

UNIVERSITY OF ULM

Discussion: Friday, 5.12.2014

Exercises Applied Analysis: Sheet 7

1. The proof of Banach's fixed point theorem shows that for any initial function $u \in C(I)$ the sequence $\Phi^n u$ converges to the unique fixed-point u^* of Φ that is the unique solution of (ODE). This allows to approximate the solution u^* by simply iterating Φ . This method is called Picard iteration.

For the ordinary differential equation u'(t) = tu(t) on [0, 1], use Picard iteration to construct the solution of the equation for the initial value u(0) = 1.

2. Calculate the value of the limit

$$\lim_{N \to \infty} \sum_{k=1}^{N} \frac{N}{N^2 + k^2}$$

by using the Riemann integral.

- **3.** In the lecture it was shown that $(C[0,1], \|\cdot\|_{\mathcal{L}^1})$ with $\|f\|_{\mathcal{L}^1} := \int_0^1 |f(s)| ds$ is a normed space.
 - (a) Show that $(C[0,1], \|\cdot\|_{\mathcal{L}^1})$ is not complete.
 - (b) Is $(C[0,1], \|\cdot\|_{\mathcal{L}^1})$ separable?
- 4. Urysohn's lemma:

Let $(X, \|\cdot\|)$ be a normed space and $A, B \subset X$ be closed sets such that $A \cap B = \emptyset$. Show that there exists a continuous function $f \in C(X)$ such that f(x) = 0 for all $x \in A$ and f(x) = 1 for all $x \in B$.

[Hint: First show that $x \mapsto \inf\{||x - y|| : y \in A\}$ is Lipschitz continuous if $A \neq \emptyset$. For f use a suitable combination of these functions.]