

University of Ulm

Discussion: Friday, 30.1.2014

Dr. Manfred Sauter Dominik Dier Winter term 2014/15

Exercises Applied Analysis: Sheet 12

1. Give an example of a function $f: \mathbb{R}^2 \to [0,1]$ such that $f(\cdot,x)$ and $f(x,\cdot): \mathbb{R} \to [0,1]$ are Borel measurable for all $x \in \mathbb{R}$, but f is not Borel measurable.

[Hint: consider the function $f(x,y) = \begin{cases} \mathbbm{1}_A(x) & \text{for } x = y, \\ 0 & \text{for } x \neq y, \end{cases}$ where $A \subset \mathcal{P}(\mathbb{R}) \setminus \mathcal{B}(\mathbb{R})$.]

- **2.** We consider the measure spaces $(\mathbb{R}, \mathcal{B}(\mathbb{R}); \lambda)$ and $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \zeta)$. Determine $\mathcal{P}(\mathbb{N}) \otimes \mathcal{B}(\mathbb{R})$ and $\zeta \otimes \lambda$.
- **3.** Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space and let X_1, X_2 be random variables. We say that $\Sigma_1, \Sigma_2 \subset \Sigma$ are independent if $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}(A_2)$ for all $A_1 \in \Sigma_1$ and $A_2 \in \Sigma_2$. Moreover, we say that X_1 and X_2 are independent if $\sigma(X_1)$ and $\sigma(X_2)$ are independent.
 - (a) Show that X_1 and X_2 are independent if and only if $\mathbb{P}_{(X_1,X_2)} = \mathbb{P}_{X_1} \otimes \mathbb{P}_{X_2}$.
 - (b) Conclude that $\mathbb{E}(X_1X_2) = \mathbb{E}X_1\mathbb{E}X_2$.
- 4. Calculate the following integrals, if they exist.

(a)
$$\int_0^1 \int_x^1 \frac{y}{y^3 + 1} \, d\lambda(y) \, d\lambda(x)$$

(b)
$$\int_{\{(k,l)\in\mathbb{N}^2:l\leq k\}} \frac{1}{2^k} d(\zeta \otimes \zeta)(k,l)$$

(c)
$$\int_{[0,1]^2} \frac{x-y}{(x+y)^3} d(\lambda \otimes \lambda)(x,y)$$

(d)
$$\int_{-1}^{1} \int_{-1}^{1} \frac{x(y+2y^2)}{e^y + |y| + y^2 + |\sin y|} d\lambda(y) d\lambda(x)$$