

Suggested Solution to Exercise Sheet 10

Applied Analysis

Discussion on Thursday 9-1-2014 at 16ct

This is also the first mock exam. 100% corresponds to 110 points. In the final exam you are allowed to use a calculator and a double-sided handwritten A4 sheet. This is intended to be solved in 120 minutes.

Contents

Exercise 1	2
Exercise 2	3
Exercise 3	5
Exercise 4	7
Exercise 5	8
Exercise 6	9
Exercise 7	10
Exercise 8	12
Exercise 9	14

Exercise 1 (*Three basic properties of metric spaces*) Let (M, d) be a metric space.

- i. compactness,
- ii. separability, and
- iii. completeness.
- (b) Which of the following implications are true? (no proof required)
 - i. (M, d) is compact $\Rightarrow (M, d)$ is complete.
 - ii. (M, d) is complete $\Rightarrow (M, d)$ is compact.
 - iii. (M, d) is compact $\Rightarrow (M, d)$ is separable.
 - iv. (M, d) is separable $\Rightarrow (M, d)$ is complete.
- (c) Give a counterexample with explanation of one of the wrong implications in (b).

Solution of Exercise 1:

ad (a):

 $ad \ i.:$

(M,d) is compact, iff for **every** given sequence $(x_n)_{n\in\mathbb{N}}$ in M we find a subsequence $(x_{n_k})_{k\in\mathbb{N}}$ which converges in M.

ad ii.:

(M, d) is separable, iff we can find a dense and countable subset of M.

ad iii.:

(M,d) is complete, iff every Cauchy sequence $(x_n)_{n\in\mathbb{N}}$ in M converges in M.

ad (b):

ad i.:

true

ad ii.:

false

ad iii.:

true

ad iv.:

false

ad (c):

We have to find a counterexample for ii. or iv..

ad ii.:

 (\mathbb{R}, d_2) is complete (see lecture) but not compact (because it is not bounded).

ad iv.:

 (\mathbb{Q}, d_2) is separable (the dense countable subset is \mathbb{Q}) but not complete (see lecture).

Exercise 2 (Compactness)

- (a) Which of the following sets are compact? (no proof required)
 - i. (\mathbb{Q}, d) where d is the discrete metric.
 - ii. $[0,1] \times \{1\}$ in (\mathbb{R}^2, d_2) . Here we denote by d_2 the euclidean metric.
 - iii. (0, 1] in (\mathbb{R}, d_2) .
 - iv. (M, d) a metric space where M is a finite set.
- (b) Choose one of your claims in part (a) and prove them.
- (c) Show that the closed unit ball in ℓ^{∞} is not compact.
- (d) Prove that the function $f: [0,1]^2 \to \mathbb{R}$ given by

$$f(x,y) = e^{x^2} + yx + ye^y - x$$

attains its infimum and supremum in $[0, 1]^2$.

Solution of Exercise 2:

ad (a): ad i.: not compact ad ii.: compact ad iii.: not compact ad iv.:

compact

ad (b):

We state again all proofs. But you have to give only one!

 $ad \ i.:$

 $\mathbb Q$ is not bounded, so it is not compact.

ad~ii.:

[0,1] and $\{1\}$ are both closed and bounded subset of \mathbb{R} . So $[0,1] \times \{1\}$ is a closed and bounded subset of \mathbb{R}^2 . The claim follows because a closed and bounded subset of the Euclidean space (\mathbb{R}^2, d_2) is compact.

