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Exercise 1 (Three basic properties of metric spaces) (34+4+5)
Let (M, d) be a metric space.

(a) Give a definition of the following properties of (M, d):

i. compactness,

ii. separability, and

iii. completeness.

(b) Which of the following implications are true? (no proof required)

i. (M,d) is compact = (M, d) is complete.

ii. (M,d) is complete = (M, d) is compact.

iii. (M,d) is compact = (M, d) is separable.

iv. (M,d) is separable = (M, d) is complete.

(c) Give a counterexample with explanation of one of the wrong implications in (b).

Solution of FExercise 1:

ad (a):

ad i.:

(M,d) is compact, iff for every given sequence (x,)nen in M we find a subsequence (zy,)cn
which converges in M.

ad 11.:

(M, d) is separable, iff we can find a dense and countable subset of M.

ad 7ii.:

(M,d) is complete, iff every Cauchy sequence (zp)nen in M converges in M.
ad (b):

ad i.:

true

ad 1.:

false

ad 1.:

true

ad w.:

false

ad (c):

We have to find a counterexample for ii. or iv..

ad 7i.:

(R,dy) is complete (see lecture) but not compact (because it is not bounded).
ad v.:

(Q, d2) is separable (the dense countable subset is Q) but not complete (see lecture).
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Exercise 2 (Compactness) (4+445+5)
(a) Which of the following sets are compact? (no proof required)

i. (Q,d) where d is the discrete metric.
ii. [0,1] x {1} in (R?,dz). Here we denote by dy the euclidean metric.
ii. (0,1] in (R, dy).
iv. (M,d) a metric space where M is a finite set.
(b) Choose one of your claims in part (a) and prove them.
(c) Show that the closed unit ball in £ is not compact.
(d) Prove that the function f: [0,1]> — R given by

f(z,y) = e®’ +yx +ye¥ —x

attains its infimum and supremum in [0, 1]%.

Solution of FExercise 2:

ad (a):

ad 1.:

not compact

ad i.:

compact

ad 7ii.:

not compact

ad v.:

compact

ad (b):

We state again all proofs. But you have to give only one!

ad i.:

Q is not bounded, so it is not compact.

ad ii.:

[0,1] and {1} are both closed and bounded subset of R. So [0,1] x {1} is a closed and bounded
subset of R%2. The claim follows because a closed and bounded subset of the Euclidean space
(R2,dy) is compact.

ad .:

(0,1] is not closed. Indeed the sequence (z,,) in R given by z,, = L is convergent to 0 in (R, d2),
but 0 & (0,1]. So (0,1] is not closed and therefore not compact.

ad v.:

Given an arbitrary sequence (), oy in M, then there exists a point m € M which is occurs
infinitely often in this sequence. So we can choose a constant subsequence (zy,, ),y With z,, =m
for every k € N. As every constant sequence in M converges in M our claim follows.

ad (c):

It is clear that (e,)nen is a sequence in the closed unit ball of £*°. We get immediately from the
definition of the norm

len — emllo =1

for n £ m. So let us suppose that the closed unit ball is compact. In this case we could find a
convergent subsequence (ey, ), cy- As every convergent subsequence is Cauchy, we get

”enk - enzHoo <1
for k, [ large enough. So for k # [ large enough we get the contradiction

1= |len, —enlly <1
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So our assumption that the closed unit ball of £*° is compact gives us a contradiction. Hence the
closed unit ball of /*° is not compact.

ad (d):

f is as the composition/multiplication/addition of continuous functions continuous. Moreover
[0,1]? is compact (because it is a bounded and closed subset of an Euclidean space). So we know
from the lecture (every continuous function defined on a compact subset attains its supremum
and infimum) that f attains its infimum and supremum in [0, 1]2.
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Exercise 3 (Banach’s fized point theorem) (5+5+5)

(a) Formulate Banach’s (classical) fixed point theorem.
(b) Use Banach’s fixed point theorem to prove the existence of a unique solution z*,y* € [—1, 1] of

10x:x2+y
0y=a2+y+5

(c) Calculate the first two decimal digits of * and y* by using the fixed point iteration starting
with o = Yo = 0.

