Dr. Manfred Sauter
Dominik Dier
Winter term 2014/15

Solutions Applied Analysis: Sheet 10

1. Let (Ω, Σ, μ) be a probability space. Two sets $A, B \in \Sigma$ are called (stochastically) independent, if and only if

$$
\mu(A \cap B)=\mu(A) \mu(B)
$$

Let us suppose that $A \in \Sigma$ and $\mathcal{E} \subset \Sigma$ are given. We say that A is independent of \mathcal{E}, if and only if A, B are independent for all $B \in \mathcal{E}$.
(a) Find a concrete example of the above situation such that A is independent of \mathcal{E} but A is not independent of $\sigma(\mathcal{E})$.
(b) Let us suppose that \mathcal{E} is stable under intersections. Prove that A and \mathcal{E} are independent if and only if A and $\sigma(\mathcal{E})$ are independent.
2. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a monotonically increasing function, i.e., $F(x) \leq F(y)$ if $x \leq y$. Define $F_{+}(t):=\inf \{F(s): s>t\}$. Show that there exists a measure μ on $\mathscr{B}(\mathbb{R})$ such that $\mu((a, b])=F_{+}(b)-F_{+}(a)$ for all $a, b \in \mathbb{R}$ with $a<b$.
3. Let (Ω, Σ, μ) be a measure space and $f: \Omega \rightarrow[0, \infty)$ be a measurable function.
(a) Show that $\nu(A)=\int \mathbb{1}_{A} f \mathrm{~d} \mu$ defines a measure on (Ω, Σ).
(b) When is the measure ν finite?
4. Suppose μ is the counting measure on the measurable space ($\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Let $f: \mathbb{N} \rightarrow[0, \infty)$ be a function. Note that f is measurable. Show that f is integrable if and only if $f \in \ell^{1}$.

