

Exercise Sheet 4

Applied Analysis

Discussion on Thursday 14-11-2013 at 16ct

Exercise 1 (*Compactness everywhere*)

(3+1+1+1+3+3+1+1+3+3)

(2+2+2+4+2+2+4)

Which of the following subsets A are compact in the metric spaces (M, d)? Give a complete proof for your answer in (a), (e), (f), (i) and (j).

(a) (M, d) is an arbitrary metric space and A a finite subset of M.

(b) (M, d) is an arbitrary metric space and A a closed subset of a compact set $C \subset M$.

(c) $M = \mathbb{R}^n$ and A = B(0, 1) (always with the usual Euclidean metric $d = d_2$).

- (d) $M = \mathbb{R}^n$ and $A = \overline{B(0,1)}$.
- (e) $M = \mathbb{R}^2$ and $A = (0, 1] \times [0, 1]$.

(f) $M = \mathbb{R}$ and $A = \{x^2 + y^5 : 0 \le x \le 1 \text{ and } -3 \le y \le 3\}.$

- (g) $M = \mathbb{R}^2$ and $A = \{(x, y) : 0 \le x^2 y^5 \le 1\}.$
- (h) $M = A = \mathbb{R}^n$ with the usual Euclidean metric $d = d_2$.

(i) $M = \ell^2$ (in this case we use always the metric d induced by the norm $\|\cdot\|_2$) and $A = \overline{B(0,1)}$.

(j) $M = \ell^2$ and A a subset with non empty interior Å.

Exercise 2 (Normed vector spaces?)

Is
$$(X, \|\cdot\|)$$
 a normed vector space?

- (a) X = [0, 1] and ||x|| = |x|.
- (b) $X = C(\mathbb{R})$ the space of continuous functions $f \colon \mathbb{R} \to \mathbb{R}$ and $||f|| = \sup_{x \in \mathbb{R}} |f(x)|$.
- (c) $X = C^1([0,1])$ the space of continuously differentiable functions $f: [0,1] \to \mathbb{R}$ together with

$$||f|| = \sup_{x \in [0,1]} |f'(x)|.$$

(d) $X = C^1([0,1])$ the space of continuously differentiable functions $f: [0,1] \to \mathbb{R}$ together with

$$||f|| = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|.$$

(e) X = C([0,1]) the space of continuous functions $f: [0,1] \to \mathbb{R}$ together with

$$||f|| = \int_0^1 f(x) \, dx.$$

(f) X = C([0,1]) the space of continuous functions $f: [0,1] \to \mathbb{R}$ together with

$$||f|| = \int_0^1 f(x)^2 \, dx$$

(g) X = C([0,1]) the space of continuous functions $f: [0,1] \to \mathbb{R}$ together with

$$||f|| = \int_0^1 |f(x)| \, dx.$$

please turn over!

Exercise 3 (Multiple Choice)

Which of the following statements are true? Give a short argument for all of your answers. We will us the notation

$$||x||_p := \begin{cases} \sqrt[p]{\sum_{i=1}^n |x_i|^p} & \text{, for } p \in (0,\infty) \\ \max_{i=1,\dots,n} |x_i| & \text{, for } p = \infty. \end{cases}$$

for $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and $p \in (0, \infty]$. Furthermore we denote by (M, d) a metric space and by N a subset of M. We already know that $(N, d|_{N \times N})$ is a metric space again.

- (a) Let $X \subset N$ be given. Then X is open in (M, d) if and only if X is open in $(N, d|_{N \times N})$. \Box true \Box false
- (b) Let $X \subset N$ be given. Then X is compact in (M, d) if and only if X is compact in $(N, d|_{N \times N})$. \Box true \Box false
- (c) $(\mathbb{R}^n, \|\cdot\|_p)$ is a normed vector space for $p \in [1, \infty]$. \Box true \Box false
- (d) \mathbb{R}^n is complete in the norm $\|\cdot\|_p$ for $p \ge 1$. \Box true \Box false
- (e) $\|\cdot\|_p$ is a norm on \mathbb{R}^n for 0 . $<math>\Box$ true \Box false
- (f) The identity function from $(\mathbb{R}^n, \|\cdot\|_p)$ to $(\mathbb{R}^n, \|\cdot\|_\infty)$ is continuous $(p \in [1, \infty])$. \Box true \Box false
- (g) Given two norms $\|\cdot\|$ and $\|\cdot\|'$ on some vector space V. Then $\|v\|_{\text{new}} = \|v\| + \|v\|'$ is a norm too.
 - \Box true \Box false
- (h) The normed space in exercise 2 (g) is complete. \Box true \Box false