Exercise Sheet 10

Applied Analysis
Discussion on Thursday 9-1-2014 at 16ct

This is also the first mock exam. 100% corresponds to 110 points. In the final exam you are allowed to use a calculator and a double-sided handwritten A4 sheet. This is intended to be solved in 120 minutes.

Exercise 1 (Three basic properties of metric spaces)
Let (M, d) be a metric space.
(a) Give a definition of the following properties of (M, d) :
i. compactness,
ii. separability, and
iii. completeness.
(b) Which of the following implications are true? (no proof required)
i. (M, d) is compact $\Rightarrow(M, d)$ is complete.
ii. (M, d) is complete $\Rightarrow(M, d)$ is compact.
iii. (M, d) is compact $\Rightarrow(M, d)$ is separable.
iv. (M, d) is separable $\Rightarrow(M, d)$ is complete.
(c) Give a counterexample with explanation of one of the wrong implications in (b).

Exercise 2 (Compactness)
(a) Which of the following sets are compact? (no proof required)
i. (\mathbb{Q}, d) where d is the discrete metric.
ii. $[0,1] \times\{1\}$ in $\left(\mathbb{R}^{2}, d_{2}\right)$. Here we denote by d_{2} the euclidean metric.
iii. $(0,1]$ in $\left(\mathbb{R}, d_{2}\right)$.
iv. (M, d) a metric space where M is a finite set.
(b) Choose one of your claims in part (a) and prove them.
(c) Show that the closed unit ball in ℓ^{∞} is not compact.
(d) Prove that the function $f:[0,1]^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=e^{x^{2}}+y x+y e^{y}-x
$$

attains its infimum and supremum in $[0,1]^{2}$.

Exercise 3 (Banach's fixed point theorem)

(a) Formulate Banach's (classical) fixed point theorem.
(b) Use Banach's fixed point theorem to prove the existence of a unique solution $x^{*}, y^{*} \in[-1,1]$ of

$$
\begin{aligned}
& 10 x=x^{2}+y \\
& 10 y=x^{2}+y+5
\end{aligned}
$$

(c) Calculate the first two decimal digits of x^{*} and y^{*} by using the fixed point iteration starting with $x_{0}=y_{0}=0$.
(a) Which of the following sets are countable? (no proof required)
i. $[0,1]$
ii. $\mathbb{Z} \times\{0,1,2,3,4,5\}$
iii. $\{1,2,3,4,5,6\}$
iv. \mathbb{Q}
v. $\mathcal{P}(\mathbb{Z})=\{A: A \subset \mathbb{Z}\}$ the power set of \mathbb{Z}
vi. $\mathcal{P}_{f}(\mathbb{N}):=\{A: A \subset \mathbb{N}$ is finite $\}$
(b) If $A \neq \emptyset$ is uncountable, prove that B with $A \subset B$ is uncountable too.

Exercise 5 (Linear bounded maps)
If $\left(x_{k}\right) \in \ell^{p}$ and $\left(y_{k}\right) \in l^{q}$, then $\left(x_{k} y_{k}\right) \in \ell^{1}$ (no proof needed). Here $p, q \in[1, \infty]$ are such that $p^{-1}+q^{-1}=1$. So for a fixed $\left(y_{k}\right) \in \ell^{q}$ we get a well-defined function

$$
T: \ell^{p} \rightarrow \ell^{1}, \quad T:\left(x_{k}\right) \mapsto\left(x_{k} y_{k}\right) .
$$

(a) Show that T is linear.
(b) Show that T is bounded.

Exercise 6 (Measurable functions and σ-algebras)
(a) List all σ-algebras on $\Omega=\{5,6,7\}$.
(b) Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a function and Σ_{2} a σ-algebra on Ω_{2}. Define $\sigma(f)$.
(c) Let the function $f:\{1,2,3,4,5\} \rightarrow\{1,2,3,4\}$ given by $f(1)=1, f(2)=f(3)=2, f(4)=$ $f(5)=3$. We equip the codomain with the σ-algebra $\Sigma=\sigma(\{\{3\},\{4\}\})$. Write down all the elements of $\sigma(f)$.
(d) Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a function, Σ_{1} a σ-algebra on Ω_{1} and Σ_{2} a σ-algebra on Ω_{2}. Define when f is Σ_{1} / Σ_{2}-measurable.
(e) In the situation of part (c): How many functions $g:\{1,2,3,4,5\} \rightarrow\{1,2,3,4\}$ are $\sigma(f) / \Sigma$ measurable? Give a detailed argumentation.