(0, 1] is not closed. Indeed the sequence (x_n) in \mathbb{R} given by $x_n = \frac{1}{n}$ is convergent to 0 in (\mathbb{R}, d_2) , but $0 \notin (0, 1]$. So (0, 1] is not closed and therefore not compact. ad iv.:

Given an arbitrary sequence
$$(x_n)_{n \in \mathbb{N}}$$
 in M , then there exists a point $m \in M$ which is occurs
infinitely often in this sequence. So we can choose a constant subsequence $(x_{n_k})_{k \in \mathbb{N}}$ with $x_{n_k} = m$
for every $k \in \mathbb{N}$. As every constant sequence in M converges in M our claim follows.
ad (c):

It is clear that $(e_n)_{n \in \mathbb{N}}$ is a sequence in the closed unit ball of ℓ^{∞} . We get immediately from the definition of the norm

$$||e_n - e_m||_{\infty} = 1$$

for $n \neq m$. So let us suppose that the closed unit ball is compact. In this case we could find a convergent subsequence $(e_{n_k})_{k\in\mathbb{N}}$. As every convergent subsequence is Cauchy, we get

$$\|e_{n_k} - e_{n_l}\|_{\infty} < 1$$

for k, l large enough. So for $k \neq l$ large enough we get the contradiction

$$1 = \|e_{n_k} - e_{n_l}\|_{\infty} < 1.$$

So our assumption that the closed unit ball of ℓ^{∞} is compact gives us a contradiction. Hence the closed unit ball of ℓ^{∞} is not compact.

ad (d):

f is as the composition/multiplication/addition of continuous functions continuous. Moreover $[0,1]^2$ is compact (because it is a bounded and closed subset of an Euclidean space). So we know from the lecture (every continuous function defined on a compact subset attains its supremum and infimum) that f attains its infimum and supremum in $[0,1]^2$.

Exercise 3 (Banach's fixed point theorem)

- (a) Formulate Banach's (classical) fixed point theorem.
- (b) Use Banach's fixed point theorem to prove the existence of a unique solution $x^*, y^* \in [-1, 1]$ of

$$10x = x^2 + y$$
$$10y = x^2 + y + 5$$

(c) Calculate the first two decimal digits of x^* and y^* by using the fixed point iteration starting with $x_0 = y_0 = 0$.

Solution of Exercise 3:

ad (a):

The classical version of Banach's fixed point theorem:

Every strict contraction $f: M \to M$ (i.e. $d(f(x), f(y)) \leq Ld(x, y)$ holds for all $x, y \in M$ and some fixed L < 1) on a complete metric space (M, d) has a unique fixed point.

ad (b):

Let us use the compact (because it is a bounded and closed subset of a Euclidean space) subset $[-1, 1]^2$ of \mathbb{R}^2 with the metric

$$d_{\infty}(a,b) = \max\{|a_1 - b_1|, |a_2 - b_2|\}$$

for $a = (a_1, a_2) \in \mathbb{R}^2$ and $b = (b_1, b_2) \in \mathbb{R}^2$. So $([-1, 1]^2, d_\infty)$ is a complete metric space (either because it is compact and therefore complete, or because it is a closed subset of the complete metric space (\mathbb{R}^2, d_∞)).

Moreover let us define a function

$$f: [-1,1]^2 \to [-1,1]^2$$

by

$$f: (x, y) \mapsto \left(\frac{1}{10} \left(x^2 + y\right), \frac{1}{10} \left(x^2 + y + 5\right)\right).$$

This is a strict contraction:

$$\begin{aligned} d_{\infty}\left(f(a), f(b)\right) &= \max\left(\frac{1}{10}\left|\left(a_{1} - b_{1}\right)\left(a_{1} + b_{1}\right) + \left(a_{2} - b_{2}\right)\right|, \frac{1}{10}\left|\left(a_{1} - b_{1}\right)\left(a_{1} + b_{1}\right) + \left(a_{2} - b_{2}\right)\right|\right) \\ &= \frac{1}{10}\left|\left(a_{1} - b_{1}\right)\left(a_{1} + b_{1}\right) + \left(a_{2} - b_{2}\right)\right| \\ &\leq \frac{1}{10}\left|a_{1} - b_{1}\right|\left|a_{1} + b_{1}\right| + \frac{1}{10}\left|a_{2} - b_{2}\right| \leq \frac{1}{10}d_{\infty}(a, b)\left|a_{1} + b_{1}\right| + \frac{1}{10}d_{\infty}(a, b) \\ &\leq \frac{3}{10}d_{\infty}(a, b) \end{aligned}$$

for every $a = (a_1, a_2), b = (b_1, b_2) \in [-1, 1]^2$. So we can use Banach's fixed point theorem to conclude that f has a unique fixed point in $[-1, 1]^2$. And a fixed point of f is nothing else then a solution of the above equation system.

