

Exercise Sheet 1

Applied Analysis Discussion on Thursday 24-10-2013 at 16ct

Exercise 1 (Open or closed in \mathbb{R}^2 ?)

(1+1+1+1+2)

(1+1+1+1+1)

(5+5)

Which of the following sets X are open respectively closed in \mathbb{R}^2 with the usual Euclidean metric

$$d_2((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}?$$

(a) $X = \emptyset$

- (b) $X = (0,1) \times (0,1)$
- (c) $X = (0,1) \times \{0\}$
- (d) $X = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 \le 0\}$ (e) $X = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 < x_1 x_2^3\}$

Exercise 2 (Definition of metric spaces)

Which of the following tuples (M, d) define a metric space?

- (a) $M = \mathbb{R}$ and d(x, y) = 1 for all $x, y \in \mathbb{R}$. (b) $M = \mathbb{R}$ and d(x, y) = x - y for all $x, y \in \mathbb{R}$. (c) $M = \mathbb{R}$ and $d(x, y) = |x^2 - y^2|$ for all $x, y \in \mathbb{R}$.
- (d) $M = \mathbb{R}$ and $d(x, y) = |x y^2|$ for all $x, y \in \mathbb{R}$. (e) $M = \mathbb{R}$ and $d(x, y) = \sqrt{|x y|}$ for all $x, y \in \mathbb{R}$.

Exercise 3 (A strange metric on \mathbb{R})

(3+3+3)Let us denote by $d: \mathbb{R} \times \mathbb{R} \to [0, \infty)$ the usual Euclidean metric in \mathbb{R} , i.e. d(x, y) = |x - y| for all $x, y \in \mathbb{R}$. We construct a new metric $d_S \colon \mathbb{R} \times \mathbb{R} \to [0, \infty)$.

- i. Let $S \subset \mathbb{R}^2$ be the circle of radius 1 and centre $(0,1) \in \mathbb{R}^2$.
- ii. We denote by $N = (0, 2) \in S$ the north pole of the circle.
- iii. Draw a line $L_x \subset \mathbb{R}^2$ which contains N and $(x, 0) \in \mathbb{R}^2$.
- iv. The line L_x intersects S in a point $\neq N$. Call this point $P(x) \in S \subset \mathbb{R}^2$.

We define (for $x, y \in \mathbb{R}$)

$$d_S(x,y) := d_2\left(P(x), P(y)\right).$$

(a) Draw a picture, which illustrates the construction of d_S .

- (b) Are (\mathbb{R}, d) and (\mathbb{R}, d_S) complete?
- (c) Show that a set is open in (\mathbb{R}, d_S) if and only if it is open in (\mathbb{R}, d) .

Exercise 4 (*Two simple proofs*)

Let (M, d) be a metric space, $x \in M$ and $(x_n)_{n \in \mathbb{N}}$ a sequence in M.

- (a) Show the equivalence of the following assertions:
 - i. $(x_n)_{n \in \mathbb{N}}$ converges.
 - ii. Every subsequence $(x_{n_k})_{k\in\mathbb{N}}$ converges in M (here we do not assume that the limits of different subsequences are the same).

- iii. Prove that the following properties are equivalent:
 - i. $(x_n)_{n \in \mathbb{N}}$ converges to x.
 - ii. For every subsequence $(x_{n_k})_{k\in\mathbb{N}}$ there is a convergent subsequence $(x_{n_{k_l}})_{l\in\mathbb{N}}$ with limit x.

Exercise 5 (*Multiple Choice*)

Given metric spaces (M, d) and (N, d'). On \mathbb{R} we use the usual Euclidean metric. Which of the following statements are true? Try to find proofs or counterexamples of the claims.

- (a) The sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R} given by $x_n = n^{-1}$ is a Cauchy sequence. \Box true \Box wrong
- (b) The sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R} given by $x_n = (-1)^n$ is a Cauchy sequence. \Box true \Box wrong
- (c) Every neighbourhood of a point $x \in M$ is open. \Box true \Box wrong
- (d) A subset A of M is a neighbourhood of $x \in M$, if $x \in \mathring{A}$ (that is, x lies in the interior of A). \Box true \Box wrong
- (e) The empty set and M itself are open and closed. \Box true \Box wrong
- (f) A non-trivial (i.e. $X \neq M$ and $X \neq \emptyset$) subset $X \subset M$ of M is never both open and closed. \Box true \Box wrong
- (g) A subset $X \subset M$, which can be covered by finitely many open balls, is compact. \Box true \Box wrong
- (h) Let d be the discrete metric (i.e. d(x, y) = 1 for all $x \neq y \in M$ and d(x, x) = 0 for all $x \in M$). Then a subset $K \subset M$ of M is compact if and only if K contains finitely many points. \Box true \Box wrong
- (i) If $f: M \to N$ is continuous and $K \subset N$ is compact, then $f^{-1}(K)$ is compact too. \Box true \Box wrong
- (j) If $f: M \to N$ is continuous and $(x_n)_{n \in \mathbb{N}}$ a Cauchy sequence in M, then $(f(x_n))_{n \in \mathbb{N}}$ is a Cauchy sequence in N.

 \Box true \Box wrong

(10)