

Exercise Sheet 12 Applied Analysis

Discussion on Thursday 23-1-2014 at 16ct

Exercise 1 (Measure with density)

Let (Ω, Σ, μ) be a measure space and $f: \Omega \to [0, \infty)$ an integrable function.

(a) We construct a measure, which we call $f \cdot \mu$, on (Ω, Σ) by setting

$$(f\cdot \mu)(A) \mathrel{\mathop:}= \int_A f\,d\mu$$

for every $A \in \Sigma$. Show that $f \cdot \mu$ is indeed a measure (see Exercise 3.65).

(b) Show that $f \cdot \mu$ is a probability measure if and only if

$$\int_{\Omega} f \, d\mu = 1$$

(c) Given another measurable function $g: \Omega \to [0, \infty)$ show (see Exercise 3.72 and follow the proof of Theorem 3.73)

$$\int_{\Omega} g \, d(f \cdot \mu) = \int_{\Omega} g f \, d\mu.$$

We say that a measure ν has density $f: \Omega \to [0, \infty)$ with respect to μ , if $\nu = f \cdot \mu$.

Exercise 2 (Some probability distributions)

(a) Show that the following measures $f \cdot \lambda$ with ($\alpha > 0$ fixed and see the exercise before)

i.
$$f(x) = \frac{1}{\pi(1+x^2)}$$
 ii. $f(x) = \mathbb{1}_{[0,\infty)}(x)\alpha e^{-\alpha x}$

are probability measures.

(b) Find some c > 0 (depending on $\alpha > 0$) such that a measure $f \cdot \zeta$ which has the density $f(k) = c \frac{\alpha^k}{k!}$ with respect to the counting measure ζ on \mathbb{N}_0 defines a probability measure.

Exercise 3

Calculate the following integrals if they exist $(\alpha > 0)$

(a)
$$\int_{\mathbb{N}} \frac{k\alpha^{k}}{k!} e^{-\alpha} d\zeta(k)$$
(b)
$$\int_{[0,\infty)} x\alpha e^{-\alpha x} d\lambda(x)$$
(c)
$$\int_{\mathbb{R}} \frac{x}{\pi(1+x^{2})} d\lambda(x)$$
(d)
$$\int_{[0,2]} g d\lambda$$

Here $g: [0,2] \to \mathbb{R}$ is given by

$$g(x) = \begin{cases} x^2 & \text{, for } x < 1\\ x(2-x) & \text{, for } x \ge 1 \end{cases}$$

Remark: In the last exercise of this sheet we interpret these integrals as expected values of certain probability distributions.

(3+2+5)

(5+5+5)

(5+5+5+5)

Exercise 4 (*Two basic formulas for expected values*)

Let a probability space $(\Omega, \Sigma, \mathbb{P})$ and a real valued random variable $X \colon \Omega \to \mathbb{R}$ be given. We say that X has a finite expected value, if

$$\int_{\Omega} |X| \, d\mathbb{P} < \infty$$

and call in this case

$$\mathbb{E} X = \int_{\Omega} X \, d\mathbb{P}$$

the expected value.

(a) Prove (use Theorem 3.73) that X has finite expected value, iff

$$\int_{\mathbb{R}} |x| \, d\mathbb{P}_X(x) < \infty$$

and that in this case one has

$$\mathbb{E}X = \int_{\mathbb{R}} x \, d\mathbb{P}_X(x).$$

Here \mathbb{P}_X is the push forward of \mathbb{P} under X on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ given by $\mathbb{P}_X(A) = \mathbb{P}(X^{-1}(A))$ for all $A \in \mathcal{B}(\mathbb{R})$ (compare this with the lecture).

(b) Let us suppose that X has a density f with respect to μ , i.e. $\mathbb{P}_X = f \cdot \mu$ for some measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and some integrable function $f \colon \mathbb{R} \to \mathbb{R}$. Prove that X has finite expected value, iff

$$\int_{\mathbb{R}} |x| f(x) \, d\mu(x) < \infty$$

and that in this case one has

$$\mathbb{E}X = \int_{\mathbb{R}} x f(x) \, d\mu(x).$$

(c) Interpret the integrals in Exercise 3 as the expected values of some random variables. In particular, what is the probability distribution for the last integral (Is it a probability distribution?)?

(2+2+10)