Suggested Solution to Exercise Sheet 10
 Applied Analysis
 Discussion on Thursday 9-1-2014 at 16ct

This is also the first mock exam. 100% corresponds to 110 points. In the final exam you are allowed to use a calculator and a double-sided handwritten A4 sheet. This is intended to be solved in 120 minutes.

Contents

Exercise 1
 2

Exercise 2 3
Exercise 3 5
Exercise 4 7
Exercise 5 8
Exercise 6 9
Exercise 7 10
Exercise 8 12
Exercise 9 14

Exercise 1 (Three basic properties of metric spaces)
Let (M, d) be a metric space.
(a) Give a definition of the following properties of (M, d) :
i. compactness,
ii. separability, and
iii. completeness.
(b) Which of the following implications are true? (no proof required)
i. (M, d) is compact $\Rightarrow(M, d)$ is complete.
ii. (M, d) is complete $\Rightarrow(M, d)$ is compact.
iii. (M, d) is compact $\Rightarrow(M, d)$ is separable.
iv. (M, d) is separable $\Rightarrow(M, d)$ is complete.
(c) Give a counterexample with explanation of one of the wrong implications in (b).

Solution of Exercise 1:
ad (a):
ad i. :
(M, d) is compact, iff for every given sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in M we find a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ which converges in M.
ad ii.:
(M, d) is separable, iff we can find a dense and countable subset of M.
ad iii.:
(M, d) is complete, iff every Cauchy sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in M converges in M.
ad (b):
ad i :
true
ad ii.:
false
ad iii.:
true
ad iv.:
false
ad (c):
We have to find a counterexample for ii. or iv..
ad ii.:
$\left(\mathbb{R}, d_{2}\right)$ is complete (see lecture) but not compact (because it is not bounded). ad iv.:
$\left(\mathbb{Q}, d_{2}\right)$ is separable (the dense countable subset is $\left.\mathbb{Q}\right)$ but not complete (see lecture).

Exercise 2 (Compactness)

(a) Which of the following sets are compact? (no proof required)
i. (\mathbb{Q}, d) where d is the discrete metric.
ii. $[0,1] \times\{1\}$ in $\left(\mathbb{R}^{2}, d_{2}\right)$. Here we denote by d_{2} the euclidean metric.
iii. $(0,1]$ in $\left(\mathbb{R}, d_{2}\right)$.
iv. (M, d) a metric space where M is a finite set.
(b) Choose one of your claims in part (a) and prove them.
(c) Show that the closed unit ball in ℓ^{∞} is not compact.
(d) Prove that the function $f:[0,1]^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=e^{x^{2}}+y x+y e^{y}-x
$$

attains its infimum and supremum in $[0,1]^{2}$.

Solution of Exercise 2:

ad (a):
ad i :
not compact
ad ii.:
compact
ad iii.:
not compact
ad iv.:
compact
ad (b):
We state again all proofs. But you have to give only one!
ad i.:
\mathbb{Q} is not bounded, so it is not compact.
ad ii.:
$[0,1]$ and $\{1\}$ are both closed and bounded subset of \mathbb{R}. So $[0,1] \times\{1\}$ is a closed and bounded subset of \mathbb{R}^{2}. The claim follows because a closed and bounded subset of the Euclidean space $\left(\mathbb{R}^{2}, d_{2}\right)$ is compact.
ad iii.:
$(0,1]$ is not closed. Indeed the sequence $\left(x_{n}\right)$ in \mathbb{R} given by $x_{n}=\frac{1}{n}$ is convergent to 0 in $\left(\mathbb{R}, d_{2}\right)$, but $0 \notin(0,1]$. So $(0,1]$ is not closed and therefore not compact.
ad iv.:
Given an arbitrary sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in M, then there exists a point $m \in M$ which is occurs infinitely often in this sequence. So we can choose a constant subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ with $x_{n_{k}}=m$ for every $k \in \mathbb{N}$. As every constant sequence in M converges in M our claim follows.
ad (c):
It is clear that $\left(e_{n}\right)_{n \in \mathbb{N}}$ is a sequence in the closed unit ball of ℓ^{∞}. We get immediately from the definition of the norm

