

Exercise Sheet 15

Applied Analysis

Discussion on Thursday 13-2-2014 at 16ct

Exercise 1 (*Hilbert spaces*)

(5+5+10)

(5+5+5+5)

- (a) Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space and let $\Sigma' \subset \Sigma$ be another σ -algebra. Show that $L^2(\Omega, \Sigma', \mathbb{P}|_{\Sigma'})$ is a closed subspace of $L^2(\Omega, \Sigma, \mathbb{P})$.
- (b) Show that the orthogonal projection of some $X \in L^2(\Omega, \Sigma, \mathbb{P})$ on $L^2(\Omega, \Sigma', \mathbb{P}|_{\Sigma'})$ with $\Sigma' = \{\emptyset, \Omega\}$ is $\mathbb{E}X$.
- (c) Given some exponentially distributed random variable X on a probability space $(\Omega, \Sigma, \mathbb{P})$ and set $\Sigma' = \sigma(\{X \leq 1\})$. Show that X lies in $L^2(\Omega, \Sigma, \mathbb{P})$ and calculate the orthogonal projection of X on $L^2(\Omega, \Sigma', \mathbb{P})$.

Exercise 2 $(L^p$ -spaces)

(a) Given a probability space $(\Omega, \Sigma, \mathbb{P})$. Then we define for $p, q \in [1, \infty]$ with $p \ge q$

 $T\colon L^p(\Omega,\Sigma,\mathbb{P})\to L^q(\Omega,\Sigma,\mathbb{P}), \quad T\colon f\mapsto f.$

Show that T is well-defined, linear and continuous.

(b) Is the following map

$$T: L^1(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), \lambda_2) \to L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda), \text{ with } (Tf)(x) = f(x, 0) \text{ for all } x \in \mathbb{R}$$

well-defined?

(c) Let a measure space (Ω, Σ, μ) be given. Then we define for fixed $g \in L^q(\Omega)$

 $T\colon L^p(\Omega,\Sigma,\mu)\to L^1(\Omega,\Sigma,\mu), \ T\colon f\mapsto f\cdot g.$

Show that T is well-defined, linear and continuous. Here $p, q \in [1, \infty]$ are arbitrary with $p^{-1} + q^{-1} = 1$.

(d) Which of the following claims are true? Give counterexamples for the wrong statements.

i. The map $\|\|_1 \colon \mathcal{L}^1(\Omega, \Sigma, \mu) \to [0, \infty)$ given by

$$\|f\|_1 = \int_{\Omega} |f| \, d\mu$$

is a norm, that makes $\mathcal{L}^1(\Omega, \Sigma, \mu)$ into a Banach space. Here (Ω, Σ, μ) is an arbitrary measure space.

 \Box true \Box false

ii. $L^p(\Omega, \Sigma, \mu)$ is a Banach space with the norm given by

$$\|f\|_p = \sqrt[p]{\int_{\Omega} |f|^p \, d\mu}.$$

Here (Ω, Σ, μ) is an arbitrary measure space and $p \in [1, \infty)$. \Box true \Box false

iii. Given a sequence $(f_n)_{n \in \mathbb{N}}$ in $L^1(\Omega, \Sigma, \mu)$ which converges in $L^1(\Omega, \Sigma, \mu)$, then $(f_n)_{n \in \mathbb{N}}$ converges almost everywhere in Ω . \Box true \Box false

- iv. Given a sequence $(f_n)_{n \in \mathbb{N}}$ in $\mathcal{L}^1(\Omega, \Sigma, \mu)$ which converges almost everywhere in Ω to some $f \in \mathcal{L}^1(\Omega, \Sigma, \mu)$, then $(f_n)_{n \in \mathbb{N}}$ converges in $L^1(\Omega, \Sigma, \mu)$ to f. \Box true \square false
- v. Given a sequence $(f_n)_{n\in\mathbb{N}}$ in $L^p(\Omega,\Sigma,\mu)\cap L^q(\Omega,\Sigma,\mu)$ which converges in $L^p(\Omega,\Sigma,\mu)$ to f and in $L^q(\Omega, \Sigma, \mu)$ to g (for arbitrary $p, q \in [1, \infty]$), then the limits are equal (i.e. f = galmost everywhere in Ω). \square true

 \square false