

Universität Ulm

Abgabe:

Bis 02.11.12, 10:15 Briefkasten vor H3

Dr. G. Baur M. Gerlach Wintersemester 12/13

19+2 Punkte

Blatt 2

Analysis II für Informatiker und Ingenieure

- 6. Wie viele Terme der Taylor-Entwicklung von $\sin(x)$ um 0 benötigt man, um die Zahl (2) $\sin(0.2)$ auf 10^{-4} genau zu berechnen. Berechnen Sie diese Näherung.
- 7. Es sei $f:[a,b]\to\mathbb{R}$ 4-mal stetig differenzierbar. Bei $c\in(a,b)$ gelte f'(c)=f''(c)= $f^{(3)}(c) = 0$ und $f^{(4)}(c) > 0$. Zeigen Sie, dass c Stelle eines lokalen Minimums von f ist. Versuchen Sie, aus dieser Übungsaufgabe einen allgemeineren Satz herzuleiten. (+2)
- 8. Beweisen Sie die