Exercise Sheet 9

Applied Analysis
Discussion on Thursday 9-1-2013 at 16ct
We make some definitions:
(i) A probability space (Ω, Σ, μ) is a measure space such that $\mu(\Omega)=1$.
(ii) A random variable $X: \Omega \rightarrow \mathbb{R}$ on a probability space is a $\Sigma / \mathcal{B}(\mathbb{R})$-measurable map.
(iii) A Rademacher random variable $X: \Omega \rightarrow \mathbb{R}$ on a probability space (Ω, Σ, μ) is a random variable with $X(\Omega)=\{1,-1\}$ and $\mu(\{X=1\})=\mu(\{X=-1\})=0.5$.
(iv) Finitely many random variables X_{1}, \ldots, X_{n} on a probability space (Ω, Σ, μ) are called (stochastically) independent, iff for all $A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})$ we get

$$
\mu\left(\left\{X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right\}\right)=\prod_{i=1}^{n} \mu\left(\left\{X_{i} \in A_{i}\right\}\right) .
$$

In the following one can use (without a proof)

$$
\mathcal{B}(\mathbb{R})=\sigma(\{(-\infty, a] \subset \mathbb{R}: a \in \mathbb{R}\})
$$

Exercise 1 (Measures and cumulative distribution functions)
(a) Let us suppose that $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ is a probability space. We define the cumulative distribution function $F_{\mu}: \mathbb{R} \rightarrow[0,1]$ by

$$
F_{\mu}(x):=\mu((-\infty, x]) .
$$

i. Show $\lim _{x \rightarrow-\infty} F_{\mu}(x)=0$ and $\lim _{x \rightarrow \infty} F_{\mu}(x)=1$.
ii. Show that F_{μ} is monotonically increasing (i.e. $F_{\mu}(x) \geq F_{\mu}(y)$ if $x \geq y$)
iii. Show that F_{μ} is right-continuous (i.e. if $\left(x_{n}\right)$ is a sequence in $[x, \infty)$ converging to x, then we get $\left.F_{\mu}\left(x_{n}\right) \rightarrow F_{\mu}(x)(n \rightarrow \infty)\right)$.
iv. Show that F_{μ} determines μ.
(b) Let (Ω, Σ, μ) be a fixed probability space and $X: \Omega \rightarrow \mathbb{R}$ be a random variable. In the lecture we defined the push forward μ_{X} of μ under X. By $F_{X}: \mathbb{R} \rightarrow[0,1]$ we mean the cumulative distribution function of X defined by $F_{X}:=F_{\mu_{X}}$ (see the part (a) of this exercise). Find a probability space (Ω, Σ, μ) and two Rademacher random variables X, Y such that $X \neq Y$ but $F_{X}=F_{Y}$.
Remark: This is very easy, but important to know.
Exercise 2 (Dynkin's theorem and the independence of random variables)
Let us suppose that (Ω, Σ, μ) is a probability space. Suppose moreover that X_{1}, X_{2} are two random variables. Then the following properties are equivalent:
(a) X_{1} and X_{2} are independent, i.e. for all $A, B \in \mathcal{B}(\mathbb{R})$ we have

$$
\mu\left(\left\{X_{1} \in A, X_{2} \in B\right\}\right)=\mu\left(\left\{X_{1} \in A\right\}\right) \cdot \mu\left(\left\{X_{2} \in B\right\}\right) .
$$

(b) For all $x, y \in \mathbb{R}$ we get

$$
\mu\left(\left\{X_{1} \in(-\infty, x], X_{2} \in(-\infty, y]\right\}\right)=\mu\left(\left\{X_{1} \in(-\infty, x]\right\}\right) \cdot \mu\left(\left\{X_{2} \in(-\infty, y]\right\}\right) .
$$

Show this equivalence.
Part (b) can be paraphrased as
$F_{\left(X_{1}, X_{2}\right)}$ is the product of $F_{X_{1}}$ and $F_{X_{2}}$, i.e. $F_{\left(X_{1}, X_{2}\right)}(x, y)=F_{X_{1}}(x) F_{X_{2}}(y)$ for all $x, y \in \mathbb{R}$.
But we have not jet defined the cumulative distribution function of a pair of random variables. This function $F_{\left(X_{1}, X_{2}\right)}: \mathbb{R}^{2} \rightarrow[0,1]$ is simply given by

$$
F_{\left(X_{1}, X_{2}\right)}(x, y):=\mu\left(\left\{\omega: X_{1}(\omega) \in(-\infty, x] \text { and } X_{2}(\omega) \in(-\infty, y]\right\}\right) .
$$

Hint: For " $(\mathrm{b}) \Rightarrow(\mathrm{a})$ " show that the good sets

$$
\mathcal{G}:=\{A \in \mathcal{B}(\mathbb{R}) \mid \text { part (a) holds for all } B=(-\infty, y] \text { with } y \in \mathbb{R}\}
$$

define a Dynkin system. Then use Dynkin's theorem and the fact

$$
\mathcal{B}(\mathbb{R})=\sigma(\{(-\infty, a] \subset \mathbb{R}: a \in \mathbb{R}\})
$$

from above. The same procedure on

$$
\mathcal{G}^{\prime}:=\{B \in \mathcal{B}(\mathbb{R}) \mid \text { part (a) holds for all } A \in \mathcal{B}(\mathbb{R})\} .
$$

gives the claim. See also exercise 3 on sheet 8 for a very similar proof.