ad (c):

Using the iteration

$$a_n = f\left(a_{n-1}\right)$$

for $n \in \mathbb{N}$ with $a_0 = (0, 0)$, we know two basic error estimations $(a^* = (x^*, y^*)$ the unique fixed point):

$$d_{\infty}\left(a^{*},a_{n}\right) \leq \frac{L^{n}}{1-L}d_{\infty}\left(a_{1},a_{0}\right)$$

or (which we use now)

$$d_{\infty}\left(a^{*}, a_{n}\right) \leq \frac{L}{1-L}d_{\infty}\left(a_{n}, a_{n-1}\right)$$

for $n \in \mathbb{N}$. From part (b) we get L = 0.3 and therefore $L(1-L)^{-1} = \frac{3}{7}$. In particular we have (which is easier to handle)

$$d_{\infty}(a^*, a_n) \le \frac{L}{1-L} d_{\infty}(a_n, a_{n-1}) < \frac{1}{2} d_{\infty}(a_n, a_{n-1})$$

So we get:

$$a_{0} = (0,0), \quad d_{\infty} (a^{*}, a_{0}) = ?$$

$$a_{1} = (0,0.5), \quad d_{\infty} (a^{*}, a_{1}) < \frac{1}{2} d_{\infty} (a_{1}, a_{0}) = 0.25$$

$$a_{2} = (0.05, 0.55), \quad d_{\infty} (a^{*}, a_{2}) < \frac{1}{2} d_{\infty} (a_{2}, a_{1}) = 0.025$$

$$a_{3} = (0.05525, 0.5525), \quad d_{\infty} (a^{*}, a_{3}) < \frac{1}{2} d_{\infty} (a_{3}, a_{2}) = 0.0025$$

Hence we get $x^* = 0.05525 \pm 0.0025$ and $y^* = 0.5525 \pm 0.0025$ (We remark that the first two decimal digits are correct).

Exercise 4 (Countability)

(a) Which of the following sets are countable? (no proof required)

i. [0, 1]ii. $\mathbb{Z} \times \{0, 1, 2, 3, 4, 5\}$ iii. $\{1, 2, 3, 4, 5, 6\}$ iv. \mathbb{Q} v. $\mathcal{P}(\mathbb{Z}) = \{A : A \subset \mathbb{Z}\}$ the power set of \mathbb{Z} vi. $\mathcal{P}_f(\mathbb{N}) := \{A : A \subset \mathbb{N} \text{ is finite}\}$

(b) If $A \neq \emptyset$ is uncountable, prove that B with $A \subset B$ is uncountable too.

Solution of Exercise 4: ad (a): ad i.: not countable ad ii.: countable ad iii.: countable ad iv.: countable ad v.: not countable ad v.: countable ad v.: wo countable ad (b):

We prove this by contradiction. So let us suppose that B is countable. Then we know from one of the exercises, that a subset of a countable set is again countable. So A is countable. This is a contradiction to the assumption, that A uncountable. So B has to be uncountable too.

Exercise 5 (*Linear bounded maps*)

(2+5)

If $(x_k) \in \ell^p$ and $(y_k) \in \ell^q$, then $(x_k y_k) \in \ell^1$ (no proof needed). Here $p, q \in [1, \infty]$ are such that $p^{-1} + q^{-1} = 1$. So for a fixed $(y_k) \in \ell^q$ we get a well-defined function

$$T: \ell^p \to \ell^1, \quad T: (x_k) \mapsto (x_k y_k).$$

- (a) Show that T is linear.
- (b) Show that T is bounded.

