

Exercise Sheet 2

Applied Analysis

Discussion on Thursday 31-10-2013 at 16ct

Exercise 1 (*Countability*)

(1+1+2+2+2+5)

(5)

 $(5+5^*+2+5)$

(10)

Let $A, B \subset X$ be (at most) countable sets. Show that the following sets M are (at most) countable. So one has to construct a surjective function $f \colon \mathbb{N} \to M$.

- (a) $M = \mathbb{N}$
- (b) $M = \{1, 2, 3, 4, 5\}$ (c) $M = \mathbb{Z}$ (d) $M \subset A$ with $M \neq \emptyset$
- (e) $M = A \cup B$
- (f) $M = A \times B$

Exercise 2 (A non countable set) Show that the power set

$$\mathcal{P}(\mathbb{N}) = \{A : A \subset \mathbb{N}\}$$

of \mathbb{N} (that is, the set of all subsets of \mathbb{N}) is not countable. *Hint:* Suppose that there is a surjective function $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$. This will lead to a contradiction. One possibility is to look at the set

$$A := \{ n \in \mathbb{N} : n \notin f(n) \} \,.$$

Exercise 3 (*Polish spaces*)

Of importance to probability theory are the **Polish metric spaces**. They can be defined as metric spaces (M, d), which are complete (i.e. every Cauchy sequence converges) and separable (i.e. there is a countable dense subset of M).

(a) Show that \mathbb{R}^n together with the Euclidean metric d_2 defines a Polish metric space (\mathbb{R}^n, d_2) .

- (b*) Show that every closed subset $F \subset \mathbb{R}^n$ with the Euclidean metric d_2 defines a Polish metric space (F, d_2) . Remark*: This part is more difficult than the rest.
- (c) Let d be the discrete metric (i.e. d(x, y) = 1 for $x \neq y$ and d(x, x) = 0 for all x) on \mathbb{R} . Prove that (\mathbb{R}, d) is no Polish metric space.
- (d) Construct a metric space (M, d), which is separable but not a Polish metric space.

Exercise 4 (Multiple Choice)

Decide which of the following claims are true. Try to find an argument for your guess.

- (a) \mathbb{Q} is a countable set. \Box true \Box
- $\Box \text{ true} \qquad \Box \text{ wrong}$ (b) \mathbb{R} is a countable set.

 \Box true \Box wrong

- (c) A finite subset A of a metric space (M, d) is open. \Box true \Box wrong
- (d) A finite subset A of a metric space (M, d) is compact and closed. \Box true \Box wrong

(e) The compact subsets of \mathbb{R} with the Euclidean metric d_2 are precisely the bounded and closed subsets.

 \Box true \Box wrong

- (f) Every bounded and closed subset in a metric space is compact. \Box true \Box wrong
- (g) If $A \subset M$ is a subset of a complete metric space (M, d), then $(A, d|_{A \times A})$ is complete. \Box true \Box wrong
- (h) Let (M, d) be a metric space and $F \subset M$ be a non empty closed subset of M. Then there exists a continuous function $f: M \to F$ such that f(x) = x for all $x \in F$. \Box true \Box wrong
- (i) Every Lipschitz continuous function is continuous. $\hfill\square$ true $\hfill\square$ wrong
- (j) Let (M, d) and (N, d') be metric spaces. If $f: M \to N$ is a Lipschitz continuous function and $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in M, then $(f(x_n))_{n \in \mathbb{N}}$ is Cauchy too. \Box true \Box wrong