

Discussion: Friday, 31.10.2014

Exercises Applied Analysis: Sheet 2

- Show that every Cauchy sequence in C converges.
 Hint: Use that every Cauchy sequence in R converges.
- **2.** We consider the sequence (x_n) with $x_n := \frac{(1+2(-1)^n)n^3}{n^3-4(-1)^n}$ and the set $\{x_n : n \in \mathbb{N}\} \subset \mathbb{R}$.
 - (a) Determine the supremum and the infimum of the set.
 - (b) What is $\limsup_{n\to\infty} x_n$ and $\liminf_{n\to\infty} x_n$?
- **3.** Let X be a nonempty set and let $(x_n) \subset X$ be a sequence. Suppose that every subsequence of (x_n) has a subsequence which converges to x. Show that (x_n) already converges to x. Hint: Proof by contradiction.
- **4.** Let $(x_n) \subset \mathbb{R}$ be a sequence.
 - (a) Show that if $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$, then (x_n) converges, and the limit is equal to the value of the lim sup.
 - (b) Suppose that $(a_n), (b_n) \subset \mathbb{R}$ are sequences with $a_n \to x$ and $b_n \to x$ as $n \to \infty$ and $a_n \leq x_n \leq b_n$ for all $n \in \mathbb{N}$. Show, using the definition of convergence of a sequence, that $x_n \to x$ as $n \to \infty$.
 - (c) Suppose (x_n) is defined recursively by x₁ = 10 and x_{n+1} = ½x_n + 3. Show that (x_n) converges and calculate lim_{n→∞} x_n.
 Hint: First show that (x_n) is monotone decreasing and bounded from below. Use these properties to show that (x_n) converges.
- **5.** Let $d \in \mathbb{N}$. We define mappings $\|\cdot\|_1, \|\cdot\|_{\infty} \colon \mathbb{K}^d \to \mathbb{R}$ by

$$||(x_1,\ldots,x_d)||_1 := \sum_{n=1}^d |x_n|, \qquad ||(x_1,\ldots,x_d)||_\infty := \sup_{n \in \{1,\ldots,d\}} |x_n|.$$

- (a) Show that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are norms on \mathbb{K}^d .
- (b) Show that

$$\|(x_1 \cdot y_1, \dots, x_d \cdot y_d)\|_1 \le \|(x_1, \dots, x_d)\|_{\infty} \cdot \|(y_1, \dots, y_d)\|_1$$

for all $(x_1, \ldots, x_d), (y_1, \ldots, y_d) \in \mathbb{K}^d$.

(c) Show that $||x||_{\infty} \le ||x||_1 \le d||x||_{\infty}$ for all $x \in \mathbb{K}^d$.