Solution of Exercise 5: ad (a):

• Given $x = (x_k)_{k \in \mathbb{N}} \in \ell^p$ and $z = (z_k)_{k \in \mathbb{N}} \in \ell^p$, then T(x+z) = Tx + Tz. Indeed

$$T(x+z) = T((x_k+z_k)_{k\in\mathbb{N}}) = ((x_k+z_k)y_k)_{k\in\mathbb{N}} = (x_ky_k)_{k\in\mathbb{N}} + (z_ky_k)_{k\in\mathbb{N}} = Tx + Tz.$$

• Given $x = (x_k)_{k \in \mathbb{N}} \in \ell^p$ and $\lambda \in \mathbb{K}$, then $T(\lambda x) = \lambda T x$. Indeed

$$T(\lambda x) = T\left((\lambda x_k)_{k \in \mathbb{N}}\right) = \left((\lambda x_k)y_k\right)_{k \in \mathbb{N}} = \left(\lambda(x_k y_k)\right)_{k \in \mathbb{N}} = \lambda\left(x_k y_k\right)_{k \in \mathbb{N}} = \lambda T x.$$

ad (b):

Boundedness means in our case, that we have to find some constant C > 0 (independent of x) such that

$$||Tx||_1 \le C ||x||_p$$

holds for every $x \in \ell^p$. Given some arbitrary $x = (x_k)_{k \in \mathbb{N}} \in \ell^p$, then

$$||Tx||_1 = ||(x_k y_k)_{k \in \mathbb{N}}||_1 = \sum_{k=1}^{\infty} |x_k y_k|.$$

Now we use Hölder's inequality and get

$$||Tx||_1 = \sum_{k=1}^{\infty} |x_k y_k| \le ||x||_p ||y||_q.$$

So we have found our constant (which is independent of x)

 $C = \|y\|_q.$

Exercise 6 (Measurable functions and σ -algebras)

(a) List all σ -algebras on $\Omega = \{5, 6, 7\}$.

- (b) Let $f: \Omega_1 \to \Omega_2$ be a function and Σ_2 a σ -algebra on Ω_2 . Define $\sigma(f)$.
- (c) Let the function $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4\}$ given by f(1) = 1, f(2) = f(3) = 2, f(4) = f(5) = 3. We equip the codomain with the σ -algebra $\Sigma = \sigma(\{\{3\}, \{4\}\})$. Write down all the elements of $\sigma(f)$.
- (d) Let $f: \Omega_1 \to \Omega_2$ be a function, Σ_1 a σ -algebra on Ω_1 and Σ_2 a σ -algebra on Ω_2 . Define when f is Σ_1 / Σ_2 -measurable.
- (e) In the situation of part (c): How many functions $g: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4\}$ are $\sigma(f)/\Sigma$ -measurable? Give a detailed argumentation.

Solution of Exercise 6: ad (a):

$$\begin{aligned} \mathcal{P}(\Omega) &= \{ \emptyset, \{5\}, \{6\}, \{7\}, \{5,6\}, \{6,7\}, \{5,7\}, \{5,6,7\} \} \\ &\quad \{ \emptyset, \{5,6,7\} \} \\ &\quad \{ \emptyset, \{5\}, \{6,7\}, \{5,6,7\} \} \\ &\quad \{ \emptyset, \{6\}, \{5,7\}, \{5,6,7\} \} \\ &\quad \{ \emptyset, \{7\}, \{5,6\}, \{5,6,7\} \} \end{aligned}$$

ad (b):

