Exercise Sheet 4

Applied Analysis
Discussion on Thursday 14-11-2013 at 16ct
Exercise 1 (Compactness everywhere)
$(3+1+1+1+3+3+1+1+3+3)$
Which of the following subsets A are compact in the metric spaces (M, d)? Give a complete proof for your answer in (a), (e), (f), (i) and (j).
(a) (M, d) is an arbitrary metric space and A a finite subset of M.
(b) (M, d) is an arbitrary metric space and A a closed subset of a compact set $C \subset M$.
(c) $M=\mathbb{R}^{n}$ and $A=B(0,1)$ (always with the usual Euclidean metric $d=d_{2}$).
(d) $M=\mathbb{R}^{n}$ and $A=\overline{B(0,1)}$.
(e) $M=\mathbb{R}^{2}$ and $A=(0,1] \times[0,1]$.
(f) $M=\mathbb{R}$ and $A=\left\{x^{2}+y^{5}: 0 \leq x \leq 1\right.$ and $\left.-3 \leq y \leq 3\right\}$.
(g) $M=\mathbb{R}^{2}$ and $A=\left\{(x, y): 0 \leq x^{2}-y^{5} \leq 1\right\}$.
(h) $M=A=\mathbb{R}^{n}$ with the usual Euclidean metric $d=d_{2}$.
(i) $M=\ell^{2}$ (in this case we use always the metric d induced by the norm $\|\cdot\|_{2}$) and $A=\overline{B(0,1)}$.
(j) $M=\ell^{2}$ and A a subset with non empty interior \AA.

Exercise 2 (Normed vector spaces?)
Is $(X,\|\cdot\|)$ a normed vector space?
(a) $X=[0,1]$ and $\|x\|=|x|$.
(b) $X=C(\mathbb{R})$ the space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $\|f\|=\sup _{x \in \mathbb{R}}|f(x)|$.
(c) $X=C^{1}([0,1])$ the space of continuously differentiable functions $f:[0,1] \rightarrow \mathbb{R}$ together with

$$
\|f\|=\sup _{x \in[0,1]}\left|f^{\prime}(x)\right| .
$$

(d) $X=C^{1}([0,1])$ the space of continuously differentiable functions $f:[0,1] \rightarrow \mathbb{R}$ together with

$$
\|f\|=\sup _{x \in[0,1]}|f(x)|+\sup _{x \in[0,1]}\left|f^{\prime}(x)\right| .
$$

(e) $X=C([0,1])$ the space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ together with

$$
\|f\|=\int_{0}^{1} f(x) d x .
$$

(f) $X=C([0,1])$ the space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ together with

$$
\|f\|=\int_{0}^{1} f(x)^{2} d x
$$

(g) $X=C([0,1])$ the space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ together with

$$
\|f\|=\int_{0}^{1}|f(x)| d x
$$

Which of the following statements are true? Give a short argument for all of your answers.
We will us the notation

$$
\|x\|_{p}:= \begin{cases}\sqrt[p]{\sum_{i=1}^{n}\left|x_{i}\right|^{p}} & , \text { for } p \in(0, \infty) \\ \max _{i=1, \ldots, n}\left|x_{i}\right| & , \text { for } p=\infty\end{cases}
$$

for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $p \in(0, \infty]$. Furthermore we denote by (M, d) a metric space and by N a subset of M. We already know that $\left(N,\left.d\right|_{N \times N}\right)$ is a metric space again.
(a) Let $X \subset N$ be given. Then X is open in (M, d) if and only if X is open in $\left(N,\left.d\right|_{N \times N}\right)$.$\square$ false
(b) Let $X \subset N$ be given. Then X is compact in (M, d) if and only if X is compact in $\left(N,\left.d\right|_{N \times N}\right)$. \square true \square false
(c) $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ is a normed vector space for $p \in[1, \infty]$.
\square true
\square false
(d) \mathbb{R}^{n} is complete in the norm $\|\cdot\|_{p}$ for $p \geq 1$.\square false
(e) $\|\cdot\|_{p}$ is a norm on \mathbb{R}^{n} for $0<p<1$.
\square true
\square false
(f) The identity function from $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ to $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ is continuous $(p \in[1, \infty])$.\square false
(g) Given two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on some vector space V. Then $\|v\|_{\text {new }}=\|v\|+\|v\|^{\prime}$ is a norm too.
\square true
\square false
(h) The normed space in exercise $2(\mathrm{~g})$ is complete.
\square true
\square false