$$
\left\|e_{n}-e_{m}\right\|_{\infty}=1
$$

for $n \neq m$. So let us suppose that the closed unit ball is compact. In this case we could find a convergent subsequence $\left(e_{n_{k}}\right)_{k \in \mathbb{N}}$. As every convergent subsequence is Cauchy, we get

$$
\left\|e_{n_{k}}-e_{n_{l}}\right\|_{\infty}<1
$$

for k, l large enough. So for $k \neq l$ large enough we get the contradiction

$$
1=\left\|e_{n_{k}}-e_{n_{l}}\right\|_{\infty}<1
$$

So our assumption that the closed unit ball of ℓ^{∞} is compact gives us a contradiction. Hence the closed unit ball of ℓ^{∞} is not compact.

ad (d):

f is as the composition/multiplication/addition of continuous functions continuous. Moreover $[0,1]^{2}$ is compact (because it is a bounded and closed subset of an Euclidean space). So we know from the lecture (every continuous function defined on a compact subset attains its supremum and infimum) that f attains its infimum and supremum in $[0,1]^{2}$.

Exercise 3 (Banach's fixed point theorem)

(a) Formulate Banach's (classical) fixed point theorem.
(b) Use Banach's fixed point theorem to prove the existence of a unique solution $x^{*}, y^{*} \in[-1,1]$ of

$$
\begin{aligned}
& 10 x=x^{2}+y \\
& 10 y=x^{2}+y+5
\end{aligned}
$$

(c) Calculate the first two decimal digits of x^{*} and y^{*} by using the fixed point iteration starting with $x_{0}=y_{0}=0$.

Solution of Exercise 3:

ad (a):

The classical version of Banach's fixed point theorem:
Every strict contraction $f: M \rightarrow M$ (i.e. $d(f(x), f(y)) \leq L d(x, y)$ holds for all $x, y \in M$ and some fixed $L<1$) on a complete metric space (M, d) has a unique fixed point.
ad (b):
Let us use the compact (because it is a bounded and closed subset of a Euclidean space) subset $[-1,1]^{2}$ of \mathbb{R}^{2} with the metric

$$
d_{\infty}(a, b)=\max \left\{\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right\}
$$

for $a=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$ and $b=\left(b_{1}, b_{2}\right) \in \mathbb{R}^{2}$. So $\left([-1,1]^{2}, d_{\infty}\right)$ is a complete metric space (either because it is compact and therefore complete, or because it is a closed subset of the complete metric space $\left(\mathbb{R}^{2}, d_{\infty}\right)$).
Moreover let us define a function

$$
f:[-1,1]^{2} \rightarrow[-1,1]^{2}
$$

by

$$
f:(x, y) \mapsto\left(\frac{1}{10}\left(x^{2}+y\right), \frac{1}{10}\left(x^{2}+y+5\right)\right) .
$$

This is a strict contraction:

$$
\begin{aligned}
d_{\infty}(f(a), f(b)) & =\max \left(\frac{1}{10}\left|\left(a_{1}-b_{1}\right)\left(a_{1}+b_{1}\right)+\left(a_{2}-b_{2}\right)\right|, \frac{1}{10}\left|\left(a_{1}-b_{1}\right)\left(a_{1}+b_{1}\right)+\left(a_{2}-b_{2}\right)\right|\right) \\
& =\frac{1}{10}\left|\left(a_{1}-b_{1}\right)\left(a_{1}+b_{1}\right)+\left(a_{2}-b_{2}\right)\right| \\
& \leq \frac{1}{10}\left|a_{1}-b_{1}\right|\left|a_{1}+b_{1}\right|+\frac{1}{10}\left|a_{2}-b_{2}\right| \leq \frac{1}{10} d_{\infty}(a, b)\left|a_{1}+b_{1}\right|+\frac{1}{10} d_{\infty}(a, b) \\
& \leq \frac{3}{10} d_{\infty}(a, b)
\end{aligned}
$$