One possible (there are other possible definitions!) definition is:

$$\sigma(f) = \left\{ f^{-1}(A) \colon A \in \Sigma_2 \right\}$$

ad (c):

$$\sigma(f) = \sigma\left(\left\{f^{-1}\left(\{3\}\right), f^{-1}\left(\{3\}\right)\right\}\right) = \sigma\left(\{\{4,5\}, \emptyset\}\right) = \{\emptyset, \{1,2,3\}, \{4,5\}, \{1,2,3,4,5\}\}$$

ad (d):

f is Σ_1/Σ_2 -measurable, iff

$$f^{-1}(A) \in \Sigma_1$$

for all $A \in \Sigma_2$. ad (e): g is measurable, iff

$$g(\{1,2,3\}) \subset \{3\}, \subset \{4\} \text{ or } \subset \{1,2\}$$

and

$$g(\{4,5\}) \subset \{3\}, \ \subset \{4\} \text{ or } \subset \{1,2\}.$$

There are 1 + 1 + 8 = 10 possible ways to map to define g on $\{1, 2, 3\}$ and 1 + 1 + 4 = 6 ways to define g on $\{4, 5\}$. So we conclude, that there are 60 measurable functions.

Exercise 7 (Calculating Riemann integrals)

(a) Suppose that $f: [a, c] \to \mathbb{R}$ is Riemann integrable. If $b \in (a, c)$ is given, then

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

Prove this by using the definition of the Riemann integral (You can assume that f is Riemann integrable on [b, c] and [a, b] too).

(b) Calculate the following Riemann integrals:

i.
$$\int_{-1}^{1} e^{x^2 + 3x^4} x \, dx$$

ii. $\int_{0}^{1} x^2 e^{x^3} \, dx$
iii. $\int_{0}^{1} (x^2 + 4x) \, dx$
iv. $\int_{-1}^{2} f(x) \, dx$

Here $f \colon [-1,2] \to \mathbb{R}$ is given by

$$f \colon x \mapsto \begin{cases} -x+1 &, \text{ for } x < 0\\ 0 &, \text{ for } x = 0\\ x-1 &, \text{ for } x > 0. \end{cases}$$

Solution of Exercise 7: ad (a): We find a partition

$$\pi^{(1,n)} = \left(t_0^{(1,n)}, ..., t_{N(1,n)}^{(1,n)}\right)$$

of [a, b] and a partition

$$\pi^{(1,n)} = \left(t_0^{(1,n)}, ..., t_{N(2,n)}^{(1,n)}\right)$$

of [b, c] with mesh size $< \frac{1}{n}$ and two vectors

$$\boldsymbol{\xi}^{(1,n)} = \left(\xi_1^{(1,n)}, ..., \xi_{N(1,n)}^{(1,n)}\right)$$

and

$$\boldsymbol{\xi}^{(2,n)} = \left(\xi_1^{(2,n)}, ..., \xi_{N(2,n)}^{(2,n)}\right)$$

of sample points for $\pi^{(1,n)}$ respectively $\pi^{(2,n)}$. By definition of the Riemann integral (and Riemann integrablity)

$$\mathsf{R-}\!\!\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} S\left(f, \pi^{(1,n)}, \xi^{(1,n)}\right)$$

and

$$\mathsf{R}\text{-}\!\int_{b}^{c} f(x) \, dx = \lim_{n \to \infty} S\left(f, \pi^{(2,n)}, \xi^{(2,n)}\right).$$

It is easy to see that

$$\pi^{(n)} := \left(t_0^{(1,n)}, \dots, t_{N(1,n)}^{(1,n)} = t_0^{(2,n)}, \dots, t_{N(2,n)}^{(2,n)} \right)$$

is a partition of mesh size $<\frac{1}{n}$ and

$$\boldsymbol{\xi}^{(1,n)} = \left(\xi_1^{(1,n)}, ..., \xi_{N(1,n)}^{(1,n)}, \xi_1^{(2,n)}, ..., \xi_{N(2,n)}^{(2,n)}\right)$$

a vector of sample points for $\pi^{(n)}$. Moreover we get from the definition of Riemann sums

$$S\left(f,\pi^{(n)},\xi^{(n)}\right) = S\left(f,\pi^{(1,n)},\xi^{(1,n)}\right) + S\left(f,\pi^{(2,n)},\xi^{(2,n)}\right).$$

