by assumption, I′ |= T ′, i.e., I′ |= {a} v A,
it follows that δ ∈ AI

′

. Hence, the lemma holds if C is of the form ¬{a}.

For the complex cases we assume that all nested disjunctions are replaced by a sin-
gle disjunction with all disjuncts, i.e., (C1 t (C2 t C3)) is replaced by (C1 t C2 t

C3). Furthermore, we automatically decompose a disjunction into the set of disjuncts
by calling absorbJoined. This simplification is also done by the algorithm with the
collectDisjuncts function, which is always called before absorbJoined. Therefore, we
can omit collectDisjuncts for calling absorbJoined, which improves the readability.
Now, for a disjunct C j, it follows that C j is not a disjunction itself and it also follows that
absorbJoined({C j}) only returns the atomic concept that is returned by absorbConcept(C j).

Let C1, . . . ,Cn be completely absorbable concepts and A1, . . . , An the atomic con-
cepts returned by absorbJoined({C1}), . . . ,absorbJoined({Cn}). By our induction hy-
pothesis, the lemma holds for A1 w.r.t. C1, . . . , An w.r.t. Cn.

• If C is now of the form C1 t . . .tCn, then absorbJoined({C1, . . . ,Cn}) collects the
atomic concepts A1, . . . , An by calling absorbConcept(C j) for each C j, 1 6 j 6 n,
and creates the binary absorption axioms (A1uA2) v T1, (T1uA3) v T2, . . . , (Tn−2u

An) v A. Thus, if δ < CI
′

, i.e., δ < (C1 t . . . t Cn)I
′

, then δ ∈ (¬C1 u . . . u ¬Cn)I
′

and as a consequence δ ∈ (¬C j)I
′

for 1 6 j 6 n. Therefore, by the induction

14

hypothesis we have δ ∈ AI
′

j for all 1 6 j 6 n. Thus, δ ∈ AI
′

1 and δ ∈ AI
′

2 and since
the interpretation I′ |= T ′ with {(A1 u A2) v T1, (T1 u A3) v T2, . . . , (Tn−2 u An) v
A} ⊆ T ′ it follows that δ ∈ TI

′

1 , δ ∈ TI
′

2 , . . . , δ ∈ AI
′

. Hence, the lemma holds by
induction if C is of the form C1 t . . . tCn.

• If C is of the form C1 u C2, then absorbJoined({C}) returns A, which is obtained
by calling absorbConcept(C), where additionally the axioms A1 v A and A2 v A
are created. If δ < CI

′

, i.e., δ < (C1 uC2)I
′

, then δ ∈ (¬C1 t¬C2)I
′

. There are now
two cases: If δ ∈ (¬C1)I

′

, then by the induction hypothesis we have δ ∈ AI
′

1 and
due to the axiom A1 v A we have δ ∈ AI

′

. For the other case we have δ ∈ (¬C2)I
′

and by the induction hypothesis δ ∈ AI
′

2 and due to the axiom A2 v A we also have
δ ∈ AI

′

. Hence, the lemma holds by induction if C is of the form C1 uC2.
• If C is of the form ∀r.C1, then absorbConcept(C) creates A1 v ∀r−.A and A is

returned by absorbJoined({C}). Thus, if δ < CI
′

, i.e., δ < (∀r.C1)I
′

, then δ ∈
(∃r.¬C1)I

′

. It follows that there exists γ ∈ ∆I
′

, (δ, γ) ∈ rI
′

with γ ∈ (¬C1)I
′

and
by the induction hypothesis we have γ ∈ AI

′

1 . As a consequence of the axiom
A1 v ∀r−.A we also have δ ∈ AI

′

. Hence, the lemma holds by induction if C is of
the form ∀r.C1.

• If C is of the form ¬A′ and A′ is completely defined by the axioms A′ ≡ C′1 ∈
T , . . . , A′ ≡ C′n ∈ T , then the candidate concept A′+ is returned for A by the
absorption. Let C1 = ¬C′1, . . . ,Cn = ¬C′n, then the candidate concept A′+ is implied
by A1, . . . , An, which are the atomic concepts created for absorbing ¬C′1, . . . ,¬C′n,
i.e., C1, . . . ,Cn. Now, this case is similar to the case where C is of the form C1tC2,
because if δ < CI

′

, i.e., δ < (¬A′)I
′

, then δ ∈ A′I
′

and as a consequence of the
axioms A′ ≡ ¬C1, . . . , A′ ≡ ¬Cn we also have δ ∈ (¬C j)I

′

for 1 6 j 6 n. Therefore,
by the induction hypothesis it follows that δ ∈ AI

′

j for all 1 6 j 6 n and, because of
the axioms that imply the candidate concept A′+, we also have δ ∈ (A′+)I

′

. Hence,
the lemma holds by induction if C is of the form ¬A′ and A′ is completely defined
with axioms of the form A′ ≡ C′, where nnf(¬C′) is completely absorbable.

(Claim 3) We construct the interpretation I′ from I such that δ ∈ AI
′

only if
δ < CI

′

. Therefore, let I′ = (∆I
′

, ·I
′

) be an interpretation with ∆I
′

= ∆I and ·I
′

reduced
from ·I such that only the atomic concepts, atomic roles, and individuals occurring in
T are interpreted. Obviously, it still holds that I′ |= T since the interpretation of all
axioms in T coincides with I. We now define the interpretation of the fresh atomic con-
cepts A1, . . . , Am introduced for the absorption of C in I′. Note that we treat absorption
axioms of the form A′ v ∀r.Ai in their equivalent form ∃r−.A′ v Ai.

Now, for 1 6 i 6 m and for each axiom H v Ai generated by the absorption, we
exhaustively add δ ∈ ∆I

′

to AI
′

i if (i) H = A′ and δ ∈ A′I
′

, (ii) H = {a} and δ ∈ {a}I
′

,
(iii) H = (A′ u A′′) and δ ∈ A′I

′

∩ A′′I
′

, or (iv) H = ∃r−.A′ and δ ∈ (∃r−.A′)I′ , i.e.,
δ has some r-neighbour γ such that (γ, δ) ∈ rI

′

and γ ∈ A′I
′

. We have δ ∈ AI
′

i only
if δ satisfies the left-hand side of an axiom A′ v Ai, {a} v Ai, or (A′ u A′′) v Ai, or
∃r−.A′ v Ai. Consequently, it follows that I′ |= T ′. Furthermore, δ < AI

′

if δ ∈ CI
′

,
because of the following cases:

• If C is of the form ¬A, A ≡ C′ < T and δ ∈ CI
′

, i.e., δ ∈ (¬A)I
′

, then δ < AI
′

.
• If C is of the form ¬{a} for which the absorption has generated {a} v A and if
δ ∈ CI

′

, i.e., δ ∈ (¬{a})I
′

, then δ < {a}I
′

and then δ < AI
′

, because the left-hand

15

side of {a} v A is not satisfied and there is also no other axiom that implies A,
because A is freshly used for {a} v A.

For the remaining cases, we again assume that the lemma holds for A1 w.r.t. C1, . . . , An

w.r.t. Cn, where A1, . . . , An are the atomic concepts for absorbing the completely ab-
sorbable concepts C1, . . . ,Cn. Therefore, it follows by induction that δ < AI

′

if δ ∈ CI
′

,
because:

• If C is of the form C1t. . .tCn and δ ∈ CI
′

, i.e., δ ∈ (C1t. . .tCn)I
′

, then there exists
a C j, 1 6 j 6 n with δ ∈ CI

′

j . By the induction hypothesis it follows that δ < AI
′

j
and by the binary axiom chain (A1 u A2) v T1, (T1 u A3) v T2, . . . , (T j−2 u A j) v
T j−1, . . . , (Tn−2 u An) v A, which is generated for absorbing C1 t . . .tCn, we have
δ < AI

′

, because the left-hand side of the axiom (T j−2 u A j) v T j−1 cannot be
satisfied.

• If C is of the form C1 u C2 and δ ∈ CI
′

, i.e., δ ∈ (C1 u C2)I
′

, then δ ∈ CI
′

1 and
δ ∈ CI

′

2 . By the induction hypothesis we have δ < AI
′

1 and δ < AI
′

2 . The left-hand
side of the axioms A1 v A and A2 v A is not satisfied and the absorptions does not
generate other axioms that imply A. Thus, δ is not added to AI

′

.
• If C is of the form ∀r.C1 and δ ∈ CI

′

, i.e., δ ∈ (∀r.C1)I
′

, then for all γ ∈ ∆I
′

with (δ, γ) ∈ rI
′

we also have γ ∈ CI
′

1 . By the induction hypothesis it follows that
γ < AI1 and since the left-hand side of the generated axiom ∃r−.A1 v Ai is not
satisfied, and there are not any other axioms that imply A, we do not add δ to AI

′

and, thus, δ < AI
′

.
• If C is of the form ¬A′, A′ is completely defined by the axioms A′ ≡ C′1 ∈
T , . . . , A′ ≡ C′n ∈ T , and δ ∈ CI

′

, i.e., δ ∈ (¬A′)I
′

, then, for C1 = ¬C′1, . . . ,Cn =

¬C′n and as a consequence of the axioms A′ ≡ C′1, . . . , A
′ ≡ C′n, we also have

δ ∈ CI
′

1 , . . . , δ ∈ CI
′

n . By the induction hypothesis we have δ < AI
′

1 , . . . , δ < AI
′

n
and, thus, the left-hand side of all axioms that imply the candidate concept A = A′+

is not satisfied. Therefore, we have δ < AI
′

. ut

We can now use Lemma 1 to show the correctness of the absorption for the case of
a completely absorbable concept C in an axiom C v D.

Lemma 2 For T a TBox and C t D a disjunction, where C is completely absorbable
and D is neither completely nor partially absorbable, let T1 denote the TBox with T1 =

T ∪ {> v C t D} and T2 denote the TBox with T2 = T ∪ {A v D} ∪ X, where X are
the axioms created by A ← absorbJoined({C}). Then, a concept C′ is satisfiable with
respect to T1 iff it is satisfiable with respect to T2.

Proof. If direction: For I2 an interpretation with C′I2 , ∅ and I2 |= T2, we show that
I2 |= T1. Because of the axiom A v D ∈ T2 for each δ ∈ ∆I2 it holds that either δ < AI2

(and thus δ ∈ CI2 by Lemma 1) or δ ∈ DI2 . Thus, the axiom > v (C t D) ∈ T1 is
satisfied for every δ ∈ ∆I2 and, therefore, I2 |= T1.

Only if direction: For I1 an interpretation with C′I1 , ∅ and I1 |= T1, we construct
an interpretation I′1 with C′I

′
1 , ∅ and I′1 |= T2. Since I1 |= T1 and T1 is an extension

of T , it follows that I1 |= T . Because of Lemma 1, there exists an interpretation I′1
that can be constructed from I1 for which it holds that I′1 |= T ∪ X and for all δ ∈ ∆I

′
1

16

that δ ∈ AI
′
1 only if δ < CI

′
1 . Thus, it also follows that I′1 |= A v D, because ∆I

′
1 = ∆I1

and for all δ ∈ ∆I
′
1 it holds that either δ ∈ CI

′
1 and thus δ < AI′1 or δ ∈ DI

′
1 . Thus, if

C′I1 , ∅, then C′I
′
1 , ∅. ut

In order to show the correctness of the partial absorption of a disjunction C t D,
where C is partially absorbable and D is neither completely nor partially absorbable,
we reduce the problem to the complete absorption of C′ tC t D, where for C′ it holds
that C′ is completely absorbable and C′ v C. We show that the partial absorption of
C is equivalent to the complete absorption of the concept C′. Therefore, the partial
absorption of C t D corresponds to the complete absorption of C′ t C t D, which is
obviously equisatisfiable to C t D since C subsumes C′.

Lemma 3 Let C be a partially absorbable concept, then absorbJoined({C}) generates
the absorption of a concept C′ for which it holds that C′ v C and C′ is completely
absorbable.

Proof. If C is already completely absorbable, then the lemma trivially holds since in this
case C′ is C. Thus, we show in the following for all cases where C is partially absorbable
but not completely absorbable that absorbJoined({C}) generates the absorption of a
more specific concept C′ for which it holds C′ v C and C′ is completely absorbable.

• If C is of the form ∀r.D′ (of the form 6 n r.D′ with n ≥ 0) and D′ (nnf(¬D′)) is
neither completely nor partially absorbable, then absorbConcept(C) creates > v
∀r−.A, which corresponds to the complete absorption of ∀r.¬> for which it holds
that ∀r.¬> v ∀r.D′ (∀r.¬> v 6 n r.D′ for n ≥ 0).

To prove the complex cases by induction, we assume that the concepts D1, . . . ,Dm are
partially absorbable and the lemma holds for D1, . . . ,Dm, i.e., the absorption completely
absorbs the concepts D′1, . . . ,D

′
m, for which it holds that D′1 v D1, . . . ,D′m v Dm, and

let A1, . . . , Am be the atomic concepts that are achieved for absorbing D′1, . . . ,D
′
m.

• If C is of the form ∀r.D1 (of the form 6 n r.D′ with n ≥ 0 and D1 = nnf(¬D′))
and D1 is partially absorbable, then absorbConcept(C) creates A1 v ∀r−.A, where
A1 is the atomic concept that is returned by absorbConcept(D1) for completely
absorbing D′1. The absorption of C corresponds to the complete absorption of ∀r.D′1
and, by the induction hypothesis, we have D′1 v D1. Thus, it also holds that ∀r.D′1 v
∀r.D1 (∀r.D′1 v 6 n r.D′ for n ≥ 0, because D′1 v ¬D′).

• If C is of the form D1t . . .tDmtC1t . . .tCn with D1, . . . ,Dm partially absorbable
and C1, . . . ,Cm neither partially nor completely absorbable, then the absorption
creates the binary axiom chain (A1uA2) v T1, (T1uA3) v T2, . . . , (Tm−2uAm) v A,
which corresponds to the complete absorption of D′1 t . . . t D′m, where A1, . . . , Am

are again the atomic concepts for absorbing D′1, . . . ,D
′
m. Because of the induction

hypothesis it holds that D′1 t . . . t D′m v D1 t . . . t Dm tC1 t . . . tCn.
• If C is of the form D1 u D2 with D1,D2 partially absorbable, then the absorption

creates the axioms A1 v A and A2 v A, which corresponds to the complete absorp-
tion of D′1uD′2, where A1 and A2 are the atomic concepts for absorbing D′1 and D′2.
Because of the induction hypothesis it holds that D′1 u D′2 v D1 u D2.