for every $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in[-1,1]^{2}$. So we can use Banach's fixed point theorem to conclude that f has a unique fixed point in $[-1,1]^{2}$. And a fixed point of f is nothing else then a solution of the above equation system.
ad (c):
Using the iteration

$$
a_{n}=f\left(a_{n-1}\right)
$$

for $n \in \mathbb{N}$ with $a_{0}=(0,0)$, we know two basic error estimations ($a^{*}=\left(x^{*}, y^{*}\right)$ the unique fixed point):

$$
d_{\infty}\left(a^{*}, a_{n}\right) \leq \frac{L^{n}}{1-L} d_{\infty}\left(a_{1}, a_{0}\right)
$$

or (which we use now)

$$
d_{\infty}\left(a^{*}, a_{n}\right) \leq \frac{L}{1-L} d_{\infty}\left(a_{n}, a_{n-1}\right)
$$

for $n \in \mathbb{N}$. From part (b) we get $L=0.3$ and therefore $L(1-L)^{-1}=\frac{3}{7}$. In particular we have (which is easier to handle)

$$
d_{\infty}\left(a^{*}, a_{n}\right) \leq \frac{L}{1-L} d_{\infty}\left(a_{n}, a_{n-1}\right)<\frac{1}{2} d_{\infty}\left(a_{n}, a_{n-1}\right)
$$

So we get:

$$
\begin{aligned}
a_{0}=(0,0), d_{\infty}\left(a^{*}, a_{0}\right) & =? \\
a_{1}=(0,0.5), d_{\infty}\left(a^{*}, a_{1}\right) & <\frac{1}{2} d_{\infty}\left(a_{1}, a_{0}\right)=0.25 \\
a_{2}=(0.05,0.55), d_{\infty}\left(a^{*}, a_{2}\right) & <\frac{1}{2} d_{\infty}\left(a_{2}, a_{1}\right)=0.025 \\
a_{3}=(0.05525,0.5525), d_{\infty}\left(a^{*}, a_{3}\right) & <\frac{1}{2} d_{\infty}\left(a_{3}, a_{2}\right)=0.0025
\end{aligned}
$$

Hence we get $x^{*}=0.05525 \pm 0.0025$ and $y^{*}=0.5525 \pm 0.0025$ (We remark that the first two decimal digits are correct).
(a) Which of the following sets are countable? (no proof required)
i. $[0,1]$
ii. $\mathbb{Z} \times\{0,1,2,3,4,5\}$
iii. $\{1,2,3,4,5,6\}$
iv. \mathbb{Q}
v. $\mathcal{P}(\mathbb{Z})=\{A: A \subset \mathbb{Z}\}$ the power set of \mathbb{Z}
vi. $\mathcal{P}_{f}(\mathbb{N}):=\{A: A \subset \mathbb{N}$ is finite $\}$
(b) If $A \neq \emptyset$ is uncountable, prove that B with $A \subset B$ is uncountable too.

Solution of Exercise 4:
ad (a):
ad i :
not countable
ad ii.:
countable
ad iii.:
countable
ad iv.:
countable
ad v. :
not countable
ad vi.:
countable
ad (b):
We prove this by contradiction. So let us suppose that B is countable. Then we know from one of the exercises, that a subset of a countable set is again countable. So A is countable. This is a contradiction to the assumption, that A uncountable. So B has to be uncountable too.

Exercise 5 (Linear bounded maps)
If $\left(x_{k}\right) \in \ell^{p}$ and $\left(y_{k}\right) \in l^{q}$, then $\left(x_{k} y_{k}\right) \in \ell^{1}$ (no proof needed). Here $p, q \in[1, \infty]$ are such that $p^{-1}+q^{-1}=1$. So for a fixed $\left(y_{k}\right) \in \ell^{q}$ we get a well-defined function

$$
T: \ell^{p} \rightarrow \ell^{1}, \quad T:\left(x_{k}\right) \mapsto\left(x_{k} y_{k}\right)
$$

(a) Show that T is linear.
(b) Show that T is bounded.