February 13, 2014

(5+8)

The Riemann integrability of f on [a, c] shows that the left-hand side converges to the Riemann integral on [a, c]. Hence taking the limits we conclude

$$\begin{aligned} \mathsf{R}\text{-}\!\int_{a}^{c} f(x) \, dx &= \lim_{n \to \infty} S\left(f, \pi^{(n)}, \xi^{(n)}\right) = \lim_{n \to \infty} S\left(f, \pi^{(1,n)}, \xi^{(1,n)}\right) + S\left(f, \pi^{(2,n)}, \xi^{(2,n)}\right) \\ &= \mathsf{R}\text{-}\!\int_{a}^{b} f(x) \, dx + \mathsf{R}\text{-}\!\int_{b}^{c} f(x) \, dx. \end{aligned}$$

ad (b):

ad i.: The function $x \mapsto e^{x^2 + 3x^4} x$ is odd. Moreover the integration limits are symmetric around zero. So

$$\int_{-1}^{1} x^2 e^{x^3} \, dx = 0.$$

ad~ii.:

$$\int_0^1 x^2 e^{x^3} dx = \left[\frac{1}{3}e^{x^3}\right]_{x=0}^{x=1} = \frac{1}{3}(e-1)$$

ad iii.:

$$\int_0^1 (x^2 + 4x) \, dx = \left[\frac{1}{3}x^3 + 2x\right]_{x=0}^{x=1} = \frac{7}{3}$$

ad~iv.:

$$\int_{-1}^{2} f(x) \, dx = \int_{-1}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx = \int_{1}^{2} (x-1) \, dx = \left[\frac{1}{2}x^{2} - x\right]_{x=1}^{x=2} = \frac{1}{2}$$

Here we used, that f is odd and therefore

$$\int_{-1}^{1} f(x) \, dx = 0$$

Exercise 8 (Independent events)

Let (Ω, Σ, μ) be a probability space. Two sets $A, B \in \Sigma$ are called (stochastically) independent, iff

$$\mu(A \cap B) = \mu(A)\mu(B).$$

Let us suppose that $A \in \Sigma$ and $\mathcal{E} \subset \Sigma$ is given. We say that A is independent of \mathcal{E} , iff A, B are independent for all $B \in \mathcal{E}$.

- (a) Find a concrete example of the above situation such that A is independent of \mathcal{E} but A is not independent of $\sigma(\mathcal{E})$.
- (b) Let us suppose that \mathcal{E} is stable under intersections. Prove that the following properties are equivalent:
 - i. A and \mathcal{E} are independent.
 - ii. A and $\sigma(\mathcal{E})$ are independent.

Solution of Exercise 8: ad (a): We define the probability space (Ω, Σ, μ) with

$$\Omega = \{1, 2, 3, 4\}, \ \Sigma = \mathcal{P}(\Omega) \text{ and } \mu(A) = \frac{|A|}{4}.$$

This defines clearly a probability space. Moreover let us set

$$A = \{2, 3\}$$
 and $\mathcal{E} = \{\{1, 2\}, \{2, 4\}\}.$

One can immediately see that A is independent of \mathcal{E} . Indeed we have

$$\mu\left(A \cap \{1,2\}\right) = \mu\left(\{2\}\right) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mu\left(A\right)\mu\left(\{1,2\}\right)$$

and

$$\mu(A \cap \{2,4\}) = \mu(\{2\}) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mu(A) \,\mu(\{2,4\}) \,.$$

So A is independent of \mathcal{E} , but A is not independent of $\sigma(\mathcal{E})$. The last claim follows from $\{2\} \in \sigma(\mathcal{E})$ and

$$\mu(A \cap \{2\}) = \mu(\{2\}) = \frac{1}{4} \neq \frac{1}{2} \cdot \frac{1}{4} = \mu(A)\,\mu(\{2\})\,.$$

ad (b):

The implication "ii. \Rightarrow i." is obvious (but don't forget to write that down). So we concentrate now on the implication "i. \Rightarrow ii."