17

• If C is of the form ¬A, A is completely defined by the axioms A ≡ D̂1 ∈ T , . . . , A ≡
D̂m ∈ T and D1 = ¬D̂1, . . . ,Dm = ¬D̂m are partially absorbable, then the ab-
sorption returns A+ and also creates the axioms that imply the candidate con-
cept A+. Let A′ be the atomic concept that is completely defined by the axioms
A′ ≡ ¬D′1, . . . , A

′ ≡ ¬D′m, then the complete absorption of D′1, . . . ,D
′
m creates the

atomic concepts A1, . . . , Am and additionally the axioms that imply A′+. The partial
absorption of ¬A corresponds to complete absorption of ¬A′ and thus it obviously
holds by the induction hypothesis that ¬A′ v ¬A and A′+ v A+. ut

As a consequence of the above lemmas, we find that the above presented absorption
algorithms indeed produce a TBox for which concept satisfiability is preserved:

Theorem 1 Let T denote a TBox, which is rewritten into T ′ by the absorbTBox func-
tion, and C a concept, then C is satisfiable with respect to T iff it is satisfiable with
respect to T ′.

4 Nominal Schema Absorption

Axioms with nominal schemas are very expressive in comparison to many decidable
alternatives based on rules. For instance, the atoms in the heads or bodies of DL-safe
SWRL rules can only be instantiated with individuals that occur in the ABox. In tab-
leau algorithms, it is, therefore, only necessary to check whether the bodies of such
rules are satisfied on tableau nodes that represent ABox individuals/nominals. If this
is the case, then the atoms of the heads have to be added, however, also exclusively to
individual/nominal nodes. This is no longer the case for axioms with nominal schemas.
For example, given the nominal schema axiom

∃t.∃t.∃t.(∃r.{x} u ∃s.{x}) v ∃t.{x},

we have to check whether the left-hand side is satisfied at any tableau node, although the
variable x can only bind to nodes that represent individuals/nominals. That is, checking
may also involve blockable nodes in the completion graph that do not represent ABox
individuals. Furthermore, such axioms can then enforce the addition of the right-hand
side also on blockable nodes. As a consequence, typical approaches for rule processing,
such as Rete [4], cannot be used in a straightforward way since blocking easily becomes
unsound.

Due to the fact that it would be necessary to also process all blockable nodes with
the Rete algorithm, i.e., also the concepts in the label of blockable nodes as well as the
roles in the edge labels to these blockable nodes have to be used as input facts for the
Rete algorithm, and because Rete does not provide blocking information, it is not clear
when the expansion of new successors can be stopped in the tableau algorithm. For ex-
ample, if the knowledge base also contains the axiom > v ∃t.>u∃r.{a}u∃s.{a} and the
construction of new successors is already blocked after, e.g., two successively created
t-successors, then the Rete algorithm cannot infer the right-hand side of the considered
nominal schema axiom for any constructed node since this requires the successive cre-
ation of at least three t-successors. Obviously, this is even more complicated if some of
the roles are complex.

18

Our approach to overcome this issue is to emulate well known rule processing algo-
rithms such as Rete by adapted tableau rules, which propagate bindings of variables for
concepts through the completion graph. The propagated bindings of variables can be
considered in the blocking condition, which allows for ensuring completeness, sound-
ness and termination. As a nice side-effect, the propagation of bindings in the comple-
tion graph also means that complex roles can be supported without further adjustments.

This approach works well if the axioms have a typical rule structure, i.e., the axioms
have a large absorbable part and almost every nominal schema variable appears at least
once in the absorbable part. This is hardly surprising, because ordinary GCIs without
nominal schema variables must also have a large absorbable part for reasoning systems
to handle such axioms efficiently.

In order to actually bind variables to individuals (or nodes in a completion graph),
we use the ↓ binder operator, as known from Hybrid Logics [2]. The unrestricted exten-
sion of a Description Logic with binders easily leads to undecidability of the standard
reasoning problems. However, we retain the decidability since we only bind variables
to individuals that occur in the ABox. In order to realise this, we extend a knowledge
base with nominal schemas with axioms of the form {a} v O for each individual a,
where O is a fresh atomic concept, and the axioms created by the absorption ensure that
binders are then only triggered in the completion graph if the special concept O occurs
in the label of the node. In the remainder of this paper, we assume that all considered
knowledge bases already contain the {a} v O axioms for each ABox individual a.

4.1 Absorption of Axioms with Nominal Schemas

The absorption of axioms with nominal schema variables works very similar to the ab-
sorption of ordinary axioms without nominal schema variables. Typically, the absorp-
tion algorithm can be directly extended to handle the new concept construct. However,
to avoid some special cases for conjunctions C1 u C2 in an absorbable disjunct, where
different nominal schema variables are used in C1 and C2, we require for the nominal
schema absorption that all conjunctions in absorbable positions are eliminated. This can
be done by duplicating the disjunction that is absorbed and replacing the corresponding
conjunction in one case with C1 and in the other case with C2. For example, the axiom
{x} t A v ∃r.{x} is handled as the disjunction (¬{x} u¬A)t∃r.{x} in the absorption and
the conjunction ¬{x} u ¬A has to be eliminated by replacing the original axiom with
{x} v ∃r.{x} and A v ∃r.{x}. For our absorption algorithm of Section 3, the following
two modifications are necessary in order to handle nominal schemas in the remaining
axioms (cf. Algorithms 6 and 7):

• isCA(C) (isPA(C)) is extended to return that a negated occurrence of a nominal
schema ¬{x} is completely (partially) absorbable.

• absorbConcept(C) must now also handle a negated occurrence of a nominal schema
¬{x} by absorbing it to O v ↓x.Tx, where Tx is a fresh atomic concept and O is the
special atomic concept that is added to the label of every individual {a} in the ABox
by axioms of the form {a} v O.

19

Algorithm 6 Absorption extensions for Algorithms 1
1: procedure isCA(C)

. . .

2: if C = ¬{x} then
3: return true
4: end if

. . .

5: end procedure

1: procedure isPA(C)
. . .

2: if C = ¬{x} then
3: return true
4: end if

. . .

5: end procedure

Algorithm 7 Absorption extensions for Algorithm 4
1: procedure absorbConcept(C)

. . .

2: if C = ¬{x} then
3: Tx ← fresh atomic concept
4: T ′ ← T ′ ∪ {O v ↓x.Tx}

5: return Tx

6: end if
. . .

7: end procedure

Other concepts can be absorbed as before, however, the final atomic concept A cre-
ated by the absorption cannot initiate the addition of the remaining, non-absorbed part
of the axiom in the same way. If the remaining disjuncts D1, . . . ,Dn still contain nom-
inal schemas, then the disjunction has to be grounded with those bindings of variables
that have been propagated to A. In the tableau algorithm this can be done dynamically,
e.g., with a new “grounding concept” and a corresponding rule. Therefore, if D1, . . . ,Dn

still contain concepts with nominal schema variables, then A v gr(D1 t . . .tDn) has to
be added to the TBox, where gr(C) is the new grounding concept. For simplicity, let us
assume that gr(C) is always used to add the remaining, non-absorbed part of the axiom,
even if C or the axiom does not contain any nominal schema variables.

Example 3. As an example, the axiom ∃r.({x}u∃a.{y}u∃v.{z})u∃s.(∃a.{y}u∃v.{z}) v
∃c.{x} can be almost completely absorbed into the following axioms:

O v ↓x.Tx

O v ↓z.Tz

T3 v ∀s−.T4
(T4 u T6) v T7

O v ↓y.Ty

Tz v ∀v−.T2
(T3 u Tx) v T5

T7 v gr(∃c.{x})

Ty v ∀a−.T1
(T1 u T2) v T3

T5 v ∀r−.T6

Again, Tx, Ty, Tz, T1, . . . ,T7 are fresh atomic concepts. Only ∃c.{x} cannot be absorbed
and has to be grounded on demand. In the example, we have reused axioms for the ab-
sorption of the same concepts to reduce the total number of axioms. The basic algorithm
of Section 3 would generate for each occurrence of ¬{y} a separate binder concept, i.e.,
we would have O v ↓y.Ty as well as O v ↓y.T ′y, which is obviously not necessary.

20

4.2 Tableau Algorithm Extensions to Handle Variable Bindings

We can now extend a standard tableau decision procedure to support (absorbed) nom-
inal schema axioms. The ↓ binders and gr(·) concepts are handled by new rules. Fur-
thermore, the v1- and v2-rules to handle TBox axioms and the ∀-rule (for transitivity
support also the ∀+-rule) have to be adapted in order to propagate variables bindings.

Roughly speaking, for each concept C in the label of a node v, we keep a set of
mappings that records bindings for variables. A mapping set is created, when a concept
of the form ↓x.C occurs in the label of a node v. In this case, we add C to the label of v
and, in order to “remember” the binding x 7→ v, we add the mapping µ with µ(x) = v to
the mappings of C. Note that, as a consequence of our absorption algorithm, a binder
concept ↓x.C is always such that C does not contain further binders.

Definition 7 (Variable Mapping). A variable mapping µ is a (partial) function from
variable names to individual names. For a variable mapping µ – and more generally
for any (partial) function – the set of elements on which µ is defined is the domain,
written dom(µ), of µ, and the set ran(µ) = {µ(x) | x ∈ dom(µ)} is the range of µ. We
use ε for the empty variable mapping, i.e., dom(ε) = ∅, and we associate a concept fact
C(v) with a set of variable mappings, denoted by B(C, v).

If no confusing is likely to arise, we simply write mapping instead of variable mapping.
The mappings for a concept fact have to be propagated by the tableau rules for the con-
cepts and axioms that are used in the absorption. For example, if we apply the v1-rule
(cf. Table 2) to an axiom of the form A v C, we keep the mappings also for the concept
C. Similarly, we extend other rules (see Table 2) and we describe the not so straightfor-
ward extensions in more detail below. Note, it is only necessary to extend those rules,
which are related to concepts and axioms that are used in the absorption, because if the
mappings are propagated to the gr-concept, then the remaining, non-absorbed part of
the axiom is grounded and thus corresponds to an ordinary concept.

Some major adjustments are necessary in order to handle binary absorption axioms
of the form (A1uA2) v C correctly (cf. v2-rule). First of all, we want to keep the default
behaviour if there are no variable mappings associated to the concept facts for which
the rule is applied, i.e., if B(A1, v) ∪ B(A2, v) = ∅, then we add C to the label of v. In
contrast, if B(A1, v) , ∅ or B(A2, v) , ∅, we propagate the join of the mapping sets to
the implied concept. In the case B(A1, v) = ∅ and B(A2, v) , ∅, we extend B(A1, v) by
the empty mapping ε so that the join of B(A1, v) and B(A2, v) results in B(A2, v), which
is then propagated to C. We proceed analogously for B(A2, v) = ∅ and B(A1, v) , ∅. In
principle, the join combines variable mappings that map common variables to the same
individual name and to point out that the empty sets of mappings are specially handled,
we have extended the join operator 1 with the superscript ε.

Definition 8 (Variable Mapping Join). Two variable mappings µ1 and µ2 are com-
patible if µ1(x) = µ2(x) for all x ∈ dom(µ1) ∩ dom(µ2). A variable mapping µ1 ∪ µ2
is defined by setting (µ1 ∪ µ2)(x) = µ1(x) if x ∈ dom(µ1), and (µ1 ∪ µ2)(x) = µ2(x)
otherwise. Given two (possibly empty) sets of variable mappings M1, M2, let Mε

1 = {ε}
(Mε

2 = {ε}) if M1 = ∅ (M2 = ∅) and Mε
1 = M1 (Mε

2 = M2) otherwise. The join M1 1ε M2
is defined as {µ1 ∪ µ2 | µ1 ∈ Mε

1, µ2 ∈ Mε
2 and µ1 is compatible with µ2} \ {ε}.

21

Table 2. Tableau rule extensions to propagate variable mappings

∀-rule: if ∀r.C ∈ L(v), v not indirectly blocked, there is an r-neighbour w of v with C <
L(w) or B(∀r.C, v) * B(C,w)

then L(w) −→ L(w) ∪ {C} and B(C,w) −→ B(C,w) ∪ B(∀r.C, v)
v1-rule: if A v C ∈ K , A ∈ L(v), v not indirectly blocked, and C < L(v) orB(A, v) * B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ B(C, v) ∪ B(A, v)
v2-rule: if (A1 u A2) v C ∈ K , {A1, A2} ⊆ L(v), v not indirectly blocked, and

1. B(A1, v) ∪ B(A2, v) = ∅ and C < L(v), or
2. (B(A1, v) 1ε B(A2, v)) , ∅ and C < L(v) or (B(A1, v) 1ε B(A2, v)) * B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ B(C, v) ∪ (B(A1, v) 1ε B(A2, v))
↓-rule: if ↓x.C ∈ L(v), v not indirectly blocked, and C < L(v) or {x 7→ v} < B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ {{x 7→ v}}
gr-rule: if gr(C) ∈ L(v), v not indirectly blocked, there exists a variable mapping µ ∈

compKVars(C)(B(gr(C), v)) with C[µ] < L(v)
then L(v) −→ L(v) ∪ {C[µ]}

Note, the extension by the empty variable mapping ε is required to propagate vari-
able mappings to a concept C if B(A1, v) = ∅ or B(A2, v) = ∅. We cannot simply asso-
ciate all concept facts also with the empty variable mapping, because all mappings are
compatible with the empty variable mapping. Hence, if B(A1, v) , ∅ and B(A2, v) , ∅,
also the variable mappings of B(A1, v) and B(A2, v) would directly be propagated to C,
whereas only the combination of the mappings should be propagated. Clearly, it would
be possible to only associate all concept facts in the initial completion graph with the
empty variable mapping. One could then propagate these empty variable mappings to
newly added concepts as long as no other variable mappings are created for these con-
cepts through the binder rule (↓-rule). However, it would be necessary to adapt all other
tableau rules as well, whereas the dynamic extension with ε during a join allows for not
modifying other tableau rules.

Besides the new ↓-rule, we also have to handle a grounding concept gr(C) in the
label of a node v with the tableau algorithm. Therefore, the gr-rule grounds the concept
C based on the variable mappings that are associated to gr(C) on the node v.

Definition 9 (Grounding, Completion). For a concept C, Vars(C) is the set of nominal
schema variables that syntactically occur in C. A concept C is grounded if Vars(C) = ∅.
Let µ be a variable mapping. We write C[µ] to denote the concept obtained by replacing
each nominal schema {x} that occurs in C and x ∈ dom(µ) with the nominal {µ(x)}.

Given a set of variables Y and a variable mapping set M with Mε as the extension
by the empty mapping ε if M = ∅, we define the completion compTY (M) of M w.r.t. the
variable set Y and a knowledge base K containing the individuals Inds(K) as

compKY (M) := {µ ∪ {x1 7→ v1, . . . , xn 7→ vn} | µ ∈ Mε , x1, . . . , xn ∈ (Y \ dom(µ)),
v1, . . . , vn ∈ Inds(K)}.

