

 $(3+3+5+5^*)$

(3+3+4+5+5)

Exercise Sheet 6

Applied Analysis

Discussion on Thursday 28-11-2013 at 16ct

Convention: We will use on this sheet the real versions (i.e. $\mathbb{K} = \mathbb{R}$) of the spaces ℓ^p , that is

 $\ell^p = \{x = (x_k)_{k \in \mathbb{N}} \text{ a sequence in } \mathbb{R} : ||x||_p < \infty\}.$

Exercise 1 (Compactness revisited - examples in ℓ^p)

Proof the following statements about compact sets in $\ell^p.$

- (a) The closed ball $\overline{B(0,1)} \subset \ell^p$ is not compact (with $p \in [1,\infty]$).
- (b) The set

$$\{x = (x_k) \in \ell^{\infty} | x_k \in [0, 1]\}$$

is no compact subset of ℓ^{∞} .

(c) The set

$$\{x = (x_k) \in \ell^{\infty} | x_k \in [0, a_k] \}$$

with $a_k \to 0$ $(k \to \infty)$ and $a_k > 0$ (for all $k \in \mathbb{N}$) is a compact subset of ℓ^{∞} . *Hint:* Let a sequence (x^n) in the set be given. By choosing a subsequence (how?) if necessary, we may assume that (x_k^n) converges for every $k \in \mathbb{N}$. Conclude carefully that (x^n) converges.

(d) Essentially the same set with ℓ^1 instead of ℓ^{∞} is not necessarily compact, i.e.

$$\left\{x = (x_k) \in \ell^1 \middle| x_k \in [0, a_k]\right\}$$

with $a = (a_k) \in \mathfrak{c}_0$ and $a_k > 0$ (for all $k \in \mathbb{N}$) is not necessarily compact. *Hint:* You have to choose a suitable $a = (a_k)$. A good candidate is some $a \notin \ell^1$ but with $a \in \mathfrak{c}_0$ (you know at least one example from an older sheet!).

Exercise 2 (*Linear operators*)

Solve the following problems about linear operators.

- (a) Show that every linear operator $T \colon \mathbb{R} \to \mathbb{R}$ is given by $T(x) = a \cdot x$ for some $a \in \mathbb{R}$.
- (b) Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that

$$T\colon \mathbb{R}^2\to \mathbb{R}^2, \ T\colon x\to Ax$$

is the rotation by 180° (or equivalently π).

(c) Show that

$$T: x = (x_k)_{k \in \mathbb{N}} \mapsto (x_{k+1})_{k \in \mathbb{N}}, \quad T: \ell^p \to \ell^p$$

is a bounded linear operator.

(d) Given $x = (x_k) \in \ell^q$ (q is the Hölder conjugate to p, i.e. $p^{-1} + q^{-1} = 1$). Proof that

$$T: \ell^p \to \mathbb{R}, \ y = (y_k) \mapsto \sum_{k=1}^{\infty} x_k \cdot y_k$$

is a bounded linear operator.

please turn over!

(e) Let us again suppose that $x = (x_k) \in \ell^q$ (again $p^{-1} + q^{-1} = 1$, with $p, q \in [1, \infty]$) is given. Show that

$$T: \ell^p \to \ell^1, \quad y = (y_k) \mapsto Ty = (x_k \cdot y_k)$$

(9)

defines a bounded linear operator.

Exercise 3 (Multiple Choice)

Decide which of the following assertions are true. Try to give an argument for your answer.

- (a) A strict contraction $f: M \to M$ in a compact metric space M has a fixed point. \Box true \Box false
- (b) A linear map between Banach spaces is always bounded (try **not** to find a proof for this part).
 □ true □ false
- (c) \mathbb{R}^n is a *n*-dimensional real vector space. \Box true \Box false
- (d) A linear map between finite dimensional Banach spaces is always bounded. $\hfill\square$ true $\hfill\square$ false
- (e) ℓ^2 is finite dimensional. \Box true \Box false
- (f) The set $\{x = (x_k) \in \ell^\infty : x_k > 1\}$ is open in ℓ^∞ . \Box true \Box false
- (g) The set $\{x = (x_k) \in \ell^{\infty} : x_k \leq 1\}$ is closed in ℓ^{∞} . \Box true \Box false
- (h) The set $\{x = (x_k) \in \ell^{\infty} : \sup_k x_k < 1\}$ is open in ℓ^{∞} . \Box true \Box false
- (i) The set $\{x = (x_k) \in \ell^{\infty} : \sup_k x_k \le 1\}$ is closed in ℓ^{∞} . \Box true \Box false