

(5+5+5+5)

(10+10)

2. Mock Exam Applied Analysis

Discussion on Wednesday 12-2-2014 at 16 ct

100% corresponds to 100 points (you can achieve 120 points). In the final exam you are allowed to use a double-sided handwritten A4 sheet. This is intended to be solved in 120 minutes.

Exercise 1 (*Basic properties of metric spaces*)

Given a metric space (M, d). All the spaces are equipped with the usual metrics if no metric is specified.

- (a) Define the property "complete" for a metric space (M, d).
- (b) Given a subset $N \subset M$. Which implication is true (no proofs required)?
 - i. N compact \Rightarrow N is complete.
 - ii. N compact \Rightarrow N is separable.
 - iii. N compact \Rightarrow N is totally bounded.
 - iv. N compact \Rightarrow N is closed.
 - v. M is compact and N is closed \Rightarrow N is compact.
- (c) Which of the following sets are compact (no proof required)?
 - i. $[0,1] \times \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\} \subset \mathbb{R}^3$.
 - ii. $[0,1] \times [0,1] \times [0,1] \subset \mathbb{R}^3$.
 - iii. \mathbb{R} with the discrete metric.
 - iv. A finite set $X \subset M$ for an arbitrary metric space (M, d).
 - v. The closed unit ball $\overline{B(0,1)}$ of ℓ^{∞} .
- (d) Prove your claim in (c)iv. or (c)v. (give enough details!).

Exercise 2 (Integrable and measurable functions)

(a) Is the function $f: [0,1]^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} (x-y)^2 & \text{, for } |x|^2 y + |y| < 1\\ 0 & \text{, for } |x|^2 y + |y| \ge 1 \end{cases}$$

i. continuous (with the Euclidean metric on domain and codomain)?

ii. measurable (with the Borel- σ -algebra on domain and codomain)?

Give a complete argument!

- (b) Which of the following functions are integrable (prove your claim)?
 - i. $f(x) = x(1+x^2)^{-1}$ on the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$.
 - ii. $f(n) = \frac{1}{2^n}$ on the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \zeta)$.

- (a) State the theorem of Fubini and the theorem of Tonelli.
- (b) Calculate the following Lebesgue integrals respectively limit of Lebesgue integrals (You don't have to prove that the functions are integrable! You can assume this).

i.
$$\int_{\mathbb{R}} f \, d\mu$$

ii.
$$\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{xy^2}{(1+e^{x^2})(1+y^8)} \, d\lambda(y) \, d\lambda(x)$$

iii.
$$\lim_{n \to \infty} \int_{\mathbb{R}} x^{-2} \cdot \mathbb{1}_{[1,\infty)}(x) \cdot \exp\left(-n^{-1}x\right) \, d\lambda(x)$$

(5+5+5)

(5+10+5)

Here λ is the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, $\mu = 4\delta_0 + 3\lambda$ is a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $f : \mathbb{R} \to \mathbb{R}$ is given by

$$f(x) = \begin{cases} 1 & \text{, for } x = 0 \\ 2 & \text{, for } x = 1 \\ x & \text{, for } x \in (0, 1) \\ 0 & \text{, otherwise.} \end{cases}$$

Exercise 4 (*Linear maps and Hilbert spaces*)

- (a) Every Hilbert space has a canonical norm.
 - i. Define this norm.
 - ii. Is the Hilbert space complete in this norm?
- (b) We define a function $T: L^2([0,1]) \to \mathbb{R}$ by

$$Tf = \int_{[0,1]} f \, d\lambda$$

Prove that T is linear **and** well-defined.

(c) Show that T is continuous.

Exercise 5 (*Principle of good sets*)

Let μ be a finite measure on $([0,1], \mathcal{B}([0,1]))$. We will show by using the principle of good sets that for all $A \in \mathcal{B}([0,1])$ and all $\epsilon > 0$ there exist an open set $U \subset [0,1]$ and a compact set $C \subset [0,1]$ such that $C \subset A \subset U$ and $\mu(U \setminus C) < \epsilon$. Let us define

$$\mathcal{G} = \{A \in \mathcal{B}([0,1]) | \forall \epsilon > 0 \; \exists U \supset A \text{ open subset of } [0,1] \; \exists C \subset A \text{ compact}: \; \mu(U \setminus C) < \epsilon \}$$

- (a) Prove that every set of the form $[a, b] \subset [0, 1]$ lies in \mathcal{G} .
- (b) Show that \mathcal{G} is a Dynkin system.
- (c) Show the claim mentioned above (i.e. for all $A \in \mathcal{B}(\mathbb{R})$ and all $\epsilon > 0$ there exists some open set $U \subset [0, 1]$ and a compact set $C \subset [0, 1]$ such that $C \subset A \subset U$ and $\mu(U \setminus C) < \epsilon$.).

Exercise 6 (Multiple Choice)

Decide which of the following statements are true (no proof needed). For every correct answer you get +2 points and for every wrong answer -1 point. The points of this exercise will be rounded up to zero, if the total number is negative.

- (a) $\mathbb{Q} \times \{0, 1, 3\} \times \mathbb{Z}$ is countable.
- $\Box \text{ true} \qquad \Box \text{ false}$ (b) \mathbb{R} is countable. $\Box \text{ true} \qquad \Box \text{ false}$
- (c) A (non-empty) subset of a countable set is countable. \Box true \Box false
- (d) $\mathcal{P}(A)$ is uncountable if A is not finite. \Box true \Box false
- (e) $\{1, 2, 3, 4, \mathbb{R}\}$ is countable. \Box true \Box false
- (f) Every continuous function $f : \mathbb{R} \to \mathbb{R}$ is integrable. \Box true \Box false

 \square false

- (g) Every Cauchy sequence in L²(Ω, Σ, μ) has a almost everywhere convergent subsequence. By
 (Ω, Σ, μ) we mean here an arbitrary measure space.
 □ true
 □ false
- (h) Given a Hilbert space H. Then

$$\|x\|_H = \sup_{\|\varphi\|_{H^*} \le 1} |\varphi(x)|$$

holds for all $x \in H$. \Box true

- (i) Every normed vector space V which obeys the parallelogram identity is a Hilbert space (i.e. there exists a inner product which makes V into a Hilbert space and the norm induced by the inner product equals the given norm).
 □ true □ false
- (j) Given a Hilbert space. Then for every finite-dimensional subspace one can find an orthogonal projection on this subspace.

 \Box true \Box false

(20^*)