Exercise 7 (Calculating Riemann integrals)
(a) Suppose that $f:[a, c] \rightarrow \mathbb{R}$ is Riemann integrable. If $b \in(a, c)$ is given, then

$$
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x .
$$

Prove this by using the definition of the Riemann integral (You can assume that f is Riemann integrable on $[b, c]$ and $[a, b]$ too).
(b) Calculate the following Riemann integrals:
i. $\int_{-1}^{1} e^{x^{2}+3 x^{4}} x d x$
ii. $\int_{0}^{1} x^{2} e^{x^{3}} d x$
iii. $\int_{0}^{1}\left(x^{2}+4 x\right) d x$
iv. $\int_{-1}^{2} f(x) d x$

Here $f:[-1,2] \rightarrow \mathbb{R}$ is given by

$$
f: x \mapsto \begin{cases}-x+1 & , \text { for } x<0 \\ 0 & , \text { for } x=0 \\ x-1 & , \text { for } x>0\end{cases}
$$

Let (Ω, Σ, μ) be a probability space. Two sets $A, B \in \Sigma$ are called (stochastically) independent, iff

$$
\mu(A \cap B)=\mu(A) \mu(B) .
$$

Let us suppose that $A \in \Sigma$ and $\mathcal{E} \subset \Sigma$ is given. We say that A is independent of \mathcal{E}, iff A, B are independent for all $B \in \mathcal{E}$.
(a) Find a concrete example of the above situation such that A is independent of \mathcal{E} but A is not independent of $\sigma(\mathcal{E})$.
(b) Let us suppose that \mathcal{E} is stable under intersections. Prove that the following properties are equivalent:
i. A and \mathcal{E} are independent.
ii. A and $\sigma(\mathcal{E})$ are independent.

Exercise 9 (Multiple Choice)
Decide which of the following statements are true (no proof needed). For every correct answer you get +1 point and for every wrong answer -1 point. The points of this exercise will be rounded up to zero, if the total number is negative.
(a) The trigonometric polynomials are dense in $\left(C([0,2 \pi]),\|\cdot\|_{\infty}\right)$.
\square true
\square false
(b) The polynomials are dense in $\left(C([0,2 \pi]),\|\cdot\|_{\infty}\right)$.$\square$ false
(c) $\left(C_{b}(M),\|\cdot\|_{\infty}\right)$ is a Polish space if (M, d) is a metric space.
\square true
alse
(d) $\left(C(M),\|\cdot\|_{\infty}\right)$ is a Polish space if (M, d) is a compact metric space.
(e) $\mathcal{B}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R})$.
\square true
(f) $A, B \in \mathcal{B}(\mathbb{R})$, then $A \times B \in \mathcal{B}\left(\mathbb{R}^{2}\right)$.
\square truefalse
(g) $\mathcal{B}(\mathbb{R})$ is generated as a σ-algebra by all finite intervals (a, b) with $a<b$.false
(h) $\mathcal{B}\left(\mathbb{R}^{2}\right)$ is generated as a σ-algebra by all open sets in \mathbb{R}^{2}.
\square true
false
(i) Given two normed spaces $\left(\mathbb{R}^{N},\|\cdot\|\right)$ and $\left(\mathbb{R}^{N},\|\cdot\|^{\prime}\right)$. Then the compact subsets of the two metric spaces coincide.
\square true
false
(j) If (M, d) and (M, d^{\prime}) are metric spaces on same set M. Let us suppose that $\left(x_{n}\right)$ is a convergent sequence in both spaces, then the limits in (M, d) and in $\left(M, d^{\prime}\right)$ coincide.
\square true
\square false
(k) If (M, d) is a metric space and $\left(x_{n}\right)$ converges to both x and y, then $x=y$.
\square true false
(1) The compact subsets in ℓ^{2} are precisely the bounded and closed subsets.
\square true
\square false
(m) If Σ is a σ-algebra on Ω and $A_{i} \in \Sigma$ for all $i \in I$ (here I is an arbitrary index set), then $\bigcup_{i \in I} A_{i} \in \Sigma$.false
(n) If Σ is a σ-algebra on Ω and $A_{n} \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} A_{n} \in \Sigma$.
true
\square false
(o) The Lebesgue measure λ on \mathbb{R} assigns to every $A \subset \mathbb{R}$ a "length" $\lambda(A) \geq 0$.
true
false

