

Exercise Sheet 10

Applied Analysis

Discussion on Thursday 9-1-2014 at 16ct

This is also the first mock exam. 100% corresponds to 110 points. In the final exam you are allowed to use a calculator and a double-sided handwritten A4 sheet. This is intended to be solved in 120 minutes.

Exercise 1 (*Three basic properties of metric spaces*) Let (M, d) be a metric space.

(a) Give a definition of the following properties of (M, d):

- i. compactness,
- ii. separability, and
- iii. completeness.
- (b) Which of the following implications are true? (no proof required)
 - i. (M, d) is compact $\Rightarrow (M, d)$ is complete.
 - ii. (M, d) is complete $\Rightarrow (M, d)$ is compact.
 - iii. (M, d) is compact $\Rightarrow (M, d)$ is separable.
 - iv. (M, d) is separable $\Rightarrow (M, d)$ is complete.
- (c) Give a counterexample with explanation of one of the wrong implications in (b).

Exercise 2 (*Compactness*)

- (a) Which of the following sets are compact? (no proof required)
 - i. (\mathbb{Q}, d) where d is the discrete metric.
 - ii. $[0,1] \times \{1\}$ in (\mathbb{R}^2, d_2) . Here we denote by d_2 the euclidean metric.
 - iii. (0,1] in (\mathbb{R}, d_2) .
 - iv. (M, d) a metric space where M is a finite set.
- (b) Choose one of your claims in part (a) and prove them.
- (c) Show that the closed unit ball in ℓ^{∞} is not compact.
- (d) Prove that the function $f: [0,1]^2 \to \mathbb{R}$ given by

$$f(x,y) = e^{x^2} + yx + ye^y - x$$

attains its infimum and supremum in $[0, 1]^2$.

Exercise 3 (Banach's fixed point theorem)

- (a) Formulate Banach's (classical) fixed point theorem.
- (b) Use Banach's fixed point theorem to prove the existence of a unique solution $x^*, y^* \in [-1, 1]$ of

$$10x = x^2 + y$$
$$10y = x^2 + y + 5$$

(c) Calculate the first two decimal digits of x^* and y^* by using the fixed point iteration starting with $x_0 = y_0 = 0$.

please turn over!

(3+4+5)

(4+4+5+5)

(5+5+5)

Exercise 4 (Countability)

(a) Which of the following sets are countable? (no proof required)

i. [0, 1]ii. $\mathbb{Z} \times \{0, 1, 2, 3, 4, 5\}$ iii. $\{1, 2, 3, 4, 5, 6\}$ iv. \mathbb{Q} v. $\mathcal{P}(\mathbb{Z}) = \{A : A \subset \mathbb{Z}\}$ the power set of \mathbb{Z} vi. $\mathcal{P}_f(\mathbb{N}) := \{A : A \subset \mathbb{N} \text{ is finite}\}$

(b) If $A \neq \emptyset$ is uncountable, prove that B with $A \subset B$ is uncountable too.

Exercise 5 (*Linear bounded maps*) (2+5) If $(x_k) \in \ell^p$ and $(y_k) \in l^q$, then $(x_k y_k) \in \ell^1$ (no proof needed). Here $p, q \in [1, \infty]$ are such that $p^{-1} + q^{-1} = 1$. So for a fixed $(y_k) \in \ell^q$ we get a well-defined function

$$T: \ell^p \to \ell^1, \ T: (x_k) \mapsto (x_k y_k).$$

- (a) Show that T is linear.
- (b) Show that T is bounded.

Exercise 6 (Measurable functions and σ -algebras)

- (a) List all σ -algebras on $\Omega = \{5, 6, 7\}$.
- (b) Let $f: \Omega_1 \to \Omega_2$ be a function and Σ_2 a σ -algebra on Ω_2 . Define $\sigma(f)$.
- (c) Let the function $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4\}$ given by f(1) = 1, f(2) = f(3) = 2, f(4) = f(5) = 3. We equip the codomain with the σ -algebra $\Sigma = \sigma(\{\{3\}, \{4\}\})$. Write down all the elements of $\sigma(f)$.
- (d) Let $f: \Omega_1 \to \Omega_2$ be a function, Σ_1 a σ -algebra on Ω_1 and Σ_2 a σ -algebra on Ω_2 . Define when f is Σ_1/Σ_2 -measurable.
- (e) In the situation of part (c): How many functions $g: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4\}$ are $\sigma(f)/\Sigma$ -measurable? Give a detailed argumentation.