We want to use the **principle of good sets**. Our good sets are given by

$$\mathcal{G} = \{B \in \Sigma \colon \mu(A \cap B) = \mu(A)\mu(B)\}.$$

In a first step we prove that \mathcal{G} is a Dynkin system. First step - \mathcal{G} is a Dynkin system:

- $\emptyset \in \mathcal{G}$ because $\mu(A \cap \emptyset) = \mu(\emptyset) = 0 = \mu(A) \cdot \mu(\emptyset)$.
- If $B \in \mathcal{G} \Rightarrow B^c \in \mathcal{G}$. Indeed

$$\mu(A \cap B^{c}) = \mu(A) - \mu(A \cap B) = \mu(A) - \mu(A)\mu(B) = \mu(A)(1 - \mu(B)) = \mu(A)\mu(B^{c}).$$

(5+10)

• If $A_n \in \mathcal{G}$ for every $n \in \mathbb{N}$ are given disjoint sets, then we have to show that $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{G}$. But this is can be derived as follows:

$$\begin{pmatrix} A \cap \bigcup_{n \in \mathbb{N}} A_n \end{pmatrix} = \mu \left(\bigcup_{n \in \mathbb{N}} (A_n \cap A) \right)$$

= $\sum_{n=1}^{\infty} \mu (A \cap A_n)$ $A \cap A_n$ pairwise disjoint
= $\sum_{n=1}^{\infty} \mu(A) \mu (A_n)$
= $\mu(A) \left(\sum_{n=1}^{\infty} \mu (A_n) \right)$
= $\mu(A) \cdot \mu \left(\bigcup_{n \in \mathbb{N}} A_n \right)$ A_n pairwise disjoint.

This shows that $\mathcal G$ is a Dynkin system. In the next step we show $\mathcal E\subset \mathcal G.$

Step 2 - the inclusion $\mathcal{E} \subset \mathcal{G}$:

 μ

This is precisely our assumption i..

Final step - the inclusion $\sigma(\mathcal{E}) \subset \mathcal{G}$:

From the second step we conclude $\mathcal{E} \subset \mathcal{G}$. From the definition of the $d(\mathcal{E})$ and our first step, we conclude $d(\mathcal{E}) \subset \mathcal{G}$. One of our assumptions is that \mathcal{E} is stable under intersections. So we conclude from Dynkin's π - λ theorem $\sigma(\mathcal{E}) = d(\mathcal{E}) \subset \mathcal{G}$.

But $\sigma(\mathcal{E}) \subset \mathcal{G}$ is a reformulation of ii., so the claim follows.

Exercise 9 (Multiple Choice)

Decide which of the following statements are true (no proof needed). For every correct answer you get +1 point and for every wrong answer -1 point. The points of this exercise will be rounded up to zero, if the total number is negative.

