Exercise Sheet 5

Applied Analysis
Discussion on Thursday 21-11-2013 at 16ct
Exercise 1 (Banach's fixed point theorem - assumptions)
Can one directly apply Banach's fixed point theorem to $f: M \rightarrow M$? In other words are the assumptions of Banach's fixed point theorem valid?
(a) $M=\mathbb{R}$ and $f(x)=x$
(b) $M=\mathbb{R}$ and $f(x)=\frac{1}{2} x$
(c) $M=\mathbb{Q}$ and again $f(x)=\frac{1}{2} x$
(d) $M=(0, \infty)$ and $f(x)=\frac{1}{2} x$
(e) $M=[0,1]$ and $f(x)=(x+1)^{-1}$

Exercise 2 (A concrete application of Banach's fixed point theorem)
We are interested in $x, y \in[-1,1]$ which solve

$$
\begin{aligned}
& 50 x=x^{2}+y^{2}+x+1 \\
& 50 y=x^{3}+y^{2}+y .
\end{aligned}
$$

(a) Prove the existence of a unique solution (use Banach's fixed point theorem).
(b) Find an approximate solution with error $<10^{-4}$ (for each value) by using the fixed point iteration starting with $x_{0}=0$ and $y_{0}=0$.

Exercise 3 (Multiple Choice)

Decide which statements are true. Give counterexamples or proofs.
Most of the questions are repetitions or simple restatements of propositions mentioned in the lecture. This is the reason why each question gives fewer points than last time.
(a) $[0,1$) is compact (with the Euclidean metric).false
(b) $[0,1] \times[-1,1]$ is compact.
(c) Given a metric space (M, d) and let $C \subset M$ be compact. Then C is closed.\square false
(d) Given a metric space (M, d) and let $C \subset M$ be compact. Then C is not open.truefalse
(e) $\mathbb{Q} \times \mathbb{Z}$ is a countable set.
\square true
(f) $\{1,4,5,9\}$ is a countable set.\square false
(g) $\mathbb{Q} \times \mathbb{R}$ is a countable set.
(h) The (arbitrary) union of countable sets is countable.
truefalse
(i) The countable product of finite sets is countable. \square true

false

(j) $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{6} y^{4}<1\right\}$ is open and not compact.false
(k) Every normed space $(X,\|\cdot\|)$ with $X=\mathbb{R}^{n}$ is complete.
\square true
\square false
(l) A continuous function $f: F \rightarrow \mathbb{R}$ on a bounded and closed subset F of \mathbb{R}^{n} attains its infimum and supermum in F.
\square truefalse
(m) A continuous function $f: F \rightarrow \mathbb{R}$ on a bounded and closed subset F of ℓ^{2} attains its infimum and supermum in F.
\square true
(n) Every convergent sequence has only one accumulation point.
\square true
\square false
(o) Every sequence with only one accumulation point is convergent.
\square true
\square false
(p) Every bounded sequence in \mathbb{R}^{n} with only one accumulation point is convergent.
\square true
(q) Every bounded sequence (in an arbitrary normed space) with only one accumulation point is convergent.
\square truefalse
(r) If $\left(a_{n}\right)$ converges to zero in \mathbb{R}, then $\sum_{k=1}^{\infty} a_{k}$ is convergent.
\square truefalse
(s) Given a sequence $\left(a_{n}\right)$ in \mathbb{R} such that $\sum_{k=1}^{\infty} a_{k}$ is convergent. Then $\left(a_{n}\right)$ and $\left(\sum_{k=n}^{\infty} a_{k}\right)$ are convergent to zero.
\square truefalse
(t) $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ is convergent for every $x \in \mathbb{R}$ fixed.
\square true
\square false