In order to ground the concept C for a concept fact gr(C)(v), the gr-rule uses the
variable mappings of compKVars(C)(B(gr(C), v)). Since the mappings that are propagated

22

a3 a4

a1 a2

a0

a
v a

v

r, c s

L(a3) =
>,{a3},O,↓x.Tx,↓y.Ty,↓z.Tz,

T {{x 7→a3}}
x ,T {{y 7→a3}}

y ,T {{z7→a3}}
z ,

(∀a−.T1){{y7→a3}},(∀v−.T2){{z7→a3}}


L(a4) =
>,{a4},O,↓x.Tx,↓y.Ty,↓z.Tz,

T {{x 7→a4}}
x ,T {{y7→a4}}

y ,T {{z7→a4}}
z ,

(∀a−.T1){{y7→a4}},(∀v−.T2){{z7→a4}}



L(a1) =

>,{a1},O,↓x.Tx,↓y.Ty,↓z.Tz,T
{{x 7→a1}}
x ,

T {{y7→a1}}
y ,T {{z7→a1}}

z ,(∀a−.T1){{y 7→a1}},

(∀v−.T2){{z 7→a1}},T {{y7→a3}}
1 ,T {{z7→a4}}

2 ,

T {{y7→a3 ,z7→a4}}
3 ,(∀s−.T4){{y7→a3 ,z7→a4}},

T {{x 7→a1 ,y7→a3 ,z7→a4}}
5 ,(∀r−.T6){{x 7→a1 ,y7→a3 ,z7→a4}}



L(a2) =

>,{a2},O,↓x.Tx,↓y.Ty,↓z.Tz,T
{{x 7→a2}}
x ,

T {{y7→a2}}
y ,T {{z7→a2}}

z ,(∀a−.T1){{y7→a2}},

(∀v−.T2){{z7→a2}},T {{y7→a3}}
1 ,T {{z 7→a4}}

2 ,

T {{y7→a3 ,z7→a4}}
3 ,(∀s−.T4){{y7→a3 ,z 7→a4}},

T {{x 7→a2 ,y7→a3 ,z7→a4}}
5 ,(∀r−.T6){{x 7→a2 ,y7→a3 ,z 7→a4}}



L(a0)=

{
>,{a0},O,↓x.Tx,↓y.Ty,↓z.Tz,T

{{x 7→a0}}
x ,T {{y7→a0}}

y ,T {{z 7→a0}}
z ,(∀a−.T1){{y7→a0}},(∀v−.T2){{z7→a0}},

T {{y7→a3 ,z 7→a4}}
4 ,T {{x 7→a1 ,y7→a3 ,z7→a4}}

6 ,T {{x 7→a1 ,y7→a3 ,z 7→a4}}
7 ,gr(∃c.{x}){{x 7→a1 ,y7→a3 ,z7→a4}},∃c.{a1}

}

Fig. 1. Variable mapping propagation example

to B(gr(C), v) might not contain all nominal schema variables that occur in C, it is nec-
essary to extend the mappings with every combination of named individuals for the
remaining variables. This completion ensures that all concepts obtained by the ground-
ing of C are fully grounded and can now be added and handled as ordinary concepts in
the completion graph. Therefore, it is also not necessary to further propagate variable
mappings to the grounded concepts.

In order to support the more expressive Description Logic SROIQwith our absorp-
tion technique of nominal schemas, it would be necessary to further extend the ∀-rule
to complex roles. This extension can easily be achieved by propagating the variable
mappings also over those ∀-concepts that are introduced to handle the automata of the
role inclusion axioms [6]. Alternatively we could adapt the technique to eliminate role
chains (incl. transitivity) [3]. The remaining SROIQ features are straightforward to
support.

Standard pairwise blocking is extended by the new condition in the definition below
to ensure that the expansion of the completion graph is not stopped too early, even if
variable mappings are propagated through the completion graph.

Definition 10 (Blocking with Variable Mappings). A node v with predecessor v′ is
directly blocked if there exists a node w with predecessor w′ such that

• v is directly pairwise blocked by w (see conditions 1 - 4 of Definition 6), and
• B(C, v) = B(C,w) and B(D, v′) = B(D,w′) for all C ∈ L(v) and D ∈ L(v′).

The completion graph in Figure 1 is obtained in the course of testing the consistency
of a knowledge base containing the axioms of Example 3 and the following assertions:

r(a0, a1) s(a0, a2) a(a1, a3) v(a1, a4) a(a2, a3) v(a2, a4).
The set of variable mappings that is associated to a concept fact is shown in the super-
script of the concept in the label of the corresponding node. Note, we have highlighted
those concepts and variable mappings that are responsible for the grounding of new

23

concepts in this example. However, since O and thereby also the binder concepts are
added to all ABox individuals, they automatically create variable mappings for every
ABox individual. Obviously, many of these mappings are not necessary and their cre-
ation can easily be limited by additional axioms. For example, the variable x only has
to be bound if an a-neighbour and also a v-neighbour exists for an individual node,
i.e., the binding of x can be delayed with ∃v.> v T ′1, ∃a.> v T ′2, (T ′1 u T ′2) v T ′3 and
(O u T ′3) v ↓x.Tx.

The joins of the mapping sets are created in the nodes a1 and a2 for the con-
cepts T3 and T5 and finally in node a0 for the concept T7. Only the variable mapping
{x 7→ a1, y 7→ a3, z 7→ a4} is propagated to the grounding concept gr(∃c.{x}) and thus,
by replacing the nominal schema {x} with the nominal {a1}, we have ∃c.{a1} as the
only grounded concept. Hence, the individual a0 is found to have a conflicting review
assignment with the paper a1.

4.3 Correctness

In the following we prove the correctness of our nominal schema absorption technique.
For this, we roughly proceed as follows: Given a nominal schema axiom C v D and
an absorbed TBox T , then for Tns and Tug as the TBoxes obtained from absorbing T ∪
{C v D} and T ∪{U1, . . . ,Uh}, respectively, where U1, . . . ,Uh are the upfront grounded
axioms of C v D, we show that a fully expanded and clash free completion graph Gns

for Tns can be converted to a fully expanded and clash free completion graph Gug for
Tug. Furthermore, we show that our extended tableau algorithm constructs a complete
and clash free completion graph Gns for Tns if there exists a fully expanded and clash
free completion graph Gug for Tug that is constructed by a standard tableau algorithm.

Please note that we only work with TBoxes instead of knowledge bases. This as-
sumption is w.l.o.g. since in the presence of nominals ABoxes can be internalised (e.g.,
C(a) is equivalent to the GCI {a} v A, r(a1, a2) to {a} v ∃r.{b}, etc.). We assume, there-
fore, that a completion compTY (M) is analogously defined to the completion compKY (M)
with K = (T , ∅).

To simplify the conversion between a completion graph for Tns and a standard com-
pletion graph for Tug, we ensure that all concept facts can directly be converted into con-
cept facts for the other completion graph. Therefore, we make the following simplify-
ing assumptions: We assume that the absorption of nominals of the form ¬{a} generates
{a} v > u T instead of {a} v T (cf. Algorithm 4, line 19), which is obviously logically
equivalent. As a result, binder concepts such as ↓x.T can be directly converted to con-
cepts of the form > u T . We also assume that the absorption of the upfront grounded
axiom C[µ] v D[µ], by the variable mapping µ, creates a new special grounding con-
cept grµ(D) to add the remaining, non-absorbable part of the axiom instead of directly
implying D[µ]. This new concept construct retains the mapping µ and corresponds to
the grounding concept gr(D) that is created for the absorption of the nominal schema
axiom C v D.

Before introducing the actual conversion, we first define the notion of concept and
axiom set closure:

Definition 11 (Closure). The closure clos(C′) of a concept C′ is a set of concepts that
is closed under sub-concepts of C′ and also contains C′. Additionally, fclos(Z) is the

24

extension to a set of axioms Z:

fclos(Z) :=
⋃

C′vD′∈Z

clos(¬C′ t D′).

For a TBox T and an axiom C′ v D′ with nnf(¬C′) completely and D′ not completely
absorbable, the absorption closure aclosT (C′ v D′) for T and C′ v D′ contains the
new concepts introduced by the absorption of C′ v D′ and is defined as:

aclosT (C′ v D′) := fclos(X′1, . . . , X
′
n) \ (fclos(T) ∪ clos(D′)),

where X′1, . . . , X
′
n are the axiom introduced by the absorption of C′ v D′.

Note that the concepts in the absorption closure are those that are relevant for the con-
version between completion graphs since these are the concepts with variable mappings.

Now, the actual conversion of concepts and axioms obtained from the absorption is
defined as follows:

Definition 12 (Conversion). Let C v D be a nominal schema axiom where nnf(¬C) is
completely and D not completely absorbable, and let µ be a mapping with dom(µ) =

Vars(¬C t D) . Furthermore, let T be an absorbed TBox, Tns and Tug TBoxes obtained
by absorbing T ∪{C v D} and T ∪{U1, . . . ,Uh}, respectively, where U1, . . . ,Uh are the
axioms obtained by the upfront grounding of C v D. We denote the axioms (in creation
order) and fresh atomic concepts obtained by absorbing nnf(¬C t D) with X1, . . . , Xn

and T1, . . . ,Tg, respectively. Similarly, we use Xµ
1 , . . . , X

µ
n and T µ

1 , . . . ,T
µ
g for the case

of absorbing nnf((¬C t D)[µ]).
For the concept C′, we inductively define the concept conversion convµ(C′) of C′

w.r.t. T , C v D and µ as

convµ(C′) :=


C′ if C′ < aclosT (C v D)
(> u convµ(C′′)) if C′ = ↓x.C′′

grµ(D) if C′ = gr(D)
C′

[T1/T
µ
1 ,...,Tg/T

µ
g]

otherwise,

where C′
[T1/T

µ
1 ,...,Tg/T

µ
g]

denotes the syntactic replacement of each occurrence of Ti in C′

with T µ
i , for 1 ≤ i ≤ g. The extension to axioms fconvµ(X) is defined as:

fconvµ(X) :=

{µ(x)} v > u convµ(D′) if X = O v ↓x.D′

convµ(C′) v convµ(D′) otherwise.

In the remainder of the section, we use C v D, µ, T , Tns, Tug, T1, . . . ,Tg, T µ
1 , . . . ,T

µ
g ,

X1, . . . , Xn, and Xµ
1 , . . . , X

µ
n as in the above definition.

Note that the restrictions on C v D are w.l.o.g. since any nominal schema axiom can
be transformed into the desired form in an equivalence preserving manner. If nnf(¬C)
is only partially absorbable, then a completely absorbable concept nnf(¬C′) can be
extracted from C (cf. Lemma 3), which can be used to obtain an axiom C′ v D′,
where it holds that C′ v C, C′ is completely absorbable and D′ = nnf(¬C′) t D is

25

not completely absorbable. Also note that ¬> and ⊥ can always be used to extend a
disjunction that corresponds to an axiom in order to obtain a completely absorbable and
not completely absorbable disjunct w.r.t. our absorption algorithm.

We can now show that we can convert the axioms obtained by absorbing nnf(¬CtD)
from the nominal schema axiom C v D into the axioms that are obtained by absorbing
the grounded version nnf((¬C t D)[µ]), which is the first step in the conversion of a
completion graph with nominal schema concepts to a standard completion graph:

Lemma 4 Let T be an absorbed TBox, C v D a nominal schema axiom, U1, . . . ,Uh

the upfront grounding, µ a mapping, Tns and Tug TBoxes, and X1, . . . , Xn and Xµ
1 , . . . , X

µ
n

axioms as in Definition 12. The set {fconvµ(X1), . . . , fconvµ(Xn)} is identical to the set
{Xµ

1 , . . . , X
µ
n }.

Proof. Let T1, . . . ,Tg and T µ
1 , . . . ,T

µ
g be the fresh atomic concepts introduced by the ab-

sorption of nnf(¬CtD) and nnf((¬CtD)[µ]), respectively. Since the concepts nnf(¬Ct
D) and nnf((¬C t D)[µ]) only differ in the nominal schemas that are replaced by nomi-
nals, the absorption of nnf(¬C tD) and nnf((¬C tD)[µ]) is identical expect for axioms
of the form O v ↓x.Ti and Tg v gr(D) in Tns, which correspond to axioms of the form
{a} v (> u T µ

i) and T µ
g v grµ(D) in Tug. Hence, by Definition 12, the claim holds. ut

For the conversion, we use the implicitly associated sets of variable mappings,
which are defined as follows:

Definition 13 (Implicitly Associated Mappings). The implicitly associated set of vari-
able mappings mappG(C′(v)) for a concept fact C′(v) and C′ in the absorption closure
w.r.t. a completion graph G = (V, E,L, ,̇,B) is defined as:

mappG(C′(v)) :=


{{x 7→ v}} if C′ = ↓x.D′

B(C′, v) if B(C′, v) , ∅
{ε} otherwise.

Now, let Gns be a completion graph showing the satisfiability of the TBox Tns. We
can replace each concept fact C′(v) with the implicitly associated variable mappings
M and C′ ∈ aclosT (C v D), by the concept facts (convµ1 (C′))(v), . . . , (convµk (C

′))(v),
where µ1, . . . , µk are the mappings obtained from the completion compTVars(¬CtD)(M)
of M. As a result, we obtain a fully expanded completion graph Gug that shows the
satisfiability of the upfront grounded TBox Tug.

Lemma 5 (Soundness) Let T be an absorbed TBox, C v D a nominal schema axiom,
U1, . . . ,Uh the upfront grounding for C v D, andTns andTug TBoxes as in Definition 12.
If there is a fully expanded and clash free completion graph for Tns, then there is a fully
expanded and clash free completion graph for Tug.

Proof. Let Gns = (Vns, Ens,Lns, ,̇ns,Bns) be a fully expanded and clash free comple-
tion graph for Tns. We convert Gns into a fully expanded and clash free completion
graph Gug by replacing every concept fact C′(v), C′ ∈ aclosT (C v D), v ∈ Vns, with
the implicitly associated variable mappings M = mappGns (C′(v)), by the concept facts

26

(convµ1 (C′))(v), . . . , (convµk (C
′))(v) with {µ1, . . . , µk} = compTVars(¬CtD)(M). Further-

more, let λ2, . . . , λ` be all possible variable mappings for Vars(¬C t D) w.r.t. T , i.e.,
{λ2, . . . , λ`} = compTVars(¬CtD)({ε}).

In the following we show that none of the standard tableau rules for the concepts and
axioms used in the absorption are applicable to Gug. Please note that the extended tab-
leau rules (Table 2) coincide with the standard tableau rules (cf. Table 1) if no variable
mappings are associated to the concept facts. Also note that the concept facts and ax-
ioms, which are not related to the absorption, are not affected by the conversion. Thus,
the corresponding rules are not applicable for these concepts and axioms. Furthermore,
since identical node labels are converted in the same way, blocking is not affected, i.e.,
if a node is blocked before the conversion, then it is also blocked after the conversion.