Solution of FExercise 3:

ad (a):

The classical version of Banach’s fixed point theorem:

Every strict contraction f: M — M (i.e. d(f(x), f(y)) < Ld(z,y) holds for all z,y € M and
some fixed L < 1) on a complete metric space (M, d) has a unique fixed point.

ad (b):

Let us use the compact (because it is a bounded and closed subset of a Euclidean space) subset
[~1,1]? of R? with the metric

doo(a,b) = max{|a; — b1}, |az — b2}

for a = (a1,az) € R? and b = (b1, bs) € R% So ([~1,1]% dx) is a complete metric space (either
because it is compact and therefore complete, or because it is a closed subset of the complete
metric space (R? dy)).

Moreover let us define a function

f:-1,1% = [-1,1)?

by
£ @) o (55 (2 +0) 35 (4w +3)).

This is a strict contraction:

doo (f(a), f(b)) = max (110 |(a1 —b1)(a1 +b1) + (ag — b2)| 1 [(a1 — b1)(a1 +b1) + (a2 — bz)\)

10
1
:TO|(G1*bl)(a1+bl)+(a2*b2)!
< Loy = bullas + b + == Jas — bo| < deo (@, b) |ay + by| + —doo(a b)
_mal 1] |@1 1 10612 2_10006% ai 1 10006%
3
<7
flodoo(chb)

for every a = (a1,az2),b = (by,b2) € [~1,1]2. So we can use Banach’s fixed point theorem to
conclude that f has a unique fixed point in [~1,1]?. And a fixed point of f is nothing else then a
solution of the above equation system.
ad (c):
Using the iteration

an = f(an-1)

for n € N with ap = (0,0), we know two basic error estimations (a* = (z*,y*) the unique fixed
point):

n
oo (0", an) < 7

doo (a1, ap)
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or (which we use now)

L
doo (CL*, an) < ﬁdoo (an’ an—l)

for n € N. From part (b) we get L = 0.3 and therefore L(1 — L)™' = 2. In particular we have
(which is easier to handle)

L 1
doo (@™, ap) < ﬁdoo (Qn,yan—1) < idoo (an, an—1)
So we get:

ap = (0,0), ds (a*,ag) =7

1
a; = (0,0.5), dw (a*,a1) < §doo (a1,a0) =0.25

1
az = (0.05,0.55), deo (a*,a2) < §doo (az,a1) = 0.025

1
a3 = (0.05525,0.5525), duc (", a3) < 3dso (a3, az) = 0.0025

Hence we get x* = 0.05525 + 0.0025 and y* = 0.5525 + 0.0025 (We remark that the first two
decimal digits are correct).
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Exercise 4 (Countability) (6+3)
(a) Which of the following sets are countable? (no proof required)
i. 0,1]
ii. Z x {0,1,2,3,4,5}
i, {1,2,3,4,5,6}
iv. Q
v. P(Z)={A: A CZ} the power set of Z
vi. Pp(N):={A: A C Nis finite}
(b) If A # () is uncountable, prove that B with A C B is uncountable too.

Solution of Exercise 4:

ad (a):

ad i.:

not countable

ad 1i.:

countable

ad 7.

countable

ad w.:

countable

ad v.:

not countable

ad vi.:

countable

ad (b):

We prove this by contradiction. So let us suppose that B is countable. Then we know from one
of the exercises, that a subset of a countable set is again countable. So A is countable. This is a
contradiction to the assumption, that A uncountable. So B has to be uncountable too.
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Exercise 5 (Linear bounded maps) (2+5)
If (x1,) € P and (yg) € 19, then (zyx) € ¢! (no proof needed). Here p,q € [1,00] are such that
p 1+ ¢t =1. Sofor a fixed (yi) € #4 we get a well-defined function

T: P — 61, T: (xk) — (a:kyk)

(a) Show that T is linear.
(b) Show that T is bounded.