Solution of Exercise 5:

ad (a):

- Given $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ and $z=\left(z_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$, then $T(x+z)=T x+T z$. Indeed

$$
T(x+z)=T\left(\left(x_{k}+z_{k}\right)_{k \in \mathbb{N}}\right)=\left(\left(x_{k}+z_{k}\right) y_{k}\right)_{k \in \mathbb{N}}=\left(x_{k} y_{k}\right)_{k \in \mathbb{N}}+\left(z_{k} y_{k}\right)_{k \in \mathbb{N}}=T x+T z
$$

- Given $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ and $\lambda \in \mathbb{K}$, then $T(\lambda x)=\lambda T x$. Indeed

$$
T(\lambda x)=T\left(\left(\lambda x_{k}\right)_{k \in \mathbb{N}}\right)=\left(\left(\lambda x_{k}\right) y_{k}\right)_{k \in \mathbb{N}}=\left(\lambda\left(x_{k} y_{k}\right)\right)_{k \in \mathbb{N}}=\lambda\left(x_{k} y_{k}\right)_{k \in \mathbb{N}}=\lambda T x
$$

ad (b):

Boundedness means in our case, that we have to find some constant $C>0$ (independent of x) such that

$$
\|T x\|_{1} \leq C\|x\|_{p}
$$

holds for every $x \in \ell^{p}$. Given some arbitrary $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$, then

$$
\|T x\|_{1}=\left\|\left(x_{k} y_{k}\right)_{k \in \mathbb{N}}\right\|_{1}=\sum_{k=1}^{\infty}\left|x_{k} y_{k}\right|
$$

Now we use Hölder's inequality and get

$$
\|T x\|_{1}=\sum_{k=1}^{\infty}\left|x_{k} y_{k}\right| \leq\|x\|_{p}\|y\|_{q}
$$

So we have found our constant (which is independent of x)

$$
C=\|y\|_{q} .
$$

(a) List all σ-algebras on $\Omega=\{5,6,7\}$.
(b) Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a function and Σ_{2} a σ-algebra on Ω_{2}. Define $\sigma(f)$.
(c) Let the function $f:\{1,2,3,4,5\} \rightarrow\{1,2,3,4\}$ given by $f(1)=1, f(2)=f(3)=2, f(4)=$ $f(5)=3$. We equip the codomain with the σ-algebra $\Sigma=\sigma(\{\{3\},\{4\}\})$. Write down all the elements of $\sigma(f)$.
(d) Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a function, Σ_{1} a σ-algebra on Ω_{1} and Σ_{2} a σ-algebra on Ω_{2}. Define when f is Σ_{1} / Σ_{2}-measurable.
(e) In the situation of part (c): How many functions $g:\{1,2,3,4,5\} \rightarrow\{1,2,3,4\}$ are $\sigma(f) / \Sigma$ measurable? Give a detailed argumentation.

Solution of Exercise 6:
ad (a):

$$
\begin{gathered}
\mathcal{P}(\Omega)=\{\emptyset,\{5\},\{6\},\{7\},\{5,6\},\{6,7\},\{5,7\},\{5,6,7\}\} \\
\{\emptyset,\{5,6,7\}\} \\
\{\emptyset,\{5\},\{6,7\},\{5,6,7\}\} \\
\{\emptyset,\{6\},\{5,7\},\{5,6,7\}\} \\
\{\emptyset,\{7\},\{5,6\},\{5,6,7\}\}
\end{gathered}
$$

ad (b):
One possible (there are other possible definitions!) definition is:

$$
\sigma(f)=\left\{f^{-1}(A): A \in \Sigma_{2}\right\}
$$

ad (c):

$$
\sigma(f)=\sigma\left(\left\{f^{-1}(\{3\}), f^{-1}(\{3\})\right\}\right)=\sigma(\{\{4,5\}, \emptyset\})=\{\emptyset,\{1,2,3\},\{4,5\},\{1,2,3,4,5\}\}
$$