• We firstly consider the application of the ∀-rule, which is not applicable for Gug, be-
cause C′ = ∀r.D′(v) is converted to (convµ1 (∀r.D′))(v), . . . , (convµk (∀r.D′))(v) and
for each r-neighbour node w of v the concept fact D′(w) is either also not associated
with variable mappings (which is ensured by the absorption algorithm by creating
separate axioms with fresh atomic concepts for the absorption of concepts that do
not contain nominal schemas) or is at least also associated with the same variable
mappings (otherwise the ∀-rule would be applicable for Gns) and thus D′(w) is at
least also converted to (convµ1 (D′))(w), . . . , (convµk (D

′))(w).
• We now consider the application of the v1-rule. The absorption creates axioms

of the form H v D′ with D′ ∈ aclosT (C v D) and H = {a} or H = A. If
D′ , ↓x.D′′ (the replacement axioms for O v ↓x.D′′ are considered together with
the ↓-concepts), H < aclosT (C v D) and H = A or H = {a}, then we would
have the axioms H v convλ2 (D′), . . . , H v convλ` (D

′) in Tug and the v1-rule is
not applicable, because, for every node v in Gns with the concept fact H(v), D′(v)
is also present and Bns(D′, v) = ∅. Thus, D′(v) is replaced by (convλ2 (D′))(v), . . . ,
(convλ` (D

′))(v). If A ∈ aclosT (C v D), then we would have the axioms convλ2 (A)
v convλ2 (D′), . . . , convλ` (A) v convλ` (D

′) and the v1-rule is not applicable, be-
cause for every node v in Gns with the concept fact A(v) and the associated variable
mappings µ1, . . . , µk, A(v) would be replaced by (convµ1 (A))(v), . . . , (convµk (A))(v),
and D′ is either also not associated with variable mappings (which is ensured by
the absorption algorithm) or is at least also associated with the variable mappings
µ1, . . . , µk (otherwise Gns would not be fully expanded), and is at least also replaced
by (convµ1 (D′))(v), . . . , (convµk (D

′))(v). Thus, the v1-rule is not applicable for Gug.
• Next, we consider the application of the v2-rule for an axiom (A1uA2) v D′. There

are three cases:
1. If Bns(A1, v) = ∅ and Bns(A2, v) = ∅, then Bns(D, v) = ∅ and every concept fact

D′(v) is replaced by (convλ2 (D′))(v), . . . , (convλ` (D
′))(v) and thus the rule is

not applicable for (A1 u A2) v convλ2 (D′), . . . , (A1 u A2) v convλ` (D
′).

2. IfBns(A1, v) , ∅ (Bns(A2, v) , ∅), then the v2-rule is analogously to the v1-rule
not applicable, because either there is no variable mapping that is associated to
A2(v) (A1(v)) and, as a consequence, there is also no variable mapping associ-
ated to D′(v) (which is ensured by the absorption algorithm), or every variable
mapping that is associated to A2(v) (A1(v)) is also associated to D′(v) if A1 (A2)
is also in the label of v. Thus, the v2-rule cannot add a convλ j (D

′) concept to v

27

that is not already present, because the corresponding convλ j (A1) (convλ j (A2))
is missing.

3. If Bns(A1, v) , ∅ and Bns(A2, v) , ∅, the v2-rule is again not applicable af-
ter the conversion, because A1(v) and A2(v) are replaced by the concept facts
(convµ1 (A1))(v), . . . , (convµk (A1))(v) and (convµ′1 (A2))(v), . . . , (convµ′k′ (A2))(v),
respectively, where µ1, . . . , µk and µ′1, . . . , µ

′
k′ are the completion of the set of

variable mappings mappGns (A1(v)) and mappGns (A2(v)). The v2-rule is, how-
ever, only applicable for an axiom (convµ(A1) u convµ(A2)) v convµ(D′) if
convµ(A1) as well as convµ(A2) is in the same label, but convµ(D′) is not al-
ready present, i.e., µ ∈ {µ1, . . . , µk} and µ ∈ {µ′1, . . . , µ

′
k′ }, but µ < {µ1, . . . , µk} 1

ε

{µ′1, . . . , µ
′
k′ }, which is a contradiction, because {µ1, . . . , µk} 1

ε {µ′1, . . . , µ
′
k′ } is

the same as the completion of Bns(A1, v) 1ε Bns(A2, v) to all possible variables
used in C v D.

• The ↓-concepts are more complicated. Concept facts of the form ↓x.D′(a) are
not explicitly associated with variable mappings. However, because of the axiom
O v ↓x.D′, they only occur in the label of ABox individual nodes. Thus, we can use
the implicit information that x will be bound to the ABox individual node a, and we
use the completion of the variable mapping {x 7→ a} for µ1, . . . , µk. Therefore, we
replace ↓x.D′(a) with the concept facts (>uconvµ1 (D′))(a), . . . , (>uconvµk (D

′))(a).
It is not hard to see that (> u convµ1 (D′)), . . . , (> u convµk (D

′)) cannot be un-
folded in Gug, because the ↓-rule ensures that D′ is also already present in the
label of the node and is associated with the variable mapping {x 7→ a} and, thus,
D′ is also replaced by convµ1 (D′), . . . , convµk (D

′). Analogously, for the axioms
{a} v > u convµ1 (D′), . . . , {a} v > u convµk (D

′) that we have to consider in
Gug instead of O v ↓x.D′, the rules for these axioms are also not applicable,
because the concept ↓x.D′ in the label of a has been replaced by the concepts
> u convµ1 (D′), . . . ,> u convµk (D

′) and ↓x.D′ is in the label of a, because it is
added to every ABox individual node due to the axiom O v ↓x.D′.

• The argumentation for the gr-concepts and the corresponding rules is very similar.
As mentioned before, we assume that the grounding concept is always used to
add the remaining, non-absorbable part of the axiom. Thus, gr(D) is always in
aclosT (C v D), even if Vars(D) = ∅. Furthermore, we also use the assumption
that the absorption of an upfront grounded axiom, by the variable mapping µ, also
uses a special grounding concept grµ(D), which has to be unfolded to D[µ] and
is, therefore, not problematic for the tableau algorithm, because it corresponds to
a conjunction with only one conjunct. Thus, a concept fact gr(D)(v) is replaced
by (convµ1 (gr(D)))(v), . . . , (convµk (gr(D)))(v), which is the same as (grµ1 (D))(v),
. . . , (grµk (D))(v). Obviously, these replaced grounding concepts cannot be unfolded
to D[µ1], . . . ,D[µk], because D[µ1], . . . ,D[µk] are already present due to the application
of the gr-rule for gr(D)(v), for which also the completion of the associated set of
variable mappings is used for the grounding of D. ut

Next, we show that we can steer our extended tableau algorithm to construct a com-
plete and clash free completion graph Gns for Tns if there exists a fully expanded and
clash free completion graph Gug for Tug that is constructed by a standard tableau algo-
rithm.

28

Lemma 6 (Completeness) Let T be an absorbed TBox, C v D a nominal schema
axiom, U1, . . . ,Uh the upfront grounding for C v D, and Tns and Tug TBoxes as in
Definition 12. If there is a fully expanded and clash free completion graph for Tug, then
there is a fully expanded and clash free completion graph for Tns.

Proof. Let Gug be a completion graph for Tug that is obtained by applying only rules for
concepts and axioms of T . Since our extended rules coincide with the standard tableau
rules if no variable mappings are associated to concept facts, our extended tableau algo-
rithm can create Gns, which exactly coincides with Gug. We show that the application of
a rule in Table 2 to Gns deterministically adds only concept facts and possibly variable
mappings, for which the conversion of these facts and variable mappings are also con-
sequences in Gug that are added in the course of applying standard tableau rules to Gug.
Thus, Gug can obviously be used for steering the non-deterministic decisions for Gns to
construct a fully expanded and clash free completion graph if Gug is fully expanded and
clash free.

Now, let Gns and Gug be completion graphs for Tns and Tug, respectively, and Gns

and Gug coincide with the inferred facts so far, i.e., the conversion of concept facts and
variable mappings from Gns corresponds to the contained concept facts in Gug. To show
by induction that each rule application for Gns only adds concept facts and variable
mappings, for which the conversion of these facts and variable mappings are also con-
sequences in Gug, let λ2, . . . , λ` be all possible variable mappings, i.e., {λ2, . . . , λ`} =

compTVars(¬CtD)({ε}). Please note, it suffices to consider only the extended rules for con-
cepts and axioms used for absorbing C v D, because only the concepts in aclosT (C v
D) can be associated with variable mappings, for which the extended rules differ to
standard rules.

• First, we consider the ∀-rule for a concept fact ∀r.D′(v), ∀r.D′ ∈ aclosT (C v D),
which adds the concept fact D′(w) to an r-neighbour w of v in Gns and possibly the
variable mapping µ ∈ Bns(∀r.D′, v) to Bns(D′,w). If the ∀-rule only adds the con-
cept fact D′(w) for cases where B(∀r.D′, v) = ∅, then mappGns (D′(w)) = {ε} (which
is ensured by the absorption algorithm) and we have to show that in the completion
graph Gug the concept facts (convλ2 (D′))(w), . . . , (convλ` (D

′))(w) are also added
by rule applications. Obviously, this is the case, because the concept fact ∀r.D′(v)
corresponds to (convλ2 (∀r.D′))(v), . . . , (convλ` (∀r.D′))(v) in Gug and by applying
the ∀-rule for all concept facts (convλ j (∀r.D′))(v), 1 ≤ j ≤ `, we have the con-
cepts convλ2 (D′), . . . , convλ` (D

′) in the label of all neighbour nodes. If the ∀-rule
adds a variable mapping µ ∈ Bns(∀r.D′, v) to Bns(D′,w), then we have to show
that (convµ1 (D′))(w), . . . , (convµk (D

′))(w) with {µ1, . . . , µk} = compTVars(¬CtD)({µ})
are added to Gug by rule applications. But this is also the case since ∀r.D′(v) cor-
responds to (convµ1 (∀r.D′))(w), . . . , (convµk (∀r.D′))(w) in Gug and applying the
∀-rule for (convµ1 (∀r.D′))(w), . . . , (convµk (∀r.D′))(w) adds (convµ1 (D′))(w), . . . ,
(convµk (D

′))(w) to the label of all neighbour nodes.
• Next, we consider the v1-rule for an axiom H v D′ with H = A or H = {a}

and D′ , ↓x.D′′ (we consider the addition of the binder concepts together with
the ↓-rule). If Bns(H, v) = ∅ and the v1-rule adds only the concept fact D′(v) to
a node, then we have to show that (convλ2 (D′))(v), . . . , (convλ` (D

′))(v) are also

29

added to Gug by rule applications. Again, this is obviously the case, because for
Gug we have the rules convλ2 (H) v convλ2 (D′), . . . , convλ` (H) v convλ` (D

′). If
Bns(H, v) , ∅, then H = A, the v1-rule adds also a variable mapping µ to Bns(D′, v)
and we have to show that (convµ1 (D′))(v), . . . , (convµk (D

′))(v) with {µ1, . . . , µk} =

compTVars(¬CtD)({µ}) are added to Gug by rule applications. Again, this is a con-
sequence of the concept facts (convµ1 (A))(v), . . . , (convµk (A))(v) in Gug and the
axioms convµ1 (A) v convµ1 (D′), . . . , convµk (A) v convµk (D

′) that we have to con-
sider for Gug.

• Let us now consider the v2-rule for an axiom (A1 u A2) v D′. If the v2-rule
only adds the concept fact D′(v), then we have to show that (convλ2 (D′))(v), . . . ,
(convλ` (D

′))(v) are also added to Gug by rule applications. However, this is the case,
because A1(v) and A2(v) corresponds to (convλ j (A1))(v) and (convλ j (A2))(v) in Gug,
respectively, and, since we have the axiom (convλ j (A1) u convλ j (A2)) v convλ j (D)
for each 1 ≤ j ≤ `, it follows that all (convλ2 (D′))(v), . . . , (convλ` (D

′))(v) are
also added to Gug. If the v2-rule also adds the variable mapping µ to Bns(D′, v),
then we have to show that (convµ1 (D′))(v), . . . , (convµk (D

′))(v) with {µ1, . . . , µk} =

compTVars(¬CtD)({µ}) are also added to Gug by rule applications. Let us first assume
that Bns(A1, v) = ∅ (Bns(A2, v) = ∅). As a consequence, we have in Gug the concept
facts (convλ2 (A2))(v), . . . , (convλ` (A2))(v) and (convµ1 (A2))(v), . . . , (convµk (A2))(v)
((convλ2 (A1))(v), . . . , (convλ` (A1))(v) and (convµ1 (A1))(v), . . . , (convµk (A1))(v)). As
a consequence of the axioms (convλ j (A1)uconvλ j (A2)) v convλ j (D), for all 1 ≤ j ≤
`, the concept facts (convµ1 (D′))(v), . . . , (convµk (D

′))(v) are also added to Gug by
rule applications. Let us now assume that Bns(A1, v) , ∅ as well as Bns(A2, v) , ∅.
We show that (convµ1 (D′))(v), . . . , (convµk (D

′))(v) has to be added to Gug, because
(convµ1 (A1))(v), . . . , (convµk (A1))(v) as well as (convµ1 (A2))(v), . . . , (convµk (A2))(v)
are in Gug. Obviously, there exists the variable mappings µ′ ∈ Bns(A1, v) and
µ′′ ∈ Bns(A2, v) with µ = dom(µ′)∪dom(µ′′) and for each x ∈ (dom(µ′)∩dom(µ′′))
it holds that µ′(x) = µ′′(x). Thus, µ′ ⊆ µ and µ′′ ⊆ µ and as a consequence
of the completion of µ′ and µ′′ it follows that {µ1, . . . , µk} ⊆ {µ

′
1, . . . , µ

′
k} and

{µ1, . . . , µk} ⊆ {µ
′′
1 , . . . , µ

′′
k }. Therefore, (convµ1 (A1))(v), . . . , (convµk (A1))(v) and

(convµ1 (A2))(v), . . . , (convµk (A2))(v) are at least also in Gug.

• The ↓-rule for a concept fact ↓x.D′(a) adds D′ to the label of a and the vari-
able mapping {x 7→ a} to Bns(D′, a). We have to show that the concept facts
(convµ1 (D′))(a), . . . , (convµk (D

′))(a) with {µ1, . . . , µk} = compTVars(¬CtD)({x 7→ a})
are also added to Gug by rule applications. But this is obviously the case, be-
cause in Gug we have the concept facts (convµ1 (↓x.D′))(a), . . . , (convµk (↓x.D

′))(a),
which is nothing else than (> u convµ1 (D′))(a), . . . , (> u convµk (D

′))(a). Further-
more, we have to show that (> u convµ1 (D′))(a), . . . , (> u convµk (D

′))(a) is added
to Gug, because, as a consequence of the axiom O v ↓x.D′, ↓x.D′(a) is added
to Gns. Obviously, this is the case, because for Gug we have the axioms {a} v
> u convµ1 (D′), . . . , {a} v > u convµk (D

′).

