

UNIVERSITY OF ULM

Discussion: Friday, 23.1.2014

Dr. Manfred Sauter Dominik Dier Winter term 2014/15

Solutions Applied Analysis: Sheet 11

- **1.** Let (Ω, Σ, μ) be a measure space and $f: \Omega \to [0, \infty]$ measurable. Define $\nu(A) := \int_A f d\mu$ for $A \in \Sigma$. We know that $\nu(A)$ is a measure. Show that $g \in \mathscr{L}^1(\Omega, \Sigma, \nu)$ if and only if $gf \in \mathscr{L}^1(\Omega, \Sigma, \mu)$. Moreover, show that then $\int g d\nu = \int gf d\mu$.
- **2.** Let $\alpha > 0$.
 - (a) Show that the following measures $\nu(A) = \int_A f \, d\lambda$, where λ is the Lebesgue measure and

(*i*.)
$$f(x) = \frac{1}{\pi(1+x^2)}$$
, (*ii*.) $f(x) = \mathbb{1}_{[0,\infty)}(x)\alpha e^{-\alpha x}$,

are probability measures.

(b) Find some c > 0 (depending on $\alpha > 0$) such that a measure $\nu(A) = \int_A f \, d\zeta$, where ζ is the counting measure on \mathbb{N}_0 and

$$f(k) = c \frac{\alpha^k}{k!}$$

defines a probability measure.

(c) Calculate the expected value of random variables with the above densities f, i.e.

$$\int_{\mathbb{R}} \frac{x}{\pi(1+x^2)} \, \mathrm{d}\lambda(x), \quad \int_{[0,\infty)} x \alpha e^{-\alpha x} \, \mathrm{d}\lambda(x), \text{ and } \int_{\mathbb{N}} k c \frac{\alpha^k}{k!} \, \mathrm{d}\zeta(k),$$

where λ is the Lebesgue measure and ζ the counting measure.

- **3.** Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$. Give a sequence of integrable functions $f_n \colon \mathbb{R} \to [0, 1]$ such that $f_n(x) \to 0$ as $n \to \infty$ for all $x \in \mathbb{R}$ and $\int f_n = 1$ for all $n \in \mathbb{N}$. Does such an example also exist if \mathbb{R} is replaced by [-1, 1]?
- 4. Find a probability space $(\Omega, \Sigma, \mathbb{P})$ that supports a sequence of stochastically independent, identically distributed random variables $(X_n)_{n \in \mathbb{N}}$ such that $\mathbb{P}(X_n = 1) = 3/5$, $\mathbb{P}(X_n = 0) = 1/5$ and $\mathbb{P}(X_n = 2) = 1/5$. Describe the construction of such a sequence for your choice of $(\Omega, \Sigma, \mathbb{P})$. Prove that the first two functions in your sequence are indeed stochastically independent.