ad (d):
f is Σ_{1} / Σ_{2}-measurable, iff

$$
f^{-1}(A) \in \Sigma_{1}
$$

for all $A \in \Sigma_{2}$.
ad (e):
g is measurable, iff

$$
g(\{1,2,3\}) \subset\{3\}, \subset\{4\} \text { or } \subset\{1,2\}
$$

and

$$
g(\{4,5\}) \subset\{3\}, \subset\{4\} \text { or } \subset\{1,2\} .
$$

There are $1+1+8=10$ possible ways to map to define g on $\{1,2,3\}$ and $1+1+4=6$ ways to define g on $\{4,5\}$. So we conclude, that there are 60 measurable functions.

Exercise 7 (Calculating Riemann integrals)
(a) Suppose that $f:[a, c] \rightarrow \mathbb{R}$ is Riemann integrable. If $b \in(a, c)$ is given, then

$$
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x .
$$

Prove this by using the definition of the Riemann integral (You can assume that f is Riemann integrable on $[b, c]$ and $[a, b]$ too).
(b) Calculate the following Riemann integrals:
i. $\int_{-1}^{1} e^{x^{2}+3 x^{4}} x d x$
ii. $\int_{0}^{1} x^{2} e^{x^{3}} d x$
iii. $\int_{0}^{1}\left(x^{2}+4 x\right) d x$
iv. $\int_{-1}^{2} f(x) d x$

Here $f:[-1,2] \rightarrow \mathbb{R}$ is given by

$$
f: x \mapsto \begin{cases}-x+1 & , \text { for } x<0 \\ 0 & , \text { for } x=0 \\ x-1 & , \text { for } x>0\end{cases}
$$

Solution of Exercise 7:
ad (a):
We find a partition

$$
\pi^{(1, n)}=\left(t_{0}^{(1, n)}, \ldots, t_{N(1, n)}^{(1, n)}\right)
$$

of $[a, b]$ and a partition

$$
\pi^{(1, n)}=\left(t_{0}^{(1, n)}, \ldots, t_{N(2, n)}^{(1, n)}\right)
$$

of $[b, c]$ with mesh size $<\frac{1}{n}$ and two vectors

$$
\xi^{(1, n)}=\left(\xi_{1}^{(1, n)}, \ldots, \xi_{N(1, n)}^{(1, n)}\right)
$$

and

$$
\xi^{(2, n)}=\left(\xi_{1}^{(2, n)}, \ldots, \xi_{N(2, n)}^{(2, n)}\right)
$$

of sample points for $\pi^{(1, n)}$ respectively $\pi^{(2, n)}$. By definition of the Riemann integral (and Riemann integrablity)

$$
\mathrm{R}-\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} S\left(f, \pi^{(1, n)}, \xi^{(1, n)}\right)
$$

and

$$
\mathrm{R}-\int_{b}^{c} f(x) d x=\lim _{n \rightarrow \infty} S\left(f, \pi^{(2, n)}, \xi^{(2, n)}\right) .
$$

It is easy to see that

$$
\pi^{(n)}:=\left(t_{0}^{(1, n)}, \ldots, t_{N(1, n)}^{(1, n)}=t_{0}^{(2, n)}, \ldots, t_{N(2, n)}^{(2, n)}\right)
$$

is a partition of mesh size $<\frac{1}{n}$ and

$$
\xi^{(1, n)}=\left(\xi_{1}^{(1, n)}, \ldots, \xi_{N(1, n)}^{(1, n)}, \xi_{1}^{(2, n)}, \ldots, \xi_{N(2, n)}^{(2, n)}\right)
$$

a vector of sample points for $\pi^{(n)}$. Moreover we get from the definition of Riemann sums

$$
S\left(f, \pi^{(n)}, \xi^{(n)}\right)=S\left(f, \pi^{(1, n)}, \xi^{(1, n)}\right)+S\left(f, \pi^{(2, n)}, \xi^{(2, n)}\right)
$$

