

Discussion: Friday, 14.11.2014

Exercises Applied Analysis: Sheet 4

- 1. Let K be a compact set in a normed space $(X, \|\cdot\|)$ and $f: K \to \mathbb{R}$ continuous. Show that f attains its minimum and maximum on K.
- **2.** Let K be a compact set in a normed space $(X, \|\cdot\|)$. Then for all $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ and $x_1, \ldots, x_N \in K$ such that $K \subset \bigcup_{k=1}^N B(x_k, \varepsilon)$. Deduce that K has a countable dense subset.
- **3.** (a) Let $(X, \|\cdot\|)$ be a normed space. Prove that $\{x \in X : \|x\| \le 1\}$ is closed in X.
 - (b) Let $A := \{x \in \ell^{\infty} : |x_k| < 1 \text{ for all } k \in \mathbb{N}\}$. Is A open in ℓ^{∞} ?
 - (c) Let $F := \{x \in \ell^p : ||x||_p \le 1\}$. Show that F is bounded and closed, but not compact.
- **4.** Let $(X, \|\cdot\|)$ be a normed space and $A_1, A_2, A_3, \dots \subset X$.
 - (a) If $B_n = \bigcup_{k=1}^n A_k$, prove that $\overline{B_n} = \bigcup_{k=1}^n \overline{A_k}$, for all $n \in \mathbb{N}$.
 - (b) If $B = \bigcup_{k=1}^{\infty} A_k$, prove that $\overline{B} \supset \bigcup_{k=1}^{\infty} \overline{A_k}$. Show, by an example, that this inclusion can be proper.
- 5. (a) Let $\mathbf{c_0} := \{(x_k) : (x_k) \text{ converges to 0 in } \mathbb{K} \}$. Show that $\mathbf{c_0}$ is a vector subspace of ℓ^{∞} that is closed in ℓ^{∞} . Deduce that $(\mathbf{c_0}, \|\cdot\|_{\infty})$ is a Banach space. Show that $\mathbf{c_0}$ is not contained in any ℓ^p with $1 \le p < \infty$.
 - (b) Let $\mathbf{c}_{00} := \{(x_k) : x_k \in \mathbb{K}, \{n \in \mathbb{N} : x_n \neq 0\}$ is finite}. Show that the \mathbf{c}_{00} is contained but not closed in ℓ^p for any $p \in [1, \infty]$.