• The application of the gr-rule adds for a concept fact gr(D′)(v) and a (possibly
empty) variable mapping µ ∈ Bεns(gr(D′), v) the concept facts D[µ1], . . . ,D[µk] with
{µ1, . . . , µk} = compTVars(¬CtD)({µ}). We have to show that D[µ1], . . . ,D[µk] is also
added to Gug by rule applications. Again, this is obviously the case, because in

30

Gug we have the concept facts (convµ1 (gr(D′)))(v), . . . , (convµk (gr(D′)))(v), which
is the same as grµ1 (D′)(v), . . . , grµk (D

′)(v). ut

The extended tableau algorithm is still terminating. This is due to the fact that the
number of variable mappings is limited by the number of ABox individuals and the
number of variables in axioms. Thus, blocking is ensured since the nodes in the com-
pletion graph can only be labelled with a limited number of concepts and only a limited
number of variable mappings can be associated to these concepts.

Lemma 7 (Termination) Let L be a Description Logic without nominal schemas and
LV its extension with nominal schemas. Extending a tableau decision procedure for
the satisfiability of L-TBoxes based on the rules of Table 1 with the rules of Table 2
results in a terminating algorithm for absorbed LV-TBoxes.

As a result, we obtain a terminating tableau algorithm that is sound and complete
for absorbed TBoxes with nominal schema axioms:

Theorem 2 Let L be a Description Logic without nominal schemas and LV its exten-
sion with nominal schemas. Extending a tableau decision procedure for satisfiability
of L-TBoxes based on the rules of Table 1 with the rules of Table 2 yields a decision
procedure for the satisfiability of absorbed LV-TBoxes.

5 Backward Chaining Optimisations

In comparison to the upfront grounding approach, the nominal schema absorption is
usually a huge improvement for knowledge bases, where axioms with absorbable nom-
inal schemas do not match to every combination of ABox individuals. However, the
propagation of variable mappings can still lead to practical problems. On the one hand,
it is unfavourable that the mappings are created and propagated to many nodes and even
to such nodes, where the conditions of the absorptions cannot be satisfied. On the other
hand, if there are several neighbour nodes that satisfy some absorption condition, then
the join potentially creates quite a lot of new mappings.

Example 4. In order to illustrate the problems, let us assume that we have an axiom
∃r.{x} u ∃s.{y} u A v B, which is absorbed as follows:

O v ↓x.Tx

Ty v ∀s−.T2
T4 v gr(B).

Tx v ∀r−.T1
(T1 u T2) v T3

O v ↓y.Ty

(T3 u A) v T4

Moreover, the knowledge base contains the assertions:
r(c0, a0) r(c0, a1) s(c0, b0) s(c0, b1).

Subsequently, the completion graph in Figure 2 is generated by testing the consistency
of the knowledge base. Obviously, both of the aforementioned problems occur in the
generated completion graph. Due to the missing concept A in the label of node c0,
it is impossible to propagate the variable mappings to the grounding concept gr(B).
Nevertheless, the algorithm creates mappings with new bindings for the variables x and
y for each node. Furthermore, the concept T3 in the label of c0 is already associated

31

a1a0 b0 b1

c0

r r s s

c1

s
r

L(c1) =
{
>, {c1},O, A, . . .

}
L(c0) =
>, {c0},O, ↓x.Tx, ↓y.Ty,T

{{x 7→c0}}
x ,T {{y7→c0}}

y , (∀r−.T1){{x 7→c0}},

(∀s−.T2){{y7→c0}},T {{x 7→a0},{x 7→a1}}
1 ,T {{y7→b0},{y7→b1}}

2 ,

T {{x 7→a0 ,y7→b0},{x 7→a1 ,y7→b0},{x 7→a0 ,y7→b1},{x 7→a1 ,y7→b1}}
3



L(a1) =
>, {a1},O,
↓x.Tx, ↓y.Ty,

T {{x 7→a1}}
x ,T {{y7→a1}}

y ,

(∀r−.T1){{x 7→a1}},

(∀s−.T2){{y7→a1}}



L(a0) =
>, {a0},O,
↓x.Tx, ↓y.Ty,

T {{x 7→a0}}
x ,T {{y7→a0}}

y ,

(∀r−.T1){{x 7→a0}},

(∀s−.T2){{y7→a0}}



L(b0) =
>, {b0},O,
↓x.Tx, ↓y.Ty,

T {{x 7→b0}}
x ,T {{y7→b0}}

y ,

(∀r−.T1){{x 7→b0}},

(∀s−.T2){{y7→b0}}



L(b1) =
>, {b1},O,
↓x.Tx, ↓y.Ty,

T {{x 7→b1}}
x ,T {{y7→b1}}

y ,

(∀r−.T1){{x 7→b1}},

(∀s−.T2){{y7→b1}}



Fig. 2. Naive propagation and resulting combinatorial explosion of variable mappings

with four new variable mappings that are created by joining the mappings associated to
T1 and T2.

Although the problems cannot be completely avoided in worst-case scenarios, it is
nevertheless possible to optimise the creation and combination of variable mappings
with backward chaining for many practical knowledge bases. In Example 4, no indi-
vidual can ever have the grounding concept in its label. To make the example more
interesting, let us assume that the knowledge base of Example 4 is extended by the
assertions r(c1, a1), s(c1, b1) and A(c1) (cf. Figure 2, extension in dashed lines). Now,
the basic idea is to first detect, with a simpler method, “interesting” nodes that can sat-
isfy the conditions of the absorption, i.e., nodes that can possibly have the grounding
concept in their label, and also those ABox individuals that might be “candidates” for
binding the nominal schema variables.

Let us assume that we are able to detect c1 as “interesting” with a1 as a “candi-
date” for x and b1 as a “candidate” for y. We now propagate these binding candidates
back from the interesting node to the concepts and nodes that are relevant to imply the
grounding concept for c1. For example, the axiom (T1 u T2) v T3 tells us that the vari-
able mappings that are associated to T1 and T2 on the node c1 have to be joined and
then propagated to T3 before the grounding concept can be implied. If we can use the
information of the back propagated binding candidates, then we can limit the join of
variable mappings such that only those mappings are combined, which represent the
expectation of the candidates, i.e., we combine only the mapping µ1 and µ2 for which
we know that for every z ∈ dom(µ1 ∪ µ2), (µ1 ∪ µ2)(z) is a back propagated candidate
for z. Thus, we can control the join with the back propagated binding candidates. Of
course, to retain completeness, the set of binding candidates must be a superset of the
those bindings in variable mappings that are indeed required to ground all necessary
concepts. Moreover, we can further propagate the candidates back over the r and s roles
to control the binder concepts, which is, as a consequence of the axioms Tx v ∀r−.T1
and Ty v ∀s−.T2, also a requirement to imply the grounding concept.

32

Table 3. Tableau rules to handle variable mappings with considered backward chaining propaga-
tions

→BP-rule: if (A1, A2)→BP C ∈ L(v), {A1, A2} ⊆ L(v), v not indirectly blocked, and
if B(A1, v) ∪ B(A2, v) = ∅, C < L(v)
then L(v) −→ L(v) ∪ {C}
if there exist µ ∈ (B(A1, v) 1ε B(A2, v)) with {x 7→ µ(x)} ∈ B((A1, A2) →BP

C, v) for all x ∈ dom(µ), C < L(v) or µ * B(C, v)
then L(v) −→ L(v) ∪ {C} and B(C(v)) −→ B(C(v)) ∪ {µ}

↓BP-rule: if ↓BPx.C ∈ L(v), v not indirectly blocked, {x 7→ v} ∈ B(↓BPx.C, v), and C < L(v)
or {x 7→ v} < B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ {{x 7→ v}}

We next describe a more systematic approach to this idea of back propagation from
nodes such as c1 in the above example. A nice feature of this approach is that our
absorption algorithms only require slight modifications for this purpose.

In the following, we extend the tableau and absorption algorithm such that we can
propagate candidates for variables and use the (back) propagated candidates to control
the creation and combination of variable mappings. For now, let us assume that for each
nominal schema variable x all individuals a1, . . . , am, which are a candidate for x, are
already identified. Thus, we get the binding candidates x/a1, . . . , x/am and we encode
these bindings also as variable mappings, i.e., if a j is an individual that is a candidate
for the variable x, then we encode this in the variable mapping {x 7→ a j}. Hence, we
can also use the rules in Table 2 for the back propagation of the binding candidates. To
consider the back propagated bindings in the ↓- and v2-rules, it is necessary to know
to which ↓x.C concepts and (A1 u A2) v C axioms the back propagated bindings are
associated. Moreover, to distinguish the previously introduced concepts (rules) from the
new ones for the optimisation, we use ↓BP x.C and (A1, A2) →BP C for the new binder
and join concepts (↓BP and →BP for the new rules), where BP denotes the considered
back propagation. Note, instead of using a binary absorption axiom of the form (A1 u

A2) v C, we now use the concept (A1, A2)→BP C, because then the binding candidates
can be directly propagated to the concept (A1, A2) →BP C and this makes it easier to
consider the candidates in the associated rule.

The new rules with the considered backward chaining propagation are shown in
Table 3. The main difference is that now only those variable mappings are created and
combined, for which all the individuals can be found in the back propagated binding
candidates. Thus, the ↓BP-rule creates a new variable mapping {x 7→ v} on a node v only
if the concept ↓BP x.C is in the label of v and the backward chaining has propagated
the binding candidate x/v to the concept ↓BPx.C in the node v. Since the binding x/v is
also propagated as mapping, we can use {x 7→ v} ∈ B(↓BPx.C, v) as condition to trigger
the application of the ↓BP-rule. Analogously, the→BP-rule only creates the join of the
variable mappings µ1 and µ2 on a node v if all individuals for the variables can be found
in the back propagated bindings, i.e., {x 7→ (µ1 ∪ µ2)(x)} ∈ B((A1, A2) →BP C, v) for
every x ∈ dom(µ1 ∪ µ2).

In order to support the backward chaining propagation in the absorption algorithm,
some minor adjustments in the absorbJoined and absorbConcept functions are nec-

33

Algorithm 8 absorbJoinedBP(S , ABP)
Output: Returns the atomic concept that is implied by the join of the absorptions of S
1: S ′ ← ∅
2: for all C ∈ S with Vars(C) = ∅ do
3: A′ ← absorbConcept(C)
4: S ′ ← S ′ ∪ {A′}
5: end for
6: S ′′ ← { absorbJoined(S ′)\{>} }
7: for all C ∈ S with Vars(C) , ∅ do
8: A′ ← absorbConceptBP(C, ABP)
9: S ′′ ← S ′′ ∪ {A′}

10: end for
11: while A1 ∈ S ′′ and A2 ∈ S ′′ and A1 , A2 do
12: T ← fresh atomic concept
13: T ′ ← T ′ ∪ {ABP v (A1, A2)→BP T }
14: S ′′ ← (S ′′ ∪ {T }) \ {A1, A2}

15: end while
16: if S ′′ = ∅ then return >
17: else return the element A′ ∈ S ′′ . S ′′ is a singleton
18: end if

essary, which results in the new absorbJoinedBP and in the new absorbConceptBP

function. Both new functions are extended to create the concepts and axioms for the
back propagation of binding candidates during the absorption.

Again, absorbJoinedBP is joining several atomic concepts, which are created by
absorbConcept or absorbConceptBP. Additionally, absorbJoinedBP (Algorithm 8)
distributes the bindings candidates, which were already propagated back to the concept
ABP, to all join concepts of the form (A1, A2) →BP C (line 13). Since not all concepts
of S necessarily still contain nominal schema variables, the concepts without nomi-
nal schema variables are absorbed as before by the absorbJoined and absorbConcept
functions (lines 2-6).

The adjustment of absorbConceptBP in Algorithm 9 is very similar. The function is
also called with an additional atomic concept ABP, for which the back propagation for
the new absorption is appended. As an example, for the absorption of a ∀r.C concept,
the back propagation is extended with the propagation over an r-edge to a fresh atomic
concept TBP−nb (lines 2-3). The bindings that are back propagated to TBP−nb can then be
used to control the join or also to limit the creation of new variable mappings.

Example 5. If we absorb the axiom ∃r.{x} u ∃s.{y} u A v B of Example 4 with the new
absorption algorithms, which also generate the back propagation of binding candidates,
then we obtain the following axioms:

TBP1 v ∀r.TBP2
TBP1 v ∀s.TBP3
TBP1 v (T1,T2)→BP T3

(O u TBP2) v ↓x.Tx

(O u TBP3) v ↓y.Ty

TBP1 v (T3, A)→BP T4

Tx v ∀r−.T1
Ty v ∀s−.T2
T4 v gr(B).

The algorithm is called with TBP1 as the initial atomic concept for the back propagation,
i.e., absorbJoinedBP({∀r.¬{x}, ∀s.¬{x},¬A, B}, TBP1), and TBP2, TBP3 are atomic con-

34

Algorithm 9 absorbConceptBP(C, ABP)
Output: Returns the atomic concept for the absorption of C
1: if C = ∀r.C′ then
2: TBP−nb ← fresh atomic concept
3: T ′ ← T ′ ∪ {ABP v ∀r.TBP−nb}

4: Anb ← absorbJoinedBP(collectDisjuncts(C′, true),TBP−nb)
5: T ← fresh atomic concept
6: T ′ ← T ′ ∪ {Anb v ∀r−.T }
7: return T
8: else if C = 6 n r.C′ then
9: TBP−nb ← fresh atomic concept

10: T ′ ← T ′ ∪ {ABP v ∀r.TBP−nb}

11: Anb ← absorbJoinedBP(collectDisjuncts(nnf(¬C′), true),TBP−nb)
12: T ← fresh atomic concept
13: T ′ ← T ′ ∪ {Anb v ∀r−.T }
14: return T
15: else if C = ¬{x} then
16: Tx ← fresh atomic concept
17: T ′ ← T ′ ∪ {(O u ABP) v ↓BPx.Tx}

18: return Tx

. . .

19: end if

cepts that are additionally created for the back propagation of binding candidates. Now,
if we ensure that such binding candidates are automatically propagated to TBP1, then
only the desired mappings are propagated to the grounding concept and the creation,
combination and propagation of other mappings can be limited significantly.

5.1 Identification of Interesting Nodes and Binding Candidates

So far, we have assumed that the interesting nodes and the binding candidates used
for the backward chaining are already available. In the following, we present different
approaches of how these interesting nodes and bindings candidates can be identified.

A very simple, but already very effective method is to first absorb the absorbable
part of an axiom W, where all nominal schemas are replaced by O. In comparison to
the absorption of the original nominal schema axiom, we do not generate a grounding
concept since we are only interested in the atomic concept, say AO, which is generated
for absorbing W, where the nominal schemas are replaced by O. During the expansion
of a completion graph, the concept AO now marks all nodes for which it is possible that
the variable mappings are propagated to the grounding concept gr(C) that is created for
the absorption of the nominal schema axiom W. Obviously, if AO is not in the label of a
node v, then there is no variable mapping, which could be propagated to gr(C), because
the absorption with O is more general by allowing every combination of ABox individ-
uals to match the conditions of the absorption. Thus, the concept AO marks interesting
nodes, which are good candidates to start the backward chaining propagation.

