

Exercise Sheet 8

Applied Analysis

Discussion on Thursday 12-12-2013 at 16ct

Exercise 1 (*Riemann integral*)

(4+4)

(a) Let $f: [-1,1] \to \mathbb{R}$ be a Riemann integrable function with f(-x) = -f(x) for all $x \in [-1,1]$. Show directly with the definition that

$$R - \int_{-1}^{1} f(x) \, dx = 0.$$

(b) Calculate the following Riemann integrals

i.
$$R - \int_0^1 x^2 - x \, dx$$

ii. $R - \int_0^1 x e^{x^2} \, dx$
iii. $R - \int_{-1}^2 \operatorname{sgn}(x) \, dx$
iv. $R - \int_{-1}^1 x^3 e^{x^2} \, dx$

Here we denote by sgn the function defined by

$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{, for } x < 0\\ 0 & \text{, for } x = 0\\ 1 & \text{, for } x > 0. \end{cases}$$

Exercise 2 (σ -algebras and measurable functions)

(3+5+5+3)

Work on the following problems. For the all the parts the solution is enough (you do not have to prove your claims).

- (a) List all possible σ -algebras on $\Omega = \{1, 2, 3\}$.
- (b) Let $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4\}$ be a function given by f(1) = f(2) = 2, f(3) = 3 and f(4) = f(5) = 4. We put the σ -algebra $\Sigma = \sigma(\{\{2\}, \{3, 4\}\})$ on the codomain $\{1, 2, 3, 4\}$.
 - i. Write down all elements of the σ -algebra $\sigma(f)$.
 - ii. What are the $\sigma(f)/\Sigma$ -measurable functions $g: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4\}$?
- (c) Let us suppose that a function $f : \mathbb{R} \to \mathbb{R}$ is given. We equip the codomain with the Borel- σ -algebra $\mathcal{B}(\mathbb{R})$. Give a nice description (without a proof) of the σ -algebra $\sigma(f)$ in the following situations:

i. $f(x) = \operatorname{sgn}(x)$ ii. $f(x) = x^3$

iii. f(x) = |x|.

proof into two steps:

(d) In the situation of (c) iii. is the function $g \colon \mathbb{R} \to \mathbb{R}$ given by

i. $g(x) = x^2$ respectively ii. $g(x) = x^3$ $\sigma(f)/\mathcal{B}(\mathbb{R})$ -measurable?

Exercise 3 (*The principle of good sets*) (5+5) Use the principle of good sets twice to show that $A \times B \in \mathcal{B}(\mathbb{R}^2)$, if $A, B \in \mathcal{B}(\mathbb{R})$. We divide the

please turn over!

(a) Show with the principle of good sets, that $A \times I \in \mathcal{B}(\mathbb{R}^2)$ for all open intervals I in \mathbb{R} and all $A \in \mathcal{B}(\mathbb{R})$. The good sets are in this situation

 $\mathcal{G} = \{ A \in \mathcal{B}(\mathbb{R}) : A \times I \in \mathcal{B}(\mathbb{R}^2) \text{ for all open intervals } I \}.$

Hint: To show that \mathcal{G} is a σ -algebra, you have to proof $A \in \mathcal{G} \Rightarrow A^c \in \mathcal{G}$. And here it might be helpful that

$$(A \times I)^c \cap (\mathbb{R} \times I) = (A^c \times I).$$

(b) Now use the principle of good sets again to show the claim. This time the good sets are

$$\mathcal{G}' = \{ B \in \mathcal{B}(\mathbb{R}) : A \times B \in \mathcal{B}(\mathbb{R}^2) \text{ for all } A \in \mathcal{B}(\mathbb{R}) \}.$$

Hint: We further remark (you will need this in the proof) that

$$(A \times B)^c \cap (A \times \mathbb{R}) = A \times B^c$$

Exercise 4 (Multiple Choice)

Which of the following statements are true?

- (a) Every continuous function $f: [a, b] \to \mathbb{R}$ is Riemann integrable. \Box true \Box false
- (b) Every bounded function $f: [a, b] \to \mathbb{R}$ is Riemann integrable. \Box true \Box false
- (c) $\Sigma = \{A \subset \mathbb{N} : A \text{ is finite or } A^c \text{ is finite}\}$ is a σ -algebra on \mathbb{N} . \Box true \Box false
- (d) The union of two σ -algebras is a σ -algebra again. \Box true \Box false
- (e) $\{\emptyset, \{1\}, \{2\}, \{1,2\}, \{3,4\}, \{2,3,4\}, \{1,3,4\}, \{1,2,3,4\}\}$ is a σ -algebra on $\Omega = \{1,2,3,4\}$. \Box true \Box false
- (f) If Σ is a σ -algebra and elements $A_i \in \Sigma$ for all $i \in I$ (for some index set I) are given, then $\bigcup_{i \in I} A_i$ is an element of Σ too.

 \Box true \Box false

(6)