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1. Give an example of a function f: R? — [0, 1] such that f(-,z) and f(z,-): R — [0,1] are
Borel measurable for all x € R, but f is not Borel measurable.

La(z) forz=y, where A C P(R) \ B(R).]

[Hint: consider the function f(z,y) =
0 for x # v,

2. We consider the measure spaces (R, B(R); A\) and (IN, P(IN), ¢). Determine P(IN) ® B(R)
and ¢ ® A.

3. Let (©,%,P) be a probability space and let X3, X be random variables. We say that
¥1,39 C ¥ are independent if P(A; N Ag) = P(A;)P(As) for all A1 € ¥; and Ay € Xo.
Moreover, we say that X; and Xs are independent if o(X;) and o(X2) are independent.

(a) Show that X; and Xs are independent if and only if P(x, x,) = Px, ® Px,.
(b) Conclude that E(X;X3) = EX1EX5.

4. Calculate the following integrals, if they exist.
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