35

Table 4. Additional tableau rules for creating binding candidates

→CP-rule: if (A1, A2)→CP C ∈ L(v), {A1, A2} ⊆ L(v), v not indirectly blocked,
if C < L(v), and B(A1, v) ∪ B(A2, v) = ∅

then L(v) −→ L(v) ∪ {C}
if for all x ∈ {y | y ∈ dom(µ1) ∩ dom(µ2) with µ1 ∈ B(A1, v), µ2 ∈ B(A2, v)},

there exists a mapping µ′ ∈ B(A1, v) ∩ B(A2, v) with x ∈ dom(µ′), and
1. µ ∈ (B(A1, v) ∩ B(A2, v)), µ ∈ B((A1, A2)→CP C, v), or
2. µ ∈ B(A1, v), µ ∈ B((A1, A2) →CP C, v) and there exists no µ′′ ∈ B(A2, v)
with dom(µ) ∩ dom(µ′′) , ∅, or
3. µ ∈ B(A2, v), µ ∈ B((A1, A2) →CP C, v) and there exists no µ′′ ∈ B(A1, v)
with dom(µ) ∩ dom(µ′′) , ∅

then L(v) −→ L(v) ∪ {C} and B(C(v)) −→ B(C(v)) ∪ {µ}

However, AO does not provide a direct means for controlling the creation and com-
bination of mappings. Thus, for the backward chaining all possible bindings with all
ABox individuals have to be propagated as candidates. Of course, in practice, also a
flag or a special variable mapping can be propagated, which represents all bindings and
does not lead to an unnecessary overhead. Hence, the preceding absorption with O and
the resulting AO concept ensures that the variable mappings are not uselessly created in
the completion graph. At least, all the required facts have to exist in the neighbourhood
of a node, even if the connection between the nodes does not exactly match the absorp-
tion conditions of the axiom. Regarding the simplicity of this preceding absorption, it
is usually worth to use it for all axioms with nominal schema variables.

So far, the combinatorial explosion of the join is still unhandled. In the worst-case,
the join creates, for an absorbed axiom with n nominal schema variables and a knowl-
edge base with m ABox individuals, mn different mappings and this possibly for each
node in the completion graph. Of course, this cannot be avoided in the worst-case,
but for many practical knowledge bases the amount of created combinations can be
restricted significantly.

In the following, we present a preceding method that generates in the worst-case an
amount of at most m·n binding candidates and can be used to control and limit the actual
join, whereby we can possibly avoid creating all mn mappings. Therefore, we simplify
the →BP-rule such that specific variable mappings are further propagated instead of
combining them with the join. Again, we use a concept itself to handle the binary ab-
sorption axioms for the compatibility with the introduced backward chaining. The new
→CP-rule (depicted in Table 4) propagates a variable mapping µ ∈ B((A1, A2)→CP C, v)
to B(C, v) if for every variable x that occurs in one mapping of B(A1) as well as in one
mapping of B(A2), there exists a variable mapping µ′ ∈ (B(A1, v) ∩ B(A2, v)), and

• µ is both in B(A1, v) and B(A2, v), or
• µ ∈ B(A1, v) (µ ∈ B(A2, v)), and the variable x ∈ dom(µ) is not used in the mappings

that are associated to A2 (A1).

As a result, only those variable mappings of B(A1, v) and B(A2, v) are filtered, which
are using variables that occur in the mappings of B(A1, v) as well as in the mappings
of B(A2, v). Note, the →CP-rule does not combine or create new variable mappings

36

and, thus, the mappings that are propagated to B(C, v) also map only one variable to
an individual name if the mappings of B(A1, v) and B(A2, v) map only one variable to
an individual name. Thus, the mappings that are created by the binder concepts can
be filtered with the→CP-rule and we create the desired binding candidates encoded as
mappings that map one variable to an individual name. For example, if the mappings
{x 7→ a1}, {x 7→ a2}, {y 7→ b} are associated to A1 and {x 7→ a1}, {z 7→ c} are associated
to A2, then the→CP-rule propagates {x 7→ a1}, {y 7→ b}, {z 7→ c} to the concept C.

We simply get an absorption algorithm that generates these kind of binding candi-
dates by changing Algorithm 8 and 9 such that ABP v (A1, A2) →CP A′ is added to T ′

in line 13 of Algorithm 8 instead of ABP v (A1, A2) →BP A′. Note, for the creation of
binding candidates it is also useful to use the absorption with the backward chaining
optimisation, because then the creation of binding candidates can be triggered with AO.

6 Variable Elimination Optimisations

It is often the case that the number of nominal schema variables can be reduced by
rewriting the axiom. The basic idea is to replace unimportant nominal schemas with
O, the special atomic concept that is added to the label of every ABox individual. A
nominal schema {x} can obviously be replaced if {x} occurs only once in the axiom
and only in a completely absorbable position. Such an occurrence merely requires that
there exists an ABox individual for x, but it is not relevant to remember the individual,
because x is only used once. Thus, we can use O instead of {x}. If {x} is not in a com-
pletely absorbable position, then we have to be more careful. For example, {x} cannot
be replaced by O in the axioms A v > 3 r.{x} and A v ∀r.{x}u > 3 r.>.

We can sometimes also eliminate nominal schema variables that have more than
one occurrence in the axiom. Therefore, we need an analogous definition of safe envi-
ronments of a nominal schema as Krötzsch et al. [14]:

Definition 14 (Safety). Let C be a concept in a completely absorbable position, then
an occurrence of a nominal schema {x} is safe if it occurs in D with Vars(D) = {x},
∃r.D ∈ collectDisjuncts(C, true) and ¬{o} ∈ collectDisjuncts(C, true), where {o} is a
nominal or a nominal schema. Thus, C is a safe environment for such an occurrence of
{x}. A nominal schema variable x is safe for an axiom W if every occurrence of {x} is
completely absorbable and at most one occurrence of {x} is not safe.

A safe nominal schema variable x can be eliminated by rewriting the axiom. For
example, the axiom

∃r.({x} u ∃a.{y} u ∃v.{z}) u ∃s.(∃a.{y} u ∃v.{z}) v ∃c.{x}

has the two safe nominal schema variables y and z, because {x}u∃a.{y}u∃v.{z} is a safe
environment for y and z, there is only one other not safe occurrence of y and z, and the
left-hand side of the axiom is completely absorbable. We can now eliminate y and z by
building the inverse path of existential restrictions from the safe occurrences of {y} and
{z} to the nominal schema {x} in the safe environment and appending this path together
with O to the not safe occurrence of y and z. Thus, the axiom is rewritten to

∃r.{x} u ∃s.(∃a.(O u ∃a−.{x}) u ∃v.(O u ∃v−.{x})) v ∃c.{x}

37

with x as the only remaining nominal schema variable.

7 Implementation and Evaluation

Our reasoning system Konclude is able to deal with SROIQ knowledge bases and uses,
besides many other optimisations, an absorption technique that is based on the one pre-
sented in Section 3. We have extended Konclude to SROIQV by integrating (i) an
upfront grounding of nominal schema axioms and (ii) tableau extensions with differ-
ent optimisations for propagating variable mappings in order to support the presented
nominal schema absorption in Section 4. The upfront grounding is not only used to
compare our nominal schema absorption technique, but also to eliminate axioms with
nominal schemas that cannot be absorbed at all. The upfront grounding is more efficient
for concepts that are certainly used in the completion graph, because upfront grounded
concepts can be better preprocessed and it is not necessary to dynamically extend the
knowledge base during the construction of the completion graph for those concepts.
This is especially useful for Konclude, since it supports the parallel processing of non-
deterministic alternatives for which it would be necessary to synchronise the extensions
of the knowledge base or to separately extend the knowledge base in each alternative.

Unfortunately, a straightforward implementation of the proposed propagation of
variable mappings still bears the following sources of inefficiency:

• If a knowledge base contains an ABox individual a that is connected to many other
individuals by a role r, some mappings are propagated to a, and the propagation
is continued over r, then these mappings are propagated to all such connected r-
neighbours, even if the mappings are only required on a few of them.

• Dependency information for each propagated mapping has to be hold separately in
order to support dependency directed backtracking.

• To create the correct dependencies, the variable mappings have to be joined on each
node separately, even if we already have joined the same sets of variable mappings
on other nodes.

We have, therefore, also implemented a variant of the propagation, where we create
a representative for a set of variable mappings. We then propagate only these repre-
sentatives and track the dependencies only for propagated representatives as in [19]. If
a clash is discovered, then we extract and backtrack only the dependencies for those
mappings, which are involved in the creation of the clash. In order to extract the rele-
vant dependencies, we save for the representatives how they are composed from other
representatives and variable mappings.

Furthermore, Konclude uses a batch processing mode for the variable mappings,
i.e., Konclude tries to apply standard deterministic rules first and then the new rules that
handle variable mappings are applied in the same order as the corresponding concepts
and axioms are created in the absorption. Usually, this is a big advantage, because then
many variable mappings can be handled together and the overhead of separate rule
applications is minimized.

Our evaluation is primarily based on DL-safe rules to enable a comparison between
the propagation of variable mappings that is integrated in Konclude and the DL rea-

38

Table 5. Ontology metrics

Ontology Expressiveness Axioms Classes Properties Individuals Rules
UOBM1\D SHOIN 190093 69 36 25453 0
family\D ALCHOIN 212 19 16 23 12
ODGI\D SHIN 2391 346 83 356 2

soners HermiT 1.3.73 and Pellet 2.3.0 [18], which have dedicated rule support. To the
best of our knowledge, these are the only reasoning systems that support DL-safe rules
for such expressive ontologies. We have integrated a converter into Konclude, which
transforms the DL-safe rules into nominal schema axioms. The conversion is straight-
forward, however, especially for nominal schema axioms that are obtained from DL-
safe rules, it is often possible to eliminate variables as discussed in Section 6, which is
intensively used by Konclude. For example, the DL-safe Rule (R1) is converted to the
Nominal Schema Axiom (R1′) and then {x} and {z} are replaced by O, which results in
Axiom (R1′′).

isFirendOf(?x, ?y), like(?x, ?z), like(?y, ?z)→ friendWithSameInterest(?x, ?y) (R1)
{x} u ∃like.({z} u ∃like−.{y}) u ∃isFirendOf.{y} v ∃friendWithSameInterest.{y} (R1′)

O u ∃like.(O u ∃like−.{y}) u ∃isFirendOf.{y} v ∃friendWithSameInterest.{y} (R1′′)

All experiments were carried out on an Intel Core i7 940 quad core processor run-
ning at 2.93 GHz, however, all reasoners are restricted to use only one core for the
computation. All results are the average of three separate runs. The execution of a test
was aborted if either a reasoner required more than 24 hours or more than 10 GByte
memory which is denoted by time resp. mem in the results.

7.1 UOBM-Benchmarks

For the evaluation, we have extended the University Ontology Benchmark (UOBM)
[16] with DL-safe rules. We are only using the smallest UOBM ontology since many
reasoning systems already require for this ontology a lot of memory as well as reasoning
time if it is extended with rules. Furthermore, we have removed all data properties from
the ontology because these are not yet supported by Konclude. We refer to this ontology
as UOBM1\D (cf. Table 5).

The hand-crafted DL-safe rules R1–R5 are depicted in Table 6, where the number of
matches for each rule in the consistency check is shown in the column on the right side,
i.e., how often a rule can be instantiated with different variable bindings. However, since
the UOBM1\D ontology is not completely deterministic, these numbers might vary
between different executions and between different reasoners. All these rules contain at
least one cycle, i.e., they do not have a tree-shaped form, and hence, these rules are not
completely trivial.

The UOBM1\D ontology without rules can be preprocessed by Konclude in 1.03
seconds and the corresponding consistency test requires only 1.09 seconds. Table 7

3 http://www.hermit-reasoner.com

39

http://www.hermit-reasoner.com

Table 6. Hand-crafted DL-safe rules R1-R5 for the evaluation of UOBM1\D

Name DL-safe Rule Matches
R1 isFirendOf(?x, ?y), like(?x, ?z), like(?y, ?z)→ friendWithSameInterest(?x, ?y) 4,037
R2 isFirendOf(?x, ?y), takesCourse(?x, ?z), takesCourse(?y, ?z)→ 82

friendWithSameCourse(?x, ?y)
R3 takesCourse(?x, ?z), takesCourse(?y, ?z), hasSameHomeTownWith(?x, ?y)→ 940

classmateWithSameHomeTown(?x, ?y)
R4 hasDoctoralDegreeFrom(?x, ?z), hasMasterDegreeFrom(?x, ?w), 369

hasDoctoralDegreeFrom(?y, ?z), hasMasterDegreeFrom(?y, ?w),
worksFor(?x, ?v),worksFor(?y, ?v),→ workmateSameDegreeFrom(?x, ?y)

R5 isAdvisedBy(?x, ?z), isAdvisedBy(?y, ?z), like(?x, ?w), like(?y, ?w), 286
like(?z, ?w)→ personWithSameAdviserAllSameInterest(?x, ?y)

Table 7. Comparison of the increases in reasoning time of the consistency tests for UOBM1\D
extended by the rules R1–R5 between different techniques in seconds (additional preprocessing
time in parentheses)

Rule upfront grounding direct propagation representative propagation
without BP with BP without BP with BP

R1 (10.99) mem 9.12 7.10 5.06 3.38
R2 (10.92) 4.05 3.33 2.33 2.13 2.11
R3 (13.33) 3.55 1.98 0.62 2.20 0.76
R4 (16.44) 0.30 1.08 0.09 1.06 0.07
R5 (time) – 1.87 0.50 1.80 0.43

shows the increases in reasoning time of the consistency tests for Konclude using dif-
ferent approaches and optimisations to handle the nominal schema axioms that are ob-
tained by converting the DL-safe rules R1–R5 of Table 6. The additional required pre-
processing time for the upfront grounding is shown in parentheses (column 2). Note,
we show only the additional required times in order to facilitate the comparison, i.e., to
get the actual required times, 1.03 and 1.09 have to be added to the preprocessing and
reasoning times, respectively.