- (a) The trigonometric polynomials are dense in $(C([0, 2\pi]), \|\cdot\|_{\infty})$. \Box true \Box false
- (b) The polynomials are dense in $(C([0, 2\pi]), \|\cdot\|_{\infty})$. \Box true \Box false
- (c) $(C_b(M), \|\cdot\|_{\infty})$ is a Polish space if (M, d) is a metric space. \Box true \Box false
- (d) $(C(M), \|\cdot\|_{\infty})$ is a Polish space if (M, d) is a compact metric space. \Box true \Box false
- (e) $\mathcal{B}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R}).$ \Box true \Box false
- (f) $A, B \in \mathcal{B}(\mathbb{R})$, then $A \times B \in \mathcal{B}(\mathbb{R}^2)$. \Box true \Box false
- (g) $\mathcal{B}(\mathbb{R})$ is generated as a σ -algebra by all finite intervals (a, b) with a < b. \Box true \Box false
- (h) $\mathcal{B}(\mathbb{R}^2)$ is generated as a σ -algebra by all open sets in \mathbb{R}^2 . \Box true \Box false
- (i) Given two normed spaces (ℝ^N, ||·||) and (ℝ^N, ||·||'). Then the compact subsets of the two metric spaces coincide.
 □ true □ false
- (j) If (M, d) and (M, d') are metric spaces on same set M. Let us suppose that (x_n) is a convergent sequence in both spaces, then the limits in (M, d) and in (M, d') coincide.
 □ true □ false
- (k) If (M, d) is a metric space and (x_n) converges to both x and y, then x = y. \Box true \Box false
- (l) The compact subsets in ℓ^2 are precisely the bounded and closed subsets. \Box true \Box false
- (m) If Σ is a σ -algebra on Ω and $A_i \in \Sigma$ for all $i \in I$ (here I is an arbitrary index set), then $\bigcup_{i \in I} A_i \in \Sigma$.

 \Box true \Box false

- (n) If Σ is a σ -algebra on Ω and $A_n \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} A_n \in \Sigma$. \Box true \Box false
- (o) The Lebesgue measure λ on \mathbb{R} assigns to every $A \subset \mathbb{R}$ a "length" $\lambda(A) \ge 0$. \Box true \Box false

Solution of Exercise 9:

- (a) The trigonometric polynomials are dense in $(C([0, 2\pi]), \|\cdot\|_{\infty})$. \Box true \boxtimes false
- (b) The polynomials are dense in $(C([0, 2\pi]), \|\cdot\|_{\infty})$. \boxtimes true \Box false
- (c) $(C_b(M), \|\cdot\|_{\infty})$ is a Polish space if (M, d) is a metric space. \Box true \boxtimes false
- (d) $(C(M), \|\cdot\|_{\infty})$ is a Polish space if (M, d) is a compact metric space. \boxtimes true \Box false
- (e) $\mathcal{B}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R}).$ \boxtimes true \Box false
- (f) $A, B \in \mathcal{B}(\mathbb{R})$, then $A \times B \in \mathcal{B}(\mathbb{R}^2)$.

 \boxtimes true

- \square false
- (g) $\mathcal{B}(\mathbb{R})$ is generated as a σ -algebra by all finite intervals (a, b) with a < b. \boxtimes true \Box false
- (h) $\mathcal{B}(\mathbb{R}^2)$ is generated as a σ -algebra by all open sets in \mathbb{R}^2 . \boxtimes true \Box false
- (i) Given two normed spaces $(\mathbb{R}^N, \|\cdot\|)$ and $(\mathbb{R}^N, \|\cdot\|')$. Then the compact subsets of the two metric spaces coincide.
 - \Box true \boxtimes false
- (j) If (M, d) and (M, d') are metric spaces on same set M. Let us suppose that (x_n) is a convergent sequence in both spaces, then the limits in (M, d) and in (M, d') coincide. \Box true \boxtimes false
- (k) If (M, d) is a metric space and (x_n) converges to both x and y, then x = y. \boxtimes true \Box false
- (l) The compact subsets in ℓ^2 are precisely the bounded and closed subsets. \Box true \boxtimes false
- (m) If Σ is a σ -algebra on Ω and $A_i \in \Sigma$ for all $i \in I$ (here I is an arbitrary index set), then $\bigcup_{i \in I} A_i \in \Sigma$. \Box true \boxtimes false
- (n) If Σ is a σ -algebra on Ω and $A_n \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} A_n \in \Sigma$. \boxtimes true \Box false
- (o) The Lebesgue measure λ on \mathbb{R} assigns to every $A \subset \mathbb{R}$ a "length" $\lambda(A) \ge 0$. \Box true \boxtimes false