

## UNIVERSITY OF ULM

Discussion: Friday, 28.11.2014

## Exercises Applied Analysis: Sheet 6

- **1.** Suppose X is a normed space and  $K \subset X$  is compact.
  - (a) Show that a sequence  $(f_n)$  in C(K) converges uniformly to  $f \in C(K)$  if and only if for every sequence  $(x_n)$  and x in K with  $x_n \to x$  one has  $f_n(x_n) \to f(x)$ .
  - (b) Show that this can fail if K is not assumed to be compact.
- **2.** Let  $\Omega$  be a set. Show that  $(\mathcal{F}_{b}(\Omega), \|\cdot\|_{\infty})$  is a Banach space.
- **3.** Let  $\mathscr{A}$  be the set of all even real polynomial functions on [0, 1]; i.e., p is a polynomial such that p(-x) = p(x).
  - (a) Show that every  $p \in \mathscr{A}$  is of the form  $p(x) = c_1 + c_2 x^2 + c_3 x^4 + \ldots c_n x^{2n}$ , where  $c_1, \ldots, c_n \in \mathbb{R}$  and  $n \in \mathbb{N}$ .
  - (b) Show that  $\mathscr{A}$  is dense in  $(C[0,1], \|\cdot\|_{\infty})$ .
  - (c) Now let  $\mathscr{A}$  be the set of all even real polynomial functions on [-1, 1]. Is  $\mathscr{A}$  dense in  $(C[-1, 1], \|\cdot\|_{\infty})$ ?
- **4.** Let  $(X, \|\cdot\|)$  be a Banach space and let  $M \subset X$  be compact. Suppose  $\varphi \colon M \to M$  satisfies  $\|\varphi(x) \varphi(y)\| < \|x y\|$  for all  $x, y \in M$ . Show that  $\varphi$  has a unique fixed point in M.
- **5.** We are interested in  $x, y \in [-1, 1]$  which solve

$$50x = x^{2} + y^{2} + x + 1$$
  
$$50y = x^{3} + y^{2} + y.$$

- (a) Use Banach's fixed point theorem to prove the existence of a unique solution.
- (b) Approximate the solution with an error  $< 10^{-4}$  using fixed point iteration starting at  $x_0 = y_0 = 0$ .