The Riemann integrablity of f on $[a, c]$ shows that the left-hand side converges to the Riemann integral on $[a, c]$. Hence taking the limits we conclude

$$
\begin{aligned}
\mathrm{R}-\int_{a}^{c} f(x) d x & =\lim _{n \rightarrow \infty} S\left(f, \pi^{(n)}, \xi^{(n)}\right)=\lim _{n \rightarrow \infty} S\left(f, \pi^{(1, n)}, \xi^{(1, n)}\right)+S\left(f, \pi^{(2, n)}, \xi^{(2, n)}\right) \\
& =\mathrm{R}-\int_{a}^{b} f(x) d x+\mathrm{R}-\int_{b}^{c} f(x) d x
\end{aligned}
$$

ad (b):
ad i.:
The function $x \mapsto e^{x^{2}+3 x^{4}} x$ is odd. Moreover the integration limits are symmetric around zero. So

$$
\int_{-1}^{1} x^{2} e^{x^{3}} d x=0
$$

ad ii.:

$$
\int_{0}^{1} x^{2} e^{x^{3}} d x=\left[\frac{1}{3} e^{x^{3}}\right]_{x=0}^{x=1}=\frac{1}{3}(e-1)
$$

ad iii.:

$$
\int_{0}^{1}\left(x^{2}+4 x\right) d x=\left[\frac{1}{3} x^{3}+2 x\right]_{x=0}^{x=1}=\frac{7}{3}
$$

ad iv.:

$$
\int_{-1}^{2} f(x) d x=\int_{-1}^{1} f(x) d x+\int_{1}^{2} f(x) d x=\int_{1}^{2}(x-1) d x=\left[\frac{1}{2} x^{2}-x\right]_{x=1}^{x=2}=\frac{1}{2}
$$

Here we used, that f is odd and therefore

$$
\int_{-1}^{1} f(x) d x=0
$$

Let (Ω, Σ, μ) be a probability space. Two sets $A, B \in \Sigma$ are called (stochastically) independent, iff

$$
\mu(A \cap B)=\mu(A) \mu(B)
$$

Let us suppose that $A \in \Sigma$ and $\mathcal{E} \subset \Sigma$ is given. We say that A is independent of \mathcal{E}, iff A, B are independent for all $B \in \mathcal{E}$.
(a) Find a concrete example of the above situation such that A is independent of \mathcal{E} but A is not independent of $\sigma(\mathcal{E})$.
(b) Let us suppose that \mathcal{E} is stable under intersections. Prove that the following properties are equivalent:
i. A and \mathcal{E} are independent.
ii. A and $\sigma(\mathcal{E})$ are independent.

Solution of Exercise 8:

ad (a):

We define the probability space (Ω, Σ, μ) with

$$
\Omega=\{1,2,3,4\}, \Sigma=\mathcal{P}(\Omega) \text { and } \mu(A)=\frac{|A|}{4}
$$

This defines clearly a probability space. Moreover let us set

$$
A=\{2,3\} \text { and } \mathcal{E}=\{\{1,2\},\{2,4\}\} .
$$

One can immediately see that A is independent of \mathcal{E}. Indeed we have

$$
\mu(A \cap\{1,2\})=\mu(\{2\})=\frac{1}{4}=\frac{1}{2} \cdot \frac{1}{2}=\mu(A) \mu(\{1,2\})
$$

and

$$
\mu(A \cap\{2,4\})=\mu(\{2\})=\frac{1}{4}=\frac{1}{2} \cdot \frac{1}{2}=\mu(A) \mu(\{2,4\}) .
$$

