

Discussion: Friday, 19.12.2014

Solutions Applied Analysis: Sheet 9

1. Let Ω be a nonempty set and $f, g: \Omega \to \mathbb{R}$. As usual, equip the range \mathbb{R} with the Borel σ -algebra.

Show that the set $\{x \in \Omega : f(x) \leq g(x)\}$ is in the σ -algebra generated by $\{f, g\}$ on Ω . The same holds if \leq is replaced by =, < or >.

- **2.** Let us suppose that a Borel measurable function $f \colon \mathbb{R} \to \mathbb{R}$ is given. Describe (without a proof) the push forward of the Lebesgue measure λ under f.
 - 1. f(x) = sgn(x), where sgn(x) = 1 for x > 0, sgn(x) = -1 for x < 0 and sgn(0) = 0;
 - 2. $f(x) = x^3$,
 - 3. f(x) = |x|.
- 3. Give an example of a Dynkin system that is not a σ -algebra.
- 4. Let (Ω, Σ) be a measurable space and \mathscr{A} be a generator of Σ that is stable under intersections. Suppose that there exists an increasing sequence $\Omega_n \in \mathscr{A}$ with $\bigcup \Omega_n = \Omega$.
 - (a) For $n \in \mathbb{N}$ we set $\Sigma_n := \sigma(\{A \cap \Omega_n : A \in \mathscr{A}\})$. Show that $\Omega_n \cap \Sigma = \Sigma_n$.
 - (b) Let μ and ν are two (σ-finite) measures on (Ω, Σ) such that μ(A) = ν(A) < ∞ for all A ∈ 𝔄. Show that μ = ν.
 [Hint: Use part (a) and the continuity from below of measures.]
- **5.** Let $F \colon \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function, i.e., $F(x) \leq F(y)$ if $x \leq y$. Define $F_+(t) := \inf\{F(s) : s > t\}$. Show that there exists at most one measure μ on $\mathscr{B}(\mathbb{R})$ such that $\mu((a, b]) = F_+(b) F_+(a)$ for all $a, b \in \mathbb{R}$ with a < b.

Give two different functions F such that the associated measure is both times δ_0 .