Solution of FExercise 5:
ad (a):

e Given x = (zk)ken € P and z = (zx)gen € P, then T'(x + z) = Tx 4+ Tz. Indeed
T(x+2z) =T ((zx + z1)ken) = (@r + 28) k) peny = (@kYr) gen + (20U ey = Tz + T2
e Given x = (zx)ken € P and A € K, then T'(A\z) = ATz. Indeed
T(Ax) =T ((Azr)ren) = ((Azr)yr)pen = (M@rYr)) pen = A (TrYk)pen = AT
ad (b):
Boundedness means in our case, that we have to find some constant C' > 0 (independent of x)

such that
[Tz < Cllz|p

holds for every x € ¢P. Given some arbitrary x = (zx)ren € ¢, then

oo
1Tzl = ||(@etr)penll; = D leruel -
k=1

Now we use Holder’s inequality and get

o0
ITllr = lzwysl < llzlplylly.
k=1

So we have found our constant (which is independent of x)

C = lyllg-
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Exercise 6 (Measurable functions and o-algebras) (3+5+5+3+5)

(a) List all o-algebras on = {5,6,7}.

(b) Let f: Q; — Q9 be a function and ¥ a o-algebra on Qg. Define o(f).

(c¢) Let the function f: {1,2,3,4,5} — {1,2,3,4} given by f(1) =1, f(2) = f(3) = 2, f(4) =
f(5) = 3. We equip the codomain with the o-algebra ¥ = o({{3}, {4}}). Write down all the
elements of o(f).

(d) Let f: Q1 — Qg2 be a function, ¥; a o-algebra on Q; and 39 a o-algebra on {2y. Define when
f is X1 /¥s-measurable.

(e) In the situation of part (c¢): How many functions g: {1,2,3,4,5} — {1,2,3,4} are o(f)/%-
measurable? Give a detailed argumentation.

Solution of Ezercise 6:

ad (a):
P(2) = {0, {5}, {6},{7},{5,6},{6, 7}, {5, 7}, {5,6, 7}}
{0,{5,6,7}}
{0,{5},{6,7},{5,6,7}}
{0,{6},{5,7},{5,6,7}}
{0,{7},{5,6},{5,6,7}}
ad (b):

One possible (there are other possible definitions!) definition is:

o(f) = {r7(4): Ae %}

ad (c):

o(f)=o ({1 (3D, F 1 ({3D}) = o ({{4,5%,0}) = {0,{1,2,3}, {4,5},{1,2,3,4,5}}
ad (d):
f is ¥1/¥s-measurable, iff
f_l(A) € 21
for all A € Xs.
ad (e):
g is measurable, iff
g({1,2,3}) C {3}, c {4} or C{1,2}
and

g ({4,5}) Cc {3}, Cc {4} or C{1,2}.

There are 1 + 1 + 8 = 10 possible ways to map to define g on {1,2,3} and 1 + 1+ 4 = 6 ways to
define g on {4,5}. So we conclude, that there are 60 measurable functions.
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Exercise 7 (Calculating Riemann integrals) (5+8)
(a) Suppose that f: [a,c] — R is Riemann integrable. If b € (a, ¢) is given, then

[ s@ar= [ s@ars [*r@a

Prove this by using the definition of the Riemann integral (You can assume that f is Riemann
integrable on [b, ¢] and [a, b] too).
(b) Calculate the following Riemann integrals:

: ! 224324 .e L 2 3
i. e T dr ii. z°e dx
—1 0

1 2
iii. /0 (2% + 4x) dx iv. / f(z)dx

-1

Here f: [-1,2] — R is given by

—xr+1 ,forz<0
fix—<0 ,forz =0
r—1 , for x > 0.

