

## **Exercises for Applied Analysis**

## Sheet 2

7. Let  $(M_j, d_j)$  be metric spaces for  $j \in \{1, ..., N\}$ . By  $M := M_1 \times \cdots \times M_N$  we denote the product space endowed with the product metric (see Proposition 1.1.10). Let  $\mathbf{x}_n, \mathbf{x} \in M$  for all  $n \in \mathbb{N}$ , where  $\mathbf{x}_n = (x_j^{(n)})$  and  $\mathbf{x} = (x_j)$  for  $j \in \{1, ..., N\}$ . Prove that  $\mathbf{x}_n \to \mathbf{x}$  in M if and only if  $x_j^{(n)} \to x_j$  for all  $j \in \{1, ..., N\}$  as  $n \to \infty$ .

Conclude that for every metric space (M', d'), a function  $f : M' \to M$  is continuous if and only if every component  $f_j : M \to M_j$  is continuous for all  $j \in \{1, \ldots, N\}$ .

- 8. Find a sequence of open subsets of  $\mathbb{R}$  whose intersection is not open and a sequence of closed subsets of  $\mathbb{R}$  whose union is not closed.
- 9. Consider the set

$$B := \{ \mathbf{x} \in \ell^{\infty} : |x_j| < 1 \text{ for all } j \in \mathbb{N} \}.$$

Decide whether B is open in  $\ell^\infty$  if  $\ell^\infty$  is endowed with

- (a) the metric  $d_0$ .
- (b) the metric induced by the norm  $\|\cdot\|_{\infty}$ .
- ${\bf 10.}\ \ Consider$  the set

 $A := (\{(x, y) \in \mathbb{R}^2 : y < 0\} \setminus \{(1/n, -1) : n \in \mathbb{N}\}) \cup \{(1/n, 1) : n \in \mathbb{N}\}.$ 

and determine the sets  $A^{\circ}$ ,  $\overline{A}$  and  $\partial A$  as well as the set of all accumulation points of A.

- 11. We consider the metric spaces  $(\mathbb{R}, d)$  and  $(\mathbb{R}, d')$ , where d denotes the discrete and d' the euclidean metric.
  - (a) Describe the convergent sequences of  $(\mathbb{R}, d)$ .
  - (b) Determine all continuous functions  $f : (\mathbb{R}, d) \to (\mathbb{R}, d')$ .
- 12. Let *E* be a vector space over  $\mathbb{K}$  and  $\|\cdot\|_1$ ,  $\|\cdot\|_2$  be norms on *E*. Assume that a sequence in *E* converges to 0 with respect to  $\|\cdot\|_1$  if and only if it converges to 0 with respect to  $\|\cdot\|_2$ . Prove that  $\|\cdot\|_1$  and  $\|\cdot\|_2$  are equivalent.
- 13. Let (M, d) and (M', d') be two metric spaces such that (M, d) is separable. Show that (M', d') is also separable if there exists a surjective continuous mapping  $f : M \to M'$ .