Exercise 7 (*Calculating Riemann integrals*)

(a) Suppose that $f: [a, c] \to \mathbb{R}$ is Riemann integrable. If $b \in (a, c)$ is given, then

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

Prove this by using the definition of the Riemann integral (You can assume that f is Riemann integrable on [b, c] and [a, b] too).

(b) Calculate the following Riemann integrals:

i.
$$\int_{-1}^{1} e^{x^2 + 3x^4} x \, dx$$

ii. $\int_{0}^{1} x^2 e^{x^3} \, dx$
iii. $\int_{0}^{1} (x^2 + 4x) \, dx$
iv. $\int_{-1}^{2} f(x) \, dx$

Here $f: [-1,2] \to \mathbb{R}$ is given by

$$f \colon x \mapsto \begin{cases} -x+1 &, \text{ for } x < 0\\ 0 &, \text{ for } x = 0\\ x-1 &, \text{ for } x > 0. \end{cases}$$

please turn over!

(6+3)

(5+8)

(3+5+5+3+5)

Exercise 8 (Independent events)

Let (Ω, Σ, μ) be a probability space. Two sets $A, B \in \Sigma$ are called (stochastically) independent, iff

$$\mu(A \cap B) = \mu(A)\mu(B).$$

Let us suppose that $A \in \Sigma$ and $\mathcal{E} \subset \Sigma$ is given. We say that A is independent of \mathcal{E} , iff A, B are independent for all $B \in \mathcal{E}$.

- (a) Find a concrete example of the above situation such that A is independent of \mathcal{E} but A is not independent of $\sigma(\mathcal{E})$.
- (b) Let us suppose that \mathcal{E} is stable under intersections. Prove that the following properties are equivalent:
 - i. A and \mathcal{E} are independent.
 - ii. A and $\sigma(\mathcal{E})$ are independent.

Exercise 9 (Multiple Choice)

 (15^*)

(5+10)

Decide which of the following statements are true (no proof needed). For every correct answer you get +1 point and for every wrong answer -1 point. The points of this exercise will be rounded up to zero, if the total number is negative.

- (a) The trigonometric polynomials are dense in $(C([0, 2\pi]), \|\cdot\|_{\infty})$. \Box true \Box false
- (b) The polynomials are dense in $(C([0, 2\pi]), \|\cdot\|_{\infty})$. \Box true \Box false
- (c) $(C_b(M), \|\cdot\|_{\infty})$ is a Polish space if (M, d) is a metric space. \Box true \Box false

 \Box false

- (d) $(C(M), \|\cdot\|_{\infty})$ is a Polish space if (M, d) is a compact metric space. \Box true \Box false
- (e) $\mathcal{B}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R}).$ \Box true
- (f) $A, B \in \mathcal{B}(\mathbb{R})$, then $A \times B \in \mathcal{B}(\mathbb{R}^2)$. \Box true \Box false
- (g) $\mathcal{B}(\mathbb{R})$ is generated as a σ -algebra by all finite intervals (a, b) with a < b. \Box true \Box false
- (h) $\mathcal{B}(\mathbb{R}^2)$ is generated as a σ -algebra by all open sets in \mathbb{R}^2 . \Box true \Box false
- (i) Given two normed spaces $(\mathbb{R}^N, \|\cdot\|)$ and $(\mathbb{R}^N, \|\cdot\|')$. Then the compact subsets of the two metric spaces coincide.

$$\Box$$
 true \Box false

- (j) If (M, d) and (M, d') are metric spaces on same set M. Let us suppose that (x_n) is a convergent sequence in both spaces, then the limits in (M, d) and in (M, d') coincide.
 □ true □ false
- (k) If (M, d) is a metric space and (x_n) converges to both x and y, then x = y. \Box true \Box false
- (1) The compact subsets in ℓ^2 are precisely the bounded and closed subsets. \Box true \Box false
- (m) If Σ is a σ -algebra on Ω and $A_i \in \Sigma$ for all $i \in I$ (here I is an arbitrary index set), then $\bigcup_{i \in I} A_i \in \Sigma$.
- $\Box \text{ true} \qquad \Box \text{ false}$ (n) If Σ is a σ -algebra on Ω and $A_n \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} A_n \in \Sigma$. $\Box \text{ true} \qquad \Box \text{ false}$
- (o) The Lebesgue measure λ on \mathbb{R} assigns to every $A \subset \mathbb{R}$ a "length" $\lambda(A) \ge 0$. \Box true \Box false