Solution of FExercise 7:
ad (a):
We find a partition

ol — (tél’"), ,ts&’g?nﬂ

of [a, b] and a partition
n 1n 1,n
71'(1’ ) = (t((] )’ ceny tEV(Z?n))

of [b, ¢] with mesh size < L and two vectors

£t (g ) )

and

€0 = (6, €n)

of sample points for 71 respectively 7(2™). By definition of the Riemann integral (and Riemann
integrablity)

b
R-/a f@)de = lim S (f,70m ¢0m)
and )
R‘/b f(@)dz = lim S (f, 7T(ln),g(z,n)) _
It is easy to see that
7™ = (tél’n), ,tg\l,(’})n) {2 ,tﬁ&))

is a partition of mesh size < % and

1n) _ (1, ¢ (2, 2,
5( "= ( § n)’ " N?)n 751 n)’ "’51(\/(121,)71))
a vector of sample points for 7(™). Moreover we get from the definition of Riemann sums

S (f,ﬁ(n)’g(n)> -9 (f’ W(Lﬂ)@(Lﬂ)) +S (fm(ln)’g(?m)) .
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The Riemann integrablity of f on [a, ¢] shows that the left-hand side converges to the Riemann
integral on [a, ¢|]. Hence taking the limits we conclude

St = i (770, 60) = i (1,70, €0) 5 (5,50, 620

= R—/abf(x)d:z:—i-R—/bcf(a:)dx.

ad (b):
ad 1.:

. 2 4
The function z — e* 3%

x is odd. Moreover the integration limits are symmetric around zero. So

1 3
/ 22e® dr = 0.
1

ad .:
! 1 ,s1°7h 1
/ 22e*” dy = {e”’"s} =—(e—1)
0 3 Ja=o 3
ad iii.:
1 1 =1
/ (2% + 4z) dx = [m3 + 21‘:| =
0 3 =0
ad w.:

/21 (@) do = /11 f(z)dz + /12 Flw) do = /12@ 1) de = [x _ 4 -1

Here we used, that f is odd and therefore

/_11 f(z)dx =0
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Exercise 8 (Independent events) (5+10)
Let (2, %, i) be a probability space. Two sets A, B € ¥ are called (stochastically) independent, iff

W(AN B) = p(A)u(B).

Let us suppose that A € 3 and £ C X is given. We say that A is independent of &, iff A, B are
independent for all B € £.
(a) Find a concrete example of the above situation such that A is independent of £ but A is not
independent of o(&).
(b) Let us suppose that £ is stable under intersections. Prove that the following properties are
equivalent:
i. A and &£ are independent.
ii. A and o(€) are independent.

Solution of FExercise 8:
ad (a):
We define the probability space (2, %, u) with

0={1,2,3,4}, E=P(Q) and p(A) = i”

This defines clearly a probability space. Moreover let us set
A={2,3} and € = {{1,2},{2,4}}.

One can immediately see that A is independent of £. Indeed we have

p(AN{L2D) = p((2) = ;= 5 5 = n(A)u({1,2)
and 1 11
pAN{2AY) = p({2) = 1 = 51 = p(A)u((2.4)).
So A is independent of £, but A is not independent of o(£). The last claim follows from {2} € o (&)
and
AN =p((2D) = # 5 5 = n(A)u(2)).
ad (b):

The implication “ii. = i.” is obvious (but don’t forget to write that down). So we concentrate
now on the implication “i. = ii.”
We want to use the principle of good sets. Our good sets are given by

G={BeX: u(AnNB) = u(A)u(B)}.

In a first step we prove that G is a Dynkin system.
First step - G is a Dynkin system.:

o ) € G because p(AND) = (@) =0 = pu(A) - n(®).
o [f Be§= B°c(. Indeed

1(ANB%) = u(A) - p (AN B) = u(A) — p(A)u(B) = u(A) (1 — p(B)) = (A (B°).
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o If A, € G for every n € N are given disjoint sets, then we have to show that (J,,cy An € G.
But this is can be derived as follows:

,u(Aﬂ U An) :M(U(AnﬂA)>
neN neN

o
= Z p(ANA) AN A, pairwise disjoint

— u(A) (i u (An>>
n=1

=u(A) - p ( U An) A, pairwise disjoint.

neN

This shows that G is a Dynkin system. In the next step we show £ C G.

