Exercise Sheet 7

Applied Analysis
Discussion on Thursday 5-12-2013 at 16ct

Exercise 1

(a) Find a non-convergent Cauchy sequence in $\left(\mathfrak{c}_{00},\|\cdot\|_{2}\right)$ with the norm

$$
\left\|\left(x_{k}\right)\right\|_{2}^{2}=\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}
$$

for $\left(x_{k}\right) \in \mathfrak{c}_{00}$.
(b) Let $\left(\mathbb{R}^{N},\|\cdot\|\right)$ be a normed vector space. If $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ is a sequence in \mathbb{R}^{N}, then the following properties are equivalent:
(i) $\left(x^{(n)}\right)$ converges in $\left(\mathbb{R}^{N},\|\cdot\|\right)$ to x.
(ii) Every coordinate sequence $\left(x_{k}^{(n)}\right)_{n \in \mathbb{N}}$ converges to x_{k} for $k=1, \ldots, N$.

Prove this equivalence.
(c) Show that the above equivalence is wrong for all the spaces $\left(\ell^{p},\|\cdot\|_{p}\right)$ (with $p \in[1, \infty]$) by giving counterexamples.

Exercise 2 (Continuous functions vanishing at infinity)

We denote by

$$
C_{0}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{R}: \text { is continuous and } \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=0\right\}
$$

the space of continuous functions, which vanish at infinity and define

$$
\|f\|_{\infty}=\sup _{x \in \mathbb{R}}|f(x)|
$$

for every $f \in C_{0}(\mathbb{R})$.
(a) Show that $\left(C_{0}(\mathbb{R}),\|\cdot\|_{\infty}\right)$ is a normed space.
(b) Is this space complete?
(c) Show that $C_{0}(\mathbb{R})$ is separable.

Exercise 3 (Multiple Choice)

Which of the following statements are true?
(a) The compact sets in a normed space $\left(\mathbb{R}^{N},\|\cdot\|\right)$ are precisely the bounded and closed sets.false
(b) The compact sets in the normed space $\left(\ell^{1},\|\cdot\|_{1}\right)$ are precisely the bounded and closed sets. \square true
(c) If (K, d) is a compact metric space, then K is separable.
true
(d) If (M, d) is a separable metric space, then M is compact.
true
(e) $\left(C(K),\|\cdot\|_{\infty}\right)$ for a compact metric space (K, d) is a Polish metric space.false
(f) $\left(C_{b}(M),\|\cdot\|_{\infty}\right)$ is separable for every metric space (M, d).
\square true
\square false
(g) $\left(\mathcal{F}_{b}(\Omega),\|\cdot\|_{\infty}\right)$ is a Polish metric space for every set Ω. \square true\square false
(h) $\left(\mathcal{F}_{b}(\Omega),\|\cdot\|_{\infty}\right)$ is a Polish metric space for every countable set Ω. \square true
\square false
(i) The trigonometric polynomials are dense in $\left(C([0,2 \pi]),\|\cdot\|_{\infty}\right)$.
\square true
\square false
(j) The polynomials are dense in $\left(C([0,2 \pi]),\|\cdot\|_{\infty}\right)$. \square true
\square false