Clearly, the upfront grounding requires some additional preprocessing time for the
grounding of the rules, but the majority of the time is required for further processing
the grounded axioms (e.g., absorption, lexical normalisation, etc.). Note, the upfront
grounding totally fails for R5, because the variable elimination can only eliminate two

Table 8. Comparison of the increases in reasoning time of the consistency tests for UOBM1\D
extended by the rules R1–R5 between Konclude, HermiT and Pellet in seconds

Rule Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
R1 3.38 31.46 6.33
R2 2.11 4.79 7.4
R3 0.46 1.67 142.25
R4 0.07 1.42 122.85
R5 0.43 28.41 mem

40

Table 9. Comparison of the increases in memory consumption of the consistency tests for
UOBM1\D extended by the rules R1–R5 between different techniques in MBytes

Rule upfront grounding direct propagation representative propagation
without BP with BP without BP with BP

R1 mem 4387 3451 1522 1234
R2 1116 729 475 350 349
R3 1089 491 125 433 160
R4 292 237 44 221 36
R5 time 375 144 367 110

Table 10. Comparison of the increases in memory consumption of the consistency tests for
UOBM1\D extended by the rules R1–R5 between HermiT, Pellet and Konclude in MBytes

Rule Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
R1 1234 ≤ 10 659
R2 349 ≤ 10 963
R3 160 ≤ 10 3654
R4 36 ≤ 10 9420
R5 110 ≤ 10 mem

of four variables and the upfront grounding tries to generate 647, 855, 209 new axioms.
Furthermore, the reasoning time for the upfront grounding is not as good as for the other
approaches. This is due to the fact that the implicit propagation of variable mappings as
concepts requires a lot of separate rule applications and each rule application has some
overhead, e.g., the dependencies have to be managed correctly. The direct propagation
of variable mappings (as presented in Section 4) and the propagation of representatives
are shown without as well as with the back propagation optimisation (BP) in Table 7.
Of course, the back propagation can only improve the reasoning time if it enables a sig-
nificant reduction of the creation, combination and propagation of variable mappings.
For example, the savings for R2 are very limited, because most of the students in the
UOBM ontology take courses and also have friends and thus, almost all students match
the conditions to be identified as a candidate for which the creation and propagation
of variable mappings is necessary. Usually, the propagation of representatives further
improves the reasoning time and, moreover, since the dependencies can be stored in a
more compact way, it also saves a significant amount of memory.

Table 8 shows a comparison of the increases in reasoning time of the consistency
tests for UOBM1\D extended by the DL-safe rules R1–R5 of Table 6 between Kon-
clude, HermiT and Pellet. Again, the times for the consistency test of UOBM1\D with-
out rules is not included to facilitate the comparison, i.e., to get the actual required
times, it would be necessary to add for Konclude 1.09, for HermiT 23.24 and for Pellet
2.22 seconds. HermiT already requires a lot of time for the consistency test itself, which
is possibly also a consequence of a delayed clausification of axioms and rules. However,
since HermiT is not supporting complex roles in the body of rules, the consistency test
might be incomplete for some rules. For example, the role hasSameHomeTownWith of
rule R3 is transitive. Konclude uses the propagation of representatives combined with
the back propagation optimisation and often tests the consistency for the UOBM1\D

41

Table 11. DL-safe rules Q1–Q15 obtained from UOBM queries

Name DL-safe Rule
Q1 UndergraduateStudent(?x), takesCourse(?x,D0.U0/Course0)→ Q1(?x)
Q2 Employee(?x)→ Q2(?x)
Q3 Student(?x), isMemberOf(?x,D0.U0)→ Q3(?x)
Q4 Publication(?x), publicationAuthor(?x, ?y),Faculty(?y),

isMemberOf(?y,D0.U0)→ Q4(?x)
Q5 ResearchGroup(?x), subOrganizationOf(?x,U0)→ Q5(?x)
Q6 Person(?x), hasAlumnus(U0, ?x)→ Q6(?x)
Q7 Person(?x), hasSameHomeTownWith(?x,D0.U0/FullPro f essor0)→ Q7(?x)
Q8 SportsLover(?x), hasMember(D0.U0, ?x)→ Q8(?x)
Q9 GraduateCourse(?x), isTaughtBy(?x, ?y), isMemberOf(?y, ?z),

subOrganizationOf(?z,U0)→ Q9(?x)
Q10 isFriendOf(?x,D0.U0/FullProfessor0)→ Q10(?x)
Q11 Person(?x), like(?x, ?y),Chair(?z), isHeadOf(?z,D0.U0), like(?z, ?y)→ Q11(?x)
Q12 Student(?x), takesCourse(?x, ?y), isTaughtBy(?y,D0.U0/FullProfessor0)→ Q12(?x)
Q13 PeopleWithHobby(?x), isMemberOf(?x,D0.U0)→ Q13(?x)
Q14 Woman(?x), Student(?x), isMemberOf(?x, ?y), subOrganizationOf(?y,U0)→ Q14(?x)
Q15 PeopleWithManyHobbies(?x), isMemberOf(?x,D0.U0)→ Q15(?x)

ontology even with rules faster than HermiT or Pellet. In contrast, HermiT hardly re-
quires additional memory for the reasoning with the rules (less than 10 MBytes for
R1–R5, cf. Table 10), whereby the memory consumption of HermiT is often better than
the memory consumption of Konclude and Pellet. This is possibly a consequence of the
not supported complex roles, wherefore it is not necessary to manage the dependencies
as long as the new consequences from the rules are not instantiated. Table 9 and 10
shows the complete comparison of the increases in memory consumption in MBytes.
Here, too, we would have to add for Konclude 564, for HermiT 684 and for Pellet 551
MBytes to get the actual memory consumption.

In addition, we have converted the accompanying queries 1–15 from the University
Ontology Benchmark [16] to the DL-safe rules Q1–Q15 (see Table 11). The comparison
of the increases in reasoning time of the consistency tests for UOBM1\D extended by
these rules is shown in Table 12. Konclude is dominating the other reasoners for nearly
all rules, which is possible due to the variable elimination optimisation, which allows
for absorbing the relatively simple and tree-shaped rules to ordinary concepts. HermiT
can also handle many of these rules without significant performance losses, however,
some of these rules again use transitive roles, wherefore HermiT might be incomplete
(e.g., Q5, Q7, Q9, Q14). Pellet has more problems with the handling of the these rules
and also requires significantly more memory. Pellet is even reaching the memory limit
of 10 GBytes for rule Q7, whereas the other reasoners can process the consistency tests
for all rules with less than one GByte.

Note, the consistency test is not an optimal way to compare different reasoners for
their rule processing mechanism since there are also many other optimisations that in-
fluence the required reasoning time. However, this is even more problematic for more
high level reasoning tasks such as instance retrieval or classification. For example, Kon-

42

Table 12. Comparison of the increases in reasoning time of the consistency tests for UOBM1\D
extended by the rules Q1–Q15 between Konclude, HermiT and Pellet in seconds

Rule Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
Q1 ≤ 0.1 ≤ 0.1 3.9
Q2 ≤ 0.1 ≤ 0.1 720.0
Q3 ≤ 0.1 ≤ 0.1 2.5
Q4 ≤ 0.1 ≤ 0.1 2.5
Q5 ≤ 0.1 ≤ 0.1 12.4
Q6 ≤ 0.1 ≤ 0.1 2.0
Q7 ≤ 0.1 ≤ 0.1 mem
Q8 ≤ 0.1 ≤ 0.1 113.4
Q9 0.2 0.9 460.9
Q10 ≤ 0.1 1.5 5.5
Q11 0.1 26.3 12.6
Q12 0.2 1.4 4.6
Q13 ≤ 0.1 0.6 256.9
Q14 0.3 1.2 2730.4
Q15 1.2 ≤ 0.1 2.9

clude needs only 0.2 seconds to classify the UOBM1\D ontology after the consistency
check due to sophisticated caching mechanisms, whereas Pellet requires 9.9 and Her-
miT 271.7 seconds.

7.2 OpenRuleBench-Benchmarks

We adapted tests from OpenRuleBench [15] to compare the reasoning systems for some
specific test cases. Basically, the LargeJoin test case gives an impression of the capa-
bility of handling binary joins. Therefore, the reasoners have to create new role instan-
tiations for the roles c1, b1, b2 and finally a between ABox individuals based on the
following non-recursive, tree-shaped rules:

d1(?x, ?y), d2(?y, ?z)→ c1(?x, ?z)
c3(?x, ?y), c4(?y, ?z) → b2(?x, ?z)

c1(?x, ?y), c2(?y, ?z) → b1(?x, ?z)
b1(?x, ?y), b2(?y, ?z)→ a(?x, ?z)

The assertions for the base roles d1, d2, c2, c3 and c4 were randomly generated. Ta-
ble 13 shows the comparison of the reasoning times of the consistency tests between
Konclude, HermiT and Pellet for different data sizes, i.e., the number of individuals is
shown in the first column and the number of randomly added assertions for each base
role is shown in the second column. Clearly, HermiT is dominating the other systems
for this test case. Again, Konclude uses the back propagation optimisation and the prop-
agation of representatives. However, the rules are very simple, wherefore the benefits
of these optimisations are limited. Furthermore, Konclude does not directly add the im-
plied role instantiation, but adds an existential restriction for the corresponding role,
which is processed in a separate step and is, therefore, more costly.

Table 14 shows the comparison of the memory consumption of the consistency tests
for the LargeJoin test case between Konclude, HermiT and Pellet. Also for this test case
Konclude has a significant higher memory consumption than HermiT, which is not very

43

Table 13. Comparison of the reasoning times of the consistency tests for the LargeJoin test case
between Konclude, HermiT and Pellet in seconds

individuals # assertions per base role Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
50,000 10,000 1.2 1.0 3.7
50,000 20,000 3.4 2.0 6.2
50,000 30,000 6.9 3.4 10.5
100,000 20,000 3.5 1.6 7.0
100,000 40,000 11.1 3.8 25.4
100,000 60,000 23.6 10.5 97.1

Table 14. Comparison of the memory consumption of the consistency tests for the LargeJoin test
case between Konclude, HermiT and Pellet in MBytes

individuals # assertions per base role Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
50,000 10,000 507 985 1452
50,000 20,000 847 1240 1739
50,000 30,000 1480 1453 2548
100,000 20,000 1129 1175 2023
100,000 40,000 2380 1358 3535
100,000 60,000 4304 1940 7400

surprising, because Konclude saves intermediate results (e.g., the propagated variable
mappings with dependency information) and also requires some additional memory for
the grounded existential restrictions.

LargeJoin-M is a variant of the test case LargeJoin, where only the final role a has
to be instantiated by the reasoners, which is achieved by merging the rules of the Large-
Join test case together into the following rule:

d1(?x, ?y1), d2(?y1, ?y2), c2(?y2, ?y3), c3(?y3, ?y4), c4(?y4, ?z)→ a(?x, ?z).
Table 15 and 16 shows the comparison of the reasoning times and memory consump-
tion, respectively, of the consistency tests for LargeJoin-M with the same test data as for
LargeJoin. Now, the back propagation optimisation significantly improves the reason-
ing time and memory consumption for Konclude and there are also some improvements
for Pellet, which is possibly due to the reduced number of role instantiations that have
to be created. In contrast, HermiT performs worse for bigger data sizes than for the
LargeJoin test case.

The transitive closure test TransClos-T, which is also adapted from OpenRuleBench
[15], demonstrates the performance for a simple transitive/recursive problem. All indi-
viduals in the test are connected in a big cycle with the transitive role par, and the rule

par(?x, ?y)→ tc(?x, ?y)
is used to enforce that the transitive closure is explicitly represented with the role tc.
Additionally, some random assertions for the role par were added to make the test case
not completely straightforward. Table 17 shows the comparison of the reasoning times
of the consistency tests for the test case TransClos-T between Konclude and Pellet. Her-
miT does not consider the transitivity in the body of the rule and is, therefore, omitted in
this comparison. The transitivity can, however, be simulated for this test case by using

44

Table 15. Comparison of the reasoning times of the consistency tests for the LargeJoin-M test
case between Konclude, HermiT and Pellet in seconds

individuals # assertions per base role Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
50,000 10,000 0.7 0.9 1.6
50,000 20,000 1.1 1.4 4.2
50,000 30,000 2.6 2.6 7.6
100,000 20,000 1.4 1.6 5.7
100,000 40,000 5.1 5.3 18.0
100,000 60,000 11.8 20.4 94.9

Table 16. Comparison of the memory consumption of the consistency tests for the LargeJoin-M
test case between Konclude, HermiT and Pellet in MBytes

individuals # assertions per base role Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
50,000 10,000 342 974 1361
50,000 20,000 483 1248 1526
50,000 30,000 702 1289 1623
100,000 20,000 723 1170 1719
100,000 40,000 1405 1393 3435
100,000 60,000 2569 1602 7114

the recursive rule
tc(?x, ?y), par(?y, ?z)→ tc(?x, ?z),

which is denoted by TransClos-R, i.e., TransClos-R is a variant of TransClos-T in which
this rule is used instead of the transitivity axiom for the role par. Thus, this test case is
also correctly handled by HermiT. The comparison of the reasoning times of the con-
sistency tests for this test case is shown in Table 18. Konclude requires more or less the
same amount of resources for both test cases. However, there are some differences in
the propagation, wherefore the memory consumption for the test case TransClos-T is
slightly higher. Although Konclude and HermiT can easily process TransClos-R with
less than one GByte and approximately the same amount of reasoning time, this test
case is much more problematic for Pellet, which suddenly requires more than 10 GBytes
for TransClos-R compared to less than 2 GBytes for TransClos-T.

Table 17. Comparison of the reasoning times of the consistency tests for the TransClos-T test
case between Konclude and Pellet in seconds

individuals # random assertions Konclude 0.4.1 Pellet 2.3.0
500 100 1.2 8021.1
500 200 1.8 7963.6
1,000 200 6.7 time
1,000 400 8.2 time

45

Table 18. Comparison of the reasoning times of the consistency tests for the TransClos-R test
case between Konclude, HermiT and Pellet in seconds

individuals # random assertions Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
500 100 2.1 1.0 mem
500 200 1.1 1.0 mem
1,000 200 5.1 4.7 mem
1,000 400 3.3 5.1 mem

7.3 Benchmarks for Ontologies with Rules

We use family\D+100 and ODGI\D+100 to compare the reasoning times for ontologies
with already integrated rules. The family\D ontology (see Table 5) is obtained from
the family.swrl.owl demo ontology in the Protégé Ontology Library4 by removing all
data properties and rules with SWRL Built-Ins. In order to get an interesting benchmark
size, we created family\D+100 from family\D by adding 100 copies of the ABox with
renamed non-nominal individuals. Analogously, we obtained ODGI\D (see Table 5)
and ODGI\D+100 from the ontology for disease genetic investigation (ODGI) from the
NCBO BioPortal5.

Table 19 shows the comparison of the reasoning times of the consistency tests for
these ontologies with and without rules. Although the family\D+100 ontology contains
the rule

Person(?y), hasChild(?y, ?x), hasChild(?y, ?z), ?x ,?z→ hasSibling(?x, ?z),

which uses the atom ?x ,?z in the body of the rule that states that two individuals
have to be different, the reasoning time of HermiT is hardly affected. Usually, such
rules cannot completely absorbed and, therefore, the application of such rules lead to
non-determinism. Due to the fact that this rule has to be applied quite often, the rea-
soning with the family\D+100 ontology is highly non-deterministic. This seems to be
more problematic for Konclude and Pellet, possibly due to their different dependency
management. However, HermiT performs worse for ODGI\D+100 than Konclude and
Pellet. The ODGI\D+100 ontology also contains transitive roles, however, they are not
used in the rule bodies, and hence, also the results for HermiT are complete. Analo-
gously, Table 20 shows the comparison of the memory consumption of the consistency
tests for these ontologies with and without rules.