So A is independent of \mathcal{E}, but A is not independent of $\sigma(\mathcal{E})$. The last claim follows from $\{2\} \in \sigma(\mathcal{E})$ and

$$
\mu(A \cap\{2\})=\mu(\{2\})=\frac{1}{4} \neq \frac{1}{2} \cdot \frac{1}{4}=\mu(A) \mu(\{2\})
$$

ad (b):
The implication "ii. \Rightarrow i." is obvious (but don't forget to write that down). So we concentrate now on the implication "i. \Rightarrow ii."
We want to use the principle of good sets. Our good sets are given by

$$
\mathcal{G}=\{B \in \Sigma: \mu(A \cap B)=\mu(A) \mu(B)\} .
$$

In a first step we prove that \mathcal{G} is a Dynkin system.
First step $-\mathcal{G}$ is a Dynkin system:

- $\emptyset \in \mathcal{G}$ because $\mu(A \cap \emptyset)=\mu(\emptyset)=0=\mu(A) \cdot \mu(\emptyset)$.
- If $B \in \mathcal{G} \Rightarrow B^{c} \in \mathcal{G}$. Indeed

$$
\mu\left(A \cap B^{c}\right)=\mu(A)-\mu(A \cap B)=\mu(A)-\mu(A) \mu(B)=\mu(A)(1-\mu(B))=\mu(A) \mu\left(B^{c}\right) .
$$

- If $A_{n} \in \mathcal{G}$ for every $n \in \mathbb{N}$ are given disjoint sets, then we have to show that $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{G}$. But this is can be derived as follows:

$$
\begin{array}{rlrl}
\mu\left(A \cap \bigcup_{n \in \mathbb{N}} A_{n}\right) & =\mu\left(\bigcup_{n \in \mathbb{N}}\left(A_{n} \cap A\right)\right) & \\
& =\sum_{n=1}^{\infty} \mu\left(A \cap A_{n}\right) & & \\
& =\sum_{n=1}^{\infty} \mu(A) \mu\left(A_{n}\right) & & \\
& =\mu(A)\left(\sum_{n=1}^{\infty} \mu\left(A_{n}\right)\right) & & \\
& =\mu(A) \cdot \mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) & & A_{n} \text { pairwise disjoint }
\end{array}
$$

This shows that \mathcal{G} is a Dynkin system. In the next step we show $\mathcal{E} \subset \mathcal{G}$.
Step 2- the inclusion $\mathcal{E} \subset \mathcal{G}$:
This is precisely our assumption i..
Final step - the inclusion $\sigma(\mathcal{E}) \subset \mathcal{G}$:
From the second step we conclude $\mathcal{E} \subset \mathcal{G}$. From the definition of the $d(\mathcal{E})$ and our first step, we conclude $d(\mathcal{E}) \subset \mathcal{G}$. One of our assumptions is that \mathcal{E} is stable under intersections. So we conclude from Dynkin's π - λ theorem $\sigma(\mathcal{E})=d(\mathcal{E}) \subset \mathcal{G}$.
But $\sigma(\mathcal{E}) \subset \mathcal{G}$ is a reformulation of ii., so the claim follows.

