Exercise Sheet 11

Applied Analysis
Discussion on Thursday 16-1-2014 at 16ct
Exercise 1 (Lebesgue measure of some sets)
In the following we write λ for the Lebesgue measure on \mathbb{R}.
The aim of this exercise: We already know from construction that $\lambda([a, b))=b-a$ holds for every $a, b \in \mathbb{R}$ with $a \leq b$. But what is the Lebesgue measure of $[0,1]$ or $\{0\}$? One can derive those values directly from $\lambda([a, b))=b-a$ and the fact that λ is a measure.
(a) If $M \subset \mathbb{R}$ consists of only one element, what is $\lambda(M)$?
(b) Calculate $\lambda(\mathbb{Q})$ and $\lambda([0,1])$.
(c) Calculate $\lambda(\mathbb{R})$ and use this to deduce that \mathbb{R} is not countable.
(d) Let $C \subset \mathbb{R}$ be the following set of all real numbers

$$
C=\left\{\sum_{k=1}^{\infty} a_{k} 3^{-k} \mid \text { for some sequence }\left(a_{k}\right) \text { with } a_{k} \in\{0,2\}\right\} .
$$

Show that C is Borel measurable (i.e. it lies in $\mathcal{B}(\mathbb{R})$) and calculate $\lambda(C)$.
Hint: One can use without a proof the following alternative description of C. We denote by $C_{n} \subset[0,1]$ (for every $n \in \mathbb{N}$) a finite union of closed disjoint intervals given by the following construction (see also figure 1):
(1) $C_{0}=[0,1]$.
(2) The construction of C_{n+1} from C_{n} is given as follows: C_{n} is a finite union of closed disjoint intervals of the form $\left[a_{k}, a_{k}+3 l_{k}\right]$ for $k=1, \ldots, 2^{n}$. Then C_{n+1} is the union of the intervals $\left[a_{k}, a_{k}+l_{k}\right]$ and $\left[a_{k}+2 l_{k}, a_{k}+3 l_{k}\right]$ for $k=1, \ldots, 2^{n}$. In other words C_{n+1} is obtained from C_{n} by removing the middle third of each interval.
Then we get

$$
C=\bigcap_{n \in \mathbb{N}} C_{n} .
$$

Figure 1: Alternative construction of C. The first line is C_{0}, below this is the picture of C_{1} and so forth.

Exercise 2 (Measurable functions)

We use the Euclidean norm on \mathbb{R}^{n} and the usual Borel- σ-algebras on \mathbb{R}^{n} and $\overline{\mathbb{R}}$.
(a) Which of the following functions f are measurable and which are continuous?
i. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $f(x, y)=e^{x y} x^{2}+2 x y^{2}$.
ii. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{6}} & , \text { for }(x, y) \neq(0,0) \\ 0 & , \text { for } x=y=0\end{cases}
$$

Hint: This function is not continuous on all of \mathbb{R}^{2}. But why?
(b) Show that $f: \mathbb{R}^{2} \rightarrow \overline{\mathbb{R}}$ given by

$$
f(x, y)= \begin{cases}\frac{1}{(x+y)^{2}} & , \text { for } x+y \neq 0 \\ \infty & , \text { for } x+y=0\end{cases}
$$

is measurable.

Exercise 3

(a) Calculate the following (Lebesgue) integrals, if they exist
i. $\int_{\mathbb{N}} \frac{(-1)^{n}}{n} d \zeta(n)$
ii. $\int_{[0,1]} f d \mu$
iii. $\int_{\mathbb{R}} \mathbb{1}_{\mathbb{Q}} d \lambda$
iv. $\int_{\mathbb{N}} 2^{-n} d \zeta(n)$

Here λ is the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, δ_{0} the Dirac measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ supported in $0, \zeta$ is the counting measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N})), \mu$ is given by $\mu=3 \delta_{0}+7 \lambda$ and the function f by

$$
f(x)= \begin{cases}-2 & , \text { for } x=0 \\ 2 & , \text { for } x=1 \\ 1 & , \text { otherwise }\end{cases}
$$

(b) Calculate

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \frac{\sin ^{n}(x)}{x^{2}} d \lambda(x)
$$

(c) Let $f:[0,1] \rightarrow \mathbb{R}$ be monotonically increasing (i.e. $f(x) \geq f(y)$ for $x \geq y$ and $x, y \in[0,1]$) function. Show that f is measurable and integrable.

