

UNIVERSITY OF ULM

Discussion: Friday, 12.12.2014

Exercises Applied Analysis: Sheet 8

1. Let (Ω_2, Σ_2) be a measurable space and \mathscr{A} be a generator of Σ_2 . Let Ω_1 be a nonempty set and \mathscr{F} be a set of maps from Ω_1 to Ω_2 . Using the principle of good sets, show that $\sigma(\mathscr{F})$ is generated by

$$\{f^{-1}[A]: f \in \mathscr{F}, A \in \mathscr{A}\}.$$

- **2.** Show that the set of half-open intervals [a, b) with $a, b \in \mathbb{Q}$ and a < b generates the Borel σ -algebra on \mathbb{R} .
- **3.** Let (Ω_1, Σ_1) and (Ω_2, Σ_2) be σ -algebras. We define the product σ -algebra $\Sigma_1 \otimes \Sigma_2$ on $\Omega_1 \times \Omega_2$ by $\sigma(\{A \times B : A \in \Sigma_1, B \in \Sigma_2\}).$
 - (a) Show that $\mathscr{B}(\mathbb{R}^2) = \mathscr{B}(\mathbb{R}) \otimes \mathscr{B}(\mathbb{R}).$
 - (b) Suppose \mathscr{A}_j is a generator of Σ_j , j = 1, 2. Show that

$$\Sigma_1 \otimes \Sigma_2 = \sigma(\{A \times B : A \in \mathscr{A}_1, B \in \mathscr{A}_2\}).$$

[Hint: Use the principle of good sets twice.]

- (c) Conclude that $\mathscr{B}(\mathbb{R}^2)$ is generated by $[a_1, b_1) \times [a_2, b_2)$ with $a_1, b_1, a_2, b_2 \in \mathbb{Q}$.
- 4. Let us suppose that a function $f \colon \mathbb{R} \to \mathbb{R}$ is given. We equip the codomain with the Borel- σ -algebra $\mathscr{B}(\mathbb{R})$. Describe (without a proof) the σ -algebra $\sigma(f)$ in the following situations:
 - 1. f(x) = sgn(x), where sgn(x) = 1 for x > 0, sgn(x) = -1 for x < 0 and sgn(0) = 0;

$$2. \quad f(x) = x^3,$$

3. f(x) = |x|.