

UNIVERSITY OF ULM

Discussion: Friday, 6.11.2014

Exercises Applied Analysis: Sheet 3

- **1.** Let $d \in \mathbb{N}$ and $(X_1, \|\cdot\|_1), \ldots, (X_d, \|\cdot\|_d)$ be normed spaces. Make the Cartesian product $Y := X_1 \times \cdots \times X_d$ into a vector space using componentwise addition and scalar multiplication, and equip it with the norm $\|(x_1, \ldots, x_d)\| := \sum_{k=1}^d \|x_k\|_{X_k}$.
 - (a) Show that the component maps $\pi_k \colon Y \to X_k, \pi_k(x_1, \ldots, x_d) = x_k$ are continuous.
 - (b) Let $(W, \|\cdot\|_W)$ be a normed space and $A \subset W$. Show that a function $f: A \to Y$ is continuous if and only if $\pi_k \circ f: A \to X_k$ is continuous for all $k \in \{1, \ldots, d\}$.
 - (c) Let $(Z, \|\cdot\|_Z)$ be a normed space and $f: Y \to Z$. Suppose that for all $(x_1, \ldots, x_d) \in Y$ and $k \in \{1, \ldots, d\}$ one has $f(x_1, \ldots, x_{k-1}, \cdot, x_{k+1}, \ldots, x_d): X_k \to Z$ is continuous. Show that f doesn't need to be continuous.
- **2.** Show that a normed space $(X, \|\cdot\|)$ is a Banach space if and only if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X one has the implication

$$\sum_{n=1}^{\infty} ||x_n|| < \infty \quad \Rightarrow \quad \left(\sum_{n=1}^{N} x_n\right)_{N \in \mathbb{N}} \text{ converges in } X.$$

Hint: Given a Cauchy sequence $(x_n)_{n \in \mathbb{N}}$, consider a suitable subsequence $(x_{n_k})_{k \in \mathbb{N}}$ and teleskopic sums like $\sum_{k=M}^{N} (x_{n_{k+1}} - x_{n_k})$.

- **3.** For which $1 \le p \le \infty$ are the following sequences in ℓ^p ?
 - (a) $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$

(b)
$$(n^{50}e^{-n})_{n\in\mathbb{N}}$$

- (c) $\left(\frac{1}{\log(n+1)}\right)_{n\in\mathbb{N}}$
- 4. (a) Let $1 \le p < q \le \infty$. Show that ℓ^p is continuously embedded in ℓ^q . Hint: Given $x \in \ell^p$ set $y := x ||x||_p^{-1}$. Show that $|y_n| \le 1$ and apply Hölder's inequality on $||y||_p^p = ||(|y_n|^p)_{n \in \mathbb{N}}||_1$.
 - (b) Let $1 \le p \le \infty$. Give an example of a sequence $(x_n) \subset \ell^p$ with $||x_n||_p \le 1$, such that no subsequence of (x_n) converges.