Decide which of the following statements are true (no proof needed). For every correct answer you get +1 point and for every wrong answer -1 point. The points of this exercise will be rounded up to zero, if the total number is negative.
(a) The trigonometric polynomials are dense in $\left(C([0,2 \pi]),\|\cdot\|_{\infty}\right)$.
\square true
\square false
(b) The polynomials are dense in $\left(C([0,2 \pi]),\|\cdot\|_{\infty}\right)$.
\square false
(c) $\left(C_{b}(M),\|\cdot\|_{\infty}\right)$ is a Polish space if (M, d) is a metric space.
\square true
\square false
(d) $\left(C(M),\|\cdot\|_{\infty}\right)$ is a Polish space if (M, d) is a compact metric space.
\square true
\square false
(e) $\mathcal{B}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R})$.
\square true
\square false
(f) $A, B \in \mathcal{B}(\mathbb{R})$, then $A \times B \in \mathcal{B}\left(\mathbb{R}^{2}\right)$.
\square true
(g) $\mathcal{B}(\mathbb{R})$ is generated as a σ-algebra by all finite intervals (a, b) with $a<b$.
\square true
\square false
(h) $\mathcal{B}\left(\mathbb{R}^{2}\right)$ is generated as a σ-algebra by all open sets in \mathbb{R}^{2}.
\square truefalse
(i) Given two normed spaces $\left(\mathbb{R}^{N},\|\cdot\|\right)$ and $\left(\mathbb{R}^{N},\|\cdot\|^{\prime}\right)$. Then the compact subsets of the two metric spaces coincide.false
(j) If (M, d) and $\left(M, d^{\prime}\right)$ are metric spaces on same set M. Let us suppose that $\left(x_{n}\right)$ is a convergent sequence in both spaces, then the limits in (M, d) and in $\left(M, d^{\prime}\right)$ coincide.
\square truefalse
(k) If (M, d) is a metric space and $\left(x_{n}\right)$ converges to both x and y, then $x=y$.
\square true
\square false
(1) The compact subsets in ℓ^{2} are precisely the bounded and closed subsets.
\square truefalse
(m) If Σ is a σ-algebra on Ω and $A_{i} \in \Sigma$ for all $i \in I$ (here I is an arbitrary index set), then $\bigcup_{i \in I} A_{i} \in \Sigma$.
\square truefalse
(n) If Σ is a σ-algebra on Ω and $A_{n} \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} A_{n} \in \Sigma$.
\square true
\square false
(o) The Lebesgue measure λ on \mathbb{R} assigns to every $A \subset \mathbb{R}$ a "length" $\lambda(A) \geq 0$.\square false

Solution of Exercise 9:

(a) The trigonometric polynomials are dense in $\left(C([0,2 \pi]),\|\cdot\|_{\infty}\right)$.$\otimes$ false
(b) The polynomials are dense in $\left(C([0,2 \pi]),\|\cdot\|_{\infty}\right)$. \otimes true
\square false
(c) $\left(C_{b}(M),\|\cdot\|_{\infty}\right)$ is a Polish space if (M, d) is a metric space.
\square true
\otimes false
(d) $\left(C(M),\|\cdot\|_{\infty}\right)$ is a Polish space if (M, d) is a compact metric space. \triangle truefalse
(e) $\mathcal{B}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R})$.
\boxtimes true
false
(f) $A, B \in \mathcal{B}(\mathbb{R})$, then $A \times B \in \mathcal{B}\left(\mathbb{R}^{2}\right)$.false
(g) $\mathcal{B}(\mathbb{R})$ is generated as a σ-algebra by all finite intervals (a, b) with $a<b$. \triangle true\square false
(h) $\mathcal{B}\left(\mathbb{R}^{2}\right)$ is generated as a σ-algebra by all open sets in \mathbb{R}^{2}. \boxtimes truefalse
(i) Given two normed spaces $\left(\mathbb{R}^{N},\|\cdot\|\right)$ and $\left(\mathbb{R}^{N},\|\cdot\|^{\prime}\right)$. Then the compact subsets of the two metric spaces coincide.true \boxtimes false
(j) If (M, d) and $\left(M, d^{\prime}\right)$ are metric spaces on same set M. Let us suppose that $\left(x_{n}\right)$ is a convergent sequence in both spaces, then the limits in (M, d) and in $\left(M, d^{\prime}\right)$ coincide.\boxtimes false
(k) If (M, d) is a metric space and $\left(x_{n}\right)$ converges to both x and y, then $x=y$. - true false
(l) The compact subsets in ℓ^{2} are precisely the bounded and closed subsets. \square true \boxtimes false
(m) If Σ is a σ-algebra on Ω and $A_{i} \in \Sigma$ for all $i \in I$ (here I is an arbitrary index set), then $\bigcup_{i \in I} A_{i} \in \Sigma$.
\square true
\boxtimes false
(n) If Σ is a σ-algebra on Ω and $A_{n} \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} A_{n} \in \Sigma$. \boxtimes true
\square false
(o) The Lebesgue measure λ on \mathbb{R} assigns to every $A \subset \mathbb{R}$ a "length" $\lambda(A) \geq 0$.
true
\boxtimes false

