Exercise Sheet 6

Applied Analysis
Discussion on Thursday 28-11-2013 at 16ct
Convention: We will use on this sheet the real versions (i.e. $\mathbb{K}=\mathbb{R}$) of the spaces ℓ^{p}, that is

$$
\ell^{p}=\left\{x=\left(x_{k}\right)_{k \in \mathbb{N}} \text { a sequence in } \mathbb{R}:\|x\|_{p}<\infty\right\} .
$$

Exercise 1 (Compactness revisited - examples in ℓ^{p})
Proof the following statements about compact sets in ℓ^{p}.
(a) The closed ball $\overline{B(0,1)} \subset \ell^{p}$ is not compact (with $p \in[1, \infty]$).
(b) The set

$$
\left\{x=\left(x_{k}\right) \in \ell^{\infty} \mid x_{k} \in[0,1]\right\}
$$

is no compact subset of ℓ^{∞}.
(c) The set

$$
\left\{x=\left(x_{k}\right) \in \ell^{\infty} \mid x_{k} \in\left[0, a_{k}\right]\right\}
$$

with $a_{k} \rightarrow 0(k \rightarrow \infty)$ and $a_{k}>0$ (for all $k \in \mathbb{N}$) is a compact subset of ℓ^{∞}.
Hint: Let a sequence (x^{n}) in the set be given. By choosing a subsequence (how?) if necessary, we may assume that (x_{k}^{n}) converges for every $k \in \mathbb{N}$. Conclude carefully that (x^{n}) converges.
(d) Essentially the same set with ℓ^{1} instead of ℓ^{∞} is not necessarily compact, i.e.

$$
\left\{x=\left(x_{k}\right) \in \ell^{1} \mid x_{k} \in\left[0, a_{k}\right]\right\}
$$

with $a=\left(a_{k}\right) \in \mathfrak{c}_{0}$ and $a_{k}>0$ (for all $k \in \mathbb{N}$) is not necessarily compact.
Hint: You have to choose a suitable $a=\left(a_{k}\right)$. A good candidate is some $a \notin \ell^{1}$ but with $a \in \mathfrak{c}_{0}$ (you know at least one example from an older sheet!).

Exercise 2 (Linear operators)
$(3+3+4+5+5)$
Solve the following problems about linear operators.
(a) Show that every linear operator $T: \mathbb{R} \rightarrow \mathbb{R}$ is given by $T(x)=a \cdot x$ for some $a \in \mathbb{R}$.
(b) Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad T: x \rightarrow A x
$$

is the rotation by 180° (or equivalently π).
(c) Show that

$$
T: x=\left(x_{k}\right)_{k \in \mathbb{N}} \mapsto\left(x_{k+1}\right)_{k \in \mathbb{N}}, \quad T: \ell^{p} \rightarrow \ell^{p}
$$

is a bounded linear operator.
(d) Given $x=\left(x_{k}\right) \in \ell^{q}$ (q is the Hölder conjugate to p, i.e. $p^{-1}+q^{-1}=1$). Proof that

$$
T: \ell^{p} \rightarrow \mathbb{R}, \quad y=\left(y_{k}\right) \mapsto \sum_{k=1}^{\infty} x_{k} \cdot y_{k}
$$

is a bounded linear operator.
(e) Let us again suppose that $x=\left(x_{k}\right) \in \ell^{q}$ (again $p^{-1}+q^{-1}=1$, with $p, q \in[1, \infty]$) is given. Show that

$$
T: \ell^{p} \rightarrow \ell^{1}, \quad y=\left(y_{k}\right) \mapsto T y=\left(x_{k} \cdot y_{k}\right)
$$

defines a bounded linear operator.
Exercise 3 (Multiple Choice)
Decide which of the following assertions are true. Try to give an argument for your answer.
(a) A strict contraction $f: M \rightarrow M$ in a compact metric space M has a fixed point.\square false
(b) A linear map between Banach spaces is always bounded (try not to find a proof for this part). \square true
\square false
(c) \mathbb{R}^{n} is a n-dimensional real vector space.
\square true
\square false
(d) A linear map between finite dimensional Banach spaces is always bounded. \square true
(e) ℓ^{2} is finite dimensional.
\square truefalse
(f) The set $\left\{x=\left(x_{k}\right) \in \ell^{\infty}: x_{k}>1\right\}$ is open in ℓ^{∞}.
\square true
(g) The set $\left\{x=\left(x_{k}\right) \in \ell^{\infty}: x_{k} \leq 1\right\}$ is closed in ℓ^{∞}.false
(h) The set $\left\{x=\left(x_{k}\right) \in \ell^{\infty}: \sup _{k} x_{k}<1\right\}$ is open in ℓ^{∞}.
truefalse
(i) The set $\left\{x=\left(x_{k}\right) \in \ell^{\infty}: \sup _{k} x_{k} \leq 1\right\}$ is closed in ℓ^{∞}.truefalse

