

Exercise Sheet 7 Applied Analysis

Discussion on Thursday 5-12-2013 at 16ct

Exercise 1

(5+5+5)

(10)

(a) Find a non-convergent Cauchy sequence in $(\mathfrak{c}_{00}, \|\cdot\|_2)$ with the norm

$$||(x_k)||_2^2 = \sum_{k=1}^{\infty} |x_k|^2$$

for $(x_k) \in \mathfrak{c}_{00}$.

- (b) Let $(\mathbb{R}^N, \|\cdot\|)$ be a normed vector space. If $(x^{(n)})_{n \in \mathbb{N}}$ is a sequence in \mathbb{R}^N , then the following properties are equivalent:
 - (i) $(x^{(n)})$ converges in $(\mathbb{R}^N, \|\cdot\|)$ to x.
 - (ii) Every coordinate sequence $(x_k^{(n)})_{n \in \mathbb{N}}$ converges to x_k for k = 1, ..., N.

Prove this equivalence.

(c) Show that the above equivalence is wrong for all the spaces $(\ell^p, \|\cdot\|_p)$ (with $p \in [1, \infty]$) by giving counterexamples.

Exercise 2 (*Continuous functions vanishing at infinity*) (5+5+5) We denote by

$$C_0(\mathbb{R}) = \left\{ f \colon \mathbb{R} \to \mathbb{R} : \text{ is continuous and } \lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0 \right\}$$

the space of continuous functions, which vanish at infinity and define

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$$

for every $f \in C_0(\mathbb{R})$.

- (a) Show that $(C_0(\mathbb{R}), \|\cdot\|_{\infty})$ is a normed space.
- (b) Is this space complete?
- (c) Show that $C_0(\mathbb{R})$ is separable.

Exercise 3 (Multiple Choice)

Which of the following statements are true?

- (a) The compact sets in a normed space $(\mathbb{R}^N, \|\cdot\|)$ are precisely the bounded and closed sets. \Box true \Box false
- (b) The compact sets in the normed space $(\ell^1, \|\cdot\|_1)$ are precisely the bounded and closed sets. \Box true \Box false
- (c) If (K, d) is a compact metric space, then K is separable. \Box true \Box false
- (d) If (M, d) is a separable metric space, then M is compact. \Box true \Box false
- (e) $(C(K), \|\cdot\|_{\infty})$ for a compact metric space (K, d) is a Polish metric space. \Box true \Box false

- (f) $(C_b(M), \|\cdot\|_{\infty})$ is separable for every metric space (M, d). \Box true \Box false
- (g) $(\mathcal{F}_b(\Omega), \|\cdot\|_{\infty})$ is a Polish metric space for every set Ω . \Box true \Box false
- (h) $(\mathcal{F}_b(\Omega), \|\cdot\|_{\infty})$ is a Polish metric space for every countable set Ω . \Box true \Box false
- (i) The trigonometric polynomials are dense in $(C([0, 2\pi]), \|\cdot\|_{\infty})$. \Box true \Box false
- (j) The polynomials are dense in $(C([0, 2\pi]), \|\cdot\|_{\infty})$. \Box true \Box false