

UNIVERSITY OF ULM

Discussion: Friday, 16.1.2014

Solutions Applied Analysis: Sheet 10

1. Let (Ω, Σ, μ) be a probability space. Two sets $A, B \in \Sigma$ are called (stochastically) independent, if and only if

$$\mu(A \cap B) = \mu(A)\mu(B).$$

Let us suppose that $A \in \Sigma$ and $\mathcal{E} \subset \Sigma$ are given. We say that A is independent of \mathcal{E} , if and only if A, B are independent for all $B \in \mathcal{E}$.

- (a) Find a concrete example of the above situation such that A is independent of \mathcal{E} but A is not independent of $\sigma(\mathcal{E})$.
- (b) Let us suppose that \mathcal{E} is stable under intersections. Prove that A and \mathcal{E} are independent if and only if A and $\sigma(\mathcal{E})$ are independent.
- **2.** Let $F \colon \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function, i.e., $F(x) \leq F(y)$ if $x \leq y$. Define $F_+(t) := \inf\{F(s) : s > t\}$. Show that there exists a measure μ on $\mathscr{B}(\mathbb{R})$ such that $\mu((a, b]) = F_+(b) F_+(a)$ for all $a, b \in \mathbb{R}$ with a < b.
- **3.** Let (Ω, Σ, μ) be a measure space and $f: \Omega \to [0, \infty)$ be a measurable function.
 - (a) Show that $\nu(A) = \int \mathbb{1}_A f \, d\mu$ defines a measure on (Ω, Σ) .
 - (b) When is the measure ν finite?
- 4. Suppose μ is the counting measure on the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Let $f \colon \mathbb{N} \to [0, \infty)$ be a function. Note that f is measurable. Show that f is integrable if and only if $f \in \ell^1$.