4 http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
5 http://bioportal.bioontology.org/ontologies/1086

Table 19. Comparison of the reasoning times of the consistency tests for ontologies with DL-safe
rules between Konclude, HermiT and Pellet in seconds

Ontology Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
family\D+100 without rules 0.2 0.6 1.3
family\D+100 with rules 2.5 1.3 mem
ODGI\D+100 without rules 11.4 367.6 13.3
ODGI\D+100 with rules 13.6 467.4 17.8

46

http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://bioportal.bioontology.org/ontologies/1086

Table 20. Comparison of the memory consumption of the consistency tests for ontologies with
DL-safe rules between Konclude, HermiT and Pellet in MBytes

Ontology Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
family\D+100 without rules 147 473 771
family\D+100 with rules 954 744 mem
ODGI\D+100 without rules 704 1302 1658
ODGI\D+100 with rules 884 1456 1852

7.4 Benchmarks beyond Rules

Unfortunately, there exists no test suite for nominal schemas and, to the best of our
knowledge, there are also no other reasoners with nominal schema support. Therefore,
the evaluation of nominal schema axioms, which are more expressive than DL-safe
rules, is less conclusive, since the results cannot be compared to the results of other
systems. Also, the comparison to the upfront grounding is often not very interesting,
since the performance of the upfront grounding mainly depends on the additional re-
quired preprocessing time, which primarily relies on the number of nominal schema
variables and the number of ABox individuals. Hence, the performance of the upfront
grounding and the performance gain with the absorption and the propagation of vari-
able mappings is more or less predictable and, therefore, it is easily possible to create
tests, where the nominal schema absorption approach performs as much better as de-
sired. Note, nominal schema axioms that are more expressive than DL-safe rules often
reduce the absorbable amount on the left-hand side of the axiom. This is, however, not
necessarily problematic, because the nominal schemas can often also be absorbed in
other parts of the axiom. For instance, the nominal schema axiom

{x} u ∃like.{y} u ∀isFriendOf.∃like.{y} v HasInterestAndAllFriendsSameInterest

identifies for the UOBM1\D ontology all ABox individuals, which have an interest and
the friends of these individuals have at least also the same interest. Obviously, the uni-
versal restriction ∀isFriendOf.∃like.{y} on the left-hand side cannot be absorbed. How-
ever, {y} also occurs in the absorbable existential restriction ∃like.{y} in an absorbable
position, wherefore the nominal schema absorption approach is still able to significantly
reduce the grounding effort. For UOBM1\D extended with this nominal schema axiom,
Konclude requires for the consistency test with the upfront grounding 6.1 seconds of ad-
ditional preprocessing time and 3.4 seconds of additional reasoning time, whereas the
nominal schema absorption approach only increases the reasoning time by 0.9 seconds.

Of course, there still exists nominal schema axioms with nominal schemas that only
occur in non-absorbable positions. For example, the axiom

{x} u ∃like.{y} u ∀isFriendOf.({z} u ∃like.{y})
v HasInterestAndAllFriendsSameInterest

extends the previous nominal schema axiom with the nominal schema {z}, which fur-
ther enforces that all friends also have to be known ABox individuals. For this axiom,
the grounding concept that is created by the absorption has to handle the disjunction

47

HasInterestAndAllFriendsSameInterest t ∃isFriendOf.(¬{z} t ¬∀like.¬{y}) and, since
only bindings for the variable y are created and propagated, the grounding rule has to
complete the variable mappings to the variable z by combining them with every ABox
individual. As a consequence, the grounding rule adds quite a lot of different disjunc-
tions and this for many nodes in the completion graph, wherefore Konclude with the
nominal schema absorption is running out of memory. However, this would obviously
also be the case with the upfront grounding if the preprocessing for the upfront ground-
ing were able to finish within the time limit, which fails analogously to the processing
of rule R5, since only the nominal schema variable x can be eliminated.

In principle, it would be possible to use a more sophisticated axiom rewriting in
order to improve the absorption and, as a consequence, also the overall performance
for the reasoning with such axioms. For example, the existentially required connection
between {z} and {y} over the role like within the universal restriction ∀isFriendOf.({z} u
∃like.{y}) can also be expressed in the inverse direction within the absorbable existential
restriction ∃like.{y}, which results in the axiom:

{x} u ∃like.({y} u ∃like−.{z}) u ∀isFriendOf.({z} u ∃like.{y})
v HasInterestAndAllFriendsSameInterest.

Although now also {z} can be partially absorbed, Konclude still requires for the consis-
tency test of UOBM1\D extended by this nominal schema axiom 35.9 seconds and 8.2
GBytes due to the huge number of individuals that are found for {z}. Unsurprisingly,
the intensive use of nominal schemas in not completely absorbable constructs and the
frequent grounding of many such not absorbed concepts results in a lot of work for the
reasoning system.

8 Conclusions

We have significantly improved the reasoning performance for nominal schemas with
(i) an extended absorption algorithm as well as (ii) slight modifications of the standard
tableau calculus. The resulting calculus creates bindings for nominal schema variables
and is able to propagate them through the completion graph in order to use these bind-
ings to ground the remaining and non-absorbable part of the nominal schema axioms.
As a consequence, our approach allows for “collecting” the bindings for those nominal
schema axioms that have to be grounded and considered for a specific node in the com-
pletion graph. We have shown the correctness of the nominal schema absorption and,
moreover, we have also presented techniques for further optimisations.

The approach only improves the handling of “absorbable” axioms, but, to the best of
our knowledge, this restriction is satisfied for the majority of all nominal schema axioms
that are used in practical ontologies. The presented techniques have been integrated
into the novel reasoning system Konclude, which is now able to handle SROIQV
knowledge bases, and the empirical evaluation, which is primarily based on DL-safe
rules, shows that our approach performs well even when compared to other well-known
DL reasoners with dedicated rule support. In particular, the performance for rules with
complex roles is significantly better than in other reasoning systems for more expressive
DLs.

48

The presented techniques are also interesting for the extension of existing tableau-
based DL reasoners to ordinary DL-safe rules, since they allow a direct integration of
the support of DL-safe rules into the tableau algorithm, whereby an additional/separate
inference mechanism for the rules is not required.

Acknowledgements

The first author acknowledges the support of the doctoral scholarship under the Post-
graduate Scholarships Act of the Land of Baden-Wuerttemberg (LGFG).

References

1. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.J., Franconi, E.: An empirical analysis of
optimization techniques for terminological representation systems. J. of Applied Intelligence
4(2), 109–132 (1994)

2. Blackburn, P., Tzakova, M.: Hybridizing concept languages. Annals of Mathematics and
Artificial Intelligence 24(1–4), 23–49 (1998)

3. Demri, S., Nivelle, H.: Deciding regular grammar logics with converse through first-order
logic. J. of Logic, Language and Information 14(3), 289–329 (2005)

4. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1), 17–37 (1982)

5. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to ontology
classification. J. of Web Semantics: Science, Services and Agents on the World Wide Web
14, 84–101 (July 2012)

6. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’06). pp. 57–67. AAAI
Press (2006)

7. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B.N., Dean, M.: SWRL:
A Semantic Web Rule Language. W3C Member Submission (21 May 2004), available at
http://www.w3.org/Submission/SWRL/

8. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierar-
chies. J. of of Logic and Computation 9(3), 385–410 (1999)

9. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description
logic SHIQ. In: McAllester, D.A. (ed.) Proc. 17th Int. Conf. on Automated Deduction
(CADE’00). Lecture Notes in Computer Science, vol. 1831, pp. 482–496. Springer (2000)

10. Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: Proc. 7th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR’00). pp. 285–296. Morgan
Kaufmann (2000)

11. Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description
logics. In: Proc. 19th Int. Workshop on Description Logics (DL’06). vol. 189. CEUR (2006)

12. Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Group Note (22 June 2010), avail-
able at http://www.w3.org/TR/rif-overview/

13. Krisnadhi, A., Hitzler, P.: A tableau algorithm for description logics with nominal schema.
In: Krötzsch, M., Straccia, U. (eds.) Proc. 6th Int. Conf. on Web Reasoning and Rule Systems
(RR’12). LNCS, vol. 7497, pp. 234–237. Springer (2012)

14. Krötzsch, M., Maier, F., Krisnadhi, A., Hitzler, P.: A better uncle for OWL: nominal
schemas for integrating rules and ontologies. In: Proc. 20th Int. Conf. on World Wide Web
(WWW’11). pp. 645–654. ACM (2011)

49

http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/rif-overview/

15. Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: an analysis of the performance of
rule engines. In: Proc. 18th Int. Conf. on World wide web (WWW’09). pp. 601–610. ACM,
New York, NY, USA (2009)

16. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology
benchmark. In: Proc. 3rd European Semantic Web Conf. (ESWC’06). LNCS, vol. 4011, pp.
125–139. Springer (2006)

17. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/
owl2-overview/

18. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. J. of Web Semantics 5(2), 51–53 (2007)

19. Steigmiller, A., Liebig, T., Glimm, B.: Extended caching, backjumping and merging for
expressive description logics. In: Proc. 6th Int. Joint Conf. on Automated Reasoning (IJ-
CAR’12). Lecture Notes in Computer Science, vol. 7364, pp. 514–529. Springer (2012)

20. Tsarkov, D., Horrocks, I.: Efficient reasoning with range and domain constraints. In: Proc.
17th Int. Workshop on Description Logics (DL’04). vol. 104. CEUR (2004)

50

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-11 Thomas Beuter, Peter Dadam:
Prinzipien der Replikationskontrolle in verteilten Systemen

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn
Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

2009-07 H.A. Kestler, B. Lausen, H. Binder H.-P. Klenk. F. Leisch, M. Schmid

Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08 Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-
Systemen

2009-09 Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination

2009-10 Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl,
Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

2009-11 J. Hanika, H.P.A. Lensch, A. Keller
Two-Level Ray Tracing with Recordering for Highly Complex Scenes

2009-12 Stephan Buchwald, Thomas Bauer, Manfred Reichert
 Durchgängige Modellierung von Geschäftsprozessen durch Einführung eines

Abbildungsmodells: Ansätze, Konzepte, Notationen

2010-01 Hariolf Betz, Frank Raiser, Thom Frühwirth
A Complete and Terminating Execution Model for Constraint Handling Rules

2010-02 Ulrich Kreher, Manfred Reichert

Speichereffiziente Repräsentation instanzspezifischer
Änderungen in Prozess-Management-Systemen

2010-03 Patrick Frey

Case Study: Engine Control Application

2010-04 Matthias Lohrmann und Manfred Reichert

Basic Considerations on Business Process Quality

2010-05 HA Kestler, H Binder, B Lausen, H-P Klenk, M Schmid, F Leisch (eds):

Statistical Computing 2010 - Abstracts der 42. Arbeitstagung

2010-06 Vera Künzle, Barbara Weber, Manfred Reichert

Object-aware Business Processes: Properties, Requirements, Existing Approaches

2011-01 Stephan Buchwald, Thomas Bauer, Manfred Reichert
Flexibilisierung Service-orientierter Architekturen

2011-02 Johannes Hanika, Holger Dammertz, Hendrik Lensch
Edge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust
Denoising

2011-03 Stefanie Kaiser, Manfred Reichert

Datenflussvarianten in Prozessmodellen: Szenarien, Herausforderungen, Ansätze

2011-04 Hans A. Kestler, Harald Binder, Matthias Schmid, Friedrich Leisch, Johann M. Kraus

(eds):
Statistical Computing 2011 - Abstracts der 43. Arbeitstagung

2011-05 Vera Künzle, Manfred Reichert

PHILharmonicFlows: Research and Design Methodology

2011-06 David Knuplesch, Manfred Reichert

Ensuring Business Process Compliance Along the Process Life Cycle

2011-07 Marcel Dausend

Towards a UML Profile on Formal Semantics for Modeling Multimodal Interactive
Systems

2011-08 Dominik Gessenharter

Model-Driven Software Development with ACTIVECHARTS - A Case Study

2012-01 Andreas Steigmiller, Thorsten Liebig, Birte Glimm

Extended Caching, Backjumping and Merging for Expressive Description Logics

2012-02 Hans A. Kestler, Harald Binder, Matthias Schmid, Johann M. Kraus (eds):

Statistical Computing 2012 - Abstracts der 44. Arbeitstagung

2012-03 Felix Schüssel, Frank Honold, Michael Weber

Influencing Factors on Multimodal Interaction at Selection Tasks

2012-04 Jens Kolb, Paul Hübner, Manfred Reichert

Model-Driven User Interface Generation and Adaption in Process-Aware Information
Systems

2012-05 Matthias Lohrmann, Manfred Reichert

Formalizing Concepts for Efficacy-aware Business Process Modeling*

2012-06 David Knuplesch, Rüdiger Pryss, Manfred Reichert

A Formal Framework for Data-Aware Process Interaction Models

2013-01 Frank Kargl
 Abstract Proceedings of the 7th Workshop on Wireless and Mobile Ad-
 Hoc Networks (WMAN 2013)

2013-02 Andreas Lanz, Manfred Reichert, Barbara Weber

A Formal Semantics of Time Patterns for Process-aware Information Systems

2013-03 Matthias Lohrmann, Manfred Reichert
Demonstrating the Effectiveness of Process Improvement Patterns with Mining
Results

2013-04 Semra Catalkaya, David Knuplesch, Manfred Reichert

Bringing More Semantics to XOR-Split Gateways in Business Process Models Based
on Decision Rules

2013-05 David Knuplesch, Manfred Reichert, Linh Thao Ly, Akhil Kumar,

Stefanie Rinderle-Ma
On the Formal Semantics of the Extended Compliance Rule Graph

2013-06 Andreas Steigmiller, Birte Glimm, Thorsten Liebig

Nominal Schema Absorption

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

	2013-06 Text.pdf
	Nominal Schema Absorption
	Introduction
	Preliminaries
	The Description Logic ALCOIQV
	Tableau Calculus
	Absorption

	Absorption Algorithm
	Correctness

	Nominal Schema Absorption
	Absorption of Axioms with Nominal Schemas
	Tableau Algorithm Extensions to Handle Variable Bindings
	Correctness

	Backward Chaining Optimisations
	Identification of Interesting Nodes and Binding Candidates

	Variable Elimination Optimisations
	Implementation and Evaluation
	UOBM-Benchmarks
	OpenRuleBench-Benchmarks
	Benchmarks for Ontologies with Rules
	Benchmarks beyond Rules

	Conclusions

