Exercise Sheet 8

Applied Analysis
Discussion on Thursday 12-12-2013 at 16ct

Exercise 1 (Riemann integral)

(a) Let $f:[-1,1] \rightarrow \mathbb{R}$ be a Riemann integrable function with $f(-x)=-f(x)$ for all $x \in[-1,1]$. Show directly with the definition that

$$
R-\int_{-1}^{1} f(x) d x=0 .
$$

(b) Calculate the following Riemann integrals
i. $R-\int_{0}^{1} x^{2}-x d x$
ii. $R-\int_{0}^{1} x e^{x^{2}} d x$
iii. $R-\int_{-1}^{2} \operatorname{sgn}(x) d x$
iv. $R-\int_{-1}^{1} x^{3} e^{x^{2}} d x$

Here we denote by sgn the function defined by

$$
\operatorname{sgn}(x)= \begin{cases}-1 & , \text { for } x<0 \\ 0 & , \text { for } x=0 \\ 1 & , \text { for } x>0\end{cases}
$$

Exercise 2 (σ-algebras and measurable functions)
Work on the following problems. For the all the parts the solution is enough (you do not have to prove your claims).
(a) List all possible σ-algebras on $\Omega=\{1,2,3\}$.
(b) Let $f:\{1,2,3,4,5\} \rightarrow\{1,2,3,4\}$ be a function given by $f(1)=f(2)=2, f(3)=3$ and $f(4)=f(5)=4$. We put the σ-algebra $\Sigma=\sigma(\{\{2\},\{3,4\}\})$ on the codomain $\{1,2,3,4\}$.
i. Write down all elements of the σ-algebra $\sigma(f)$.
ii. What are the $\sigma(f) / \Sigma$-measurable functions $g:\{1,2,3,4,5\} \rightarrow\{1,2,3,4\}$?
(c) Let us suppose that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given. We equip the codomain with the Borel- σ algebra $\mathcal{B}(\mathbb{R})$. Give a nice description (without a proof) of the σ-algebra $\sigma(f)$ in the following situations:
i. $f(x)=\operatorname{sgn}(x)$
ii. $f(x)=x^{3}$
iii. $f(x)=|x|$.
(d) In the situation of (c) iii. is the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by
i. $g(x)=x^{2}$ respectively
ii. $g(x)=x^{3}$
$\sigma(f) / \mathcal{B}(\mathbb{R})$-measurable?
Exercise 3 (The principle of good sets)
Use the principle of good sets twice to show that $A \times B \in \mathcal{B}\left(\mathbb{R}^{2}\right)$, if $A, B \in \mathcal{B}(\mathbb{R})$. We divide the proof into two steps:
(a) Show with the principle of good sets, that $A \times I \in \mathcal{B}\left(\mathbb{R}^{2}\right)$ for all open intervals I in \mathbb{R} and all $A \in \mathcal{B}(\mathbb{R})$. The good sets are in this situation

$$
\mathcal{G}=\left\{A \in \mathcal{B}(\mathbb{R}): A \times I \in \mathcal{B}\left(\mathbb{R}^{2}\right) \text { for all open intervals } I\right\}
$$

Hint: To show that \mathcal{G} is a σ-algebra, you have to proof $A \in \mathcal{G} \Rightarrow A^{c} \in \mathcal{G}$. And here it might be helpful that

$$
(A \times I)^{c} \cap(\mathbb{R} \times I)=\left(A^{c} \times I\right)
$$

(b) Now use the principle of good sets again to show the claim. This time the good sets are

$$
\mathcal{G}^{\prime}=\left\{B \in \mathcal{B}(\mathbb{R}): A \times B \in \mathcal{B}\left(\mathbb{R}^{2}\right) \text { for all } A \in \mathcal{B}(\mathbb{R})\right\}
$$

Hint: We further remark (you will need this in the proof) that

$$
(A \times B)^{c} \cap(A \times \mathbb{R})=A \times B^{c}
$$

Exercise 4 (Multiple Choice)

Which of the following statements are true?
(a) Every continuous function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable.
\square true
\square false
(b) Every bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable.
\square truefalse
(c) $\Sigma=\left\{A \subset \mathbb{N}: A\right.$ is finite or A^{c} is finite $\}$ is a σ-algebra on \mathbb{N}.\square false
(d) The union of two σ-algebras is a σ-algebra again. \square true
\square false
(e) $\{\emptyset,\{1\},\{2\},\{1,2\},\{3,4\},\{2,3,4\},\{1,3,4\},\{1,2,3,4\}\}$ is a σ-algebra on $\Omega=\{1,2,3,4\}$. \square true
\square false
(f) If Σ is a σ-algebra and elements $A_{i} \in \Sigma$ for all $i \in I$ (for some index set I) are given, then $\bigcup_{i \in I} A_{i}$ is an element of Σ too. \square true
\square false

