

Exercise Sheet 11 Applied Analysis

Discussion on Thursday 16-1-2014 at 16ct

Exercise 1 (Lebesgue measure of some sets)

(3+3+3+5)

In the following we write λ for the Lebesgue measure on \mathbb{R} .

The aim of this exercise: We already know from construction that $\lambda([a, b)) = b - a$ holds for every $a, b \in \mathbb{R}$ with $a \leq b$. But what is the Lebesgue measure of [0, 1] or $\{0\}$? One can derive those values directly from $\lambda([a, b)) = b - a$ and the fact that λ is a measure.

- (a) If $M \subset \mathbb{R}$ consists of only one element, what is $\lambda(M)$?
- (b) Calculate $\lambda(\mathbb{Q})$ and $\lambda([0,1])$.
- (c) Calculate $\lambda(\mathbb{R})$ and use this to deduce that \mathbb{R} is not countable.
- (d) Let $C \subset \mathbb{R}$ be the following set of all real numbers

$$C = \left\{ \sum_{k=1}^{\infty} a_k 3^{-k} \right| \text{ for some sequence } (a_k) \text{ with } a_k \in \{0, 2\} \right\}.$$

Show that C is Borel measurable (i.e. it lies in $\mathcal{B}(\mathbb{R})$) and calculate $\lambda(C)$.

Hint: One can use without a proof the following alternative description of C. We denote by $C_n \subset [0,1]$ (for every $n \in \mathbb{N}$) a finite union of closed disjoint intervals given by the following construction (see also figure 1):

- (1) $C_0 = [0, 1].$
- (2) The construction of C_{n+1} from C_n is given as follows: C_n is a finite union of closed disjoint intervals of the form $[a_k, a_k + 3l_k]$ for $k = 1, ..., 2^n$. Then C_{n+1} is the union of the intervals $[a_k, a_k + l_k]$ and $[a_k + 2l_k, a_k + 3l_k]$ for $k = 1, ..., 2^n$. In other words C_{n+1} is obtained from C_n by removing the middle third of each interval.

Then we get

$$C = \bigcap_{n \in \mathbb{N}} C_n.$$

Figure 1: Alternative construction of C. The first line is C_0 , below this is the picture of C_1 and so forth.

Exercise 2 (*Measurable functions*) (7+5)

We use the Euclidean norm on \mathbb{R}^n and the usual Borel- σ -algebras on \mathbb{R}^n and $\overline{\mathbb{R}}$.

(a) Which of the following functions f are measurable and which are continuous?

i. $f: \mathbb{R}^2 \to \mathbb{R}$ with $f(x, y) = e^{xy}x^2 + 2xy^2$. ii. $f: \mathbb{R}^2 \to \mathbb{R}$ with

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^6} & \text{, for } (x,y) \neq (0,0) \\ 0 & \text{, for } x = y = 0 \end{cases}$$

Hint: This function is not continuous on all of \mathbb{R}^2 . But why? (b) Show that $f: \mathbb{R}^2 \to \overline{\mathbb{R}}$ given by

$$f(x,y) = \begin{cases} \frac{1}{(x+y)^2} & \text{, for } x+y \neq 0\\ \infty & \text{, for } x+y = 0 \end{cases}$$

is measurable.

Exercise 3

(a) Calculate the following (Lebesgue) integrals, if they exist

i.
$$\int_{\mathbb{N}} \frac{(-1)^{n}}{n} d\zeta(n)$$

ii.
$$\int_{[0,1]} f d\mu$$

iii.
$$\int_{\mathbb{R}} \mathbb{1}_{\mathbb{Q}} d\lambda$$

iv.
$$\int_{\mathbb{N}} 2^{-n} d\zeta(n)$$

Here λ is the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, δ_0 the Dirac measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ supported in 0, ζ is the counting measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, μ is given by $\mu = 3\delta_0 + 7\lambda$ and the function f by

$$f(x) = \begin{cases} -2 & \text{, for } x = 0\\ 2 & \text{, for } x = 1\\ 1 & \text{, otherwise} \end{cases}$$

(b) Calculate

$$\lim_{n \to \infty} \int_{\mathbb{R}} \frac{\sin^n(x)}{x^2} \, d\lambda(x).$$

(c) Let $f: [0,1] \to \mathbb{R}$ be monotonically increasing (i.e. $f(x) \ge f(y)$ for $x \ge y$ and $x, y \in [0,1]$) function. Show that f is measurable and integrable.

(12+10+5)