Step 2 - the inclusion £ C G:

This is precisely our assumption i..

Final step - the inclusion o(€) C G:

From the second step we conclude £ C G. From the definition of the d(€) and our first step,
we conclude d(£) C G. One of our assumptions is that £ is stable under intersections. So we
conclude from Dynkin’s 7-\ theorem o (&) = d(€) C G.

But o(€) C G is a reformulation of ii., so the claim follows.
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Exercise 9 (Multiple Choice) (15%)
Decide which of the following statements are true (no proof needed). For every correct answer you
get +1 point and for every wrong answer —1 point. The points of this exercise will be rounded
up to zero, if the total number is negative.

(a) The trigonometric polynomials are dense in (C([0, 27]), ||||co)-

O true O false
(b) The polynomials are dense in (C([0,27]), ||||c0)-
O true O false
(¢) (Co(M),||"llso) is a Polish space if (M, d) is a metric space.
O true O false
(d) (C(M),|l|lo) is a Polish space if (M, d) is a compact metric space.
O true O false
() B(R) £ P(R).
O true O false
(f) A, B € B(R), then A x B € B(R?).
O true O false
(g) B(R) is generated as a o-algebra by all finite intervals (a,b) with a < b.
O true O false
(h) B(R?) is generated as a o-algebra by all open sets in R2.
O true O false

(i) Given two normed spaces (RY,||-||) and (RY,]||-|'). Then the compact subsets of the two
metric spaces coincide.
O true O false

(j) If (M, d) and (M, d’) are metric spaces on same set M. Let us suppose that (z,,) is a convergent
sequence in both spaces, then the limits in (M, d) and in (M,d") coincide.

O true O false

(k) If (M,d) is a metric space and (z,,) converges to both x and y, then z = y.
O true O false

(1) The compact subsets in £? are precisely the bounded and closed subsets.
O true O false

(m) If ¥ is a o-algebra on Q and A; € X for all ¢ € I (here I is an arbitrary index set), then
Uie I A; e X
O true O false

(n) If ¥ is a o-algebra on 2 and A,, € ¥ for all n € N, then ), ey An € X.
O true O false

(o) The Lebesgue measure X\ on R assigns to every A C R a “length” A\(A) > 0.
O true O false

Solution of Exercise 9:

(a) The trigonometric polynomials are dense in (C([0, 27]), ||||co)-

O true X false
(b) The polynomials are dense in (C([0,27]), ||||cc)-
X true O false
(¢) (Co(M),|I|loc) is a Polish space if (M, d) is a metric space.
O true X false
(d) (C(M),||Illoo) is a Polish space if (M, d) is a compact metric space.
X true O false
() B(R) £ P(R).
K true O false

(f) A, B € B(R), then A x B € B(R?).

February 13, 2014 -14-



X true O false

B(R) is generated as a o-algebra by all finite intervals (a,b) with a < b.

X true O false

B(RR?) is generated as a c-algebra by all open sets in R2.

X true O false

Given two normed spaces (R, |-||) and (R™,]-||'). Then the compact subsets of the two
metric spaces coincide.

O true X false

If (M, d) and (M, d’) are metric spaces on same set M. Let us suppose that (z,,) is a convergent
sequence in both spaces, then the limits in (M, d) and in (M,d’) coincide.

O true X false

If (M,d) is a metric space and (x,) converges to both z and y, then x = y.

X true O false

The compact subsets in £? are precisely the bounded and closed subsets.

O true X false

If ¥ is a o-algebra on Q and A; € ¥ for all i € I (here I is an arbitrary index set), then

Uz'EI A; € X

O true x false

If 3 is a o-algebra on Q and A4,, € ¥ for all n € N, then N,,cy An € 2.
X true O false

The Lebesgue measure A on R assigns to every A C R a “length” A(A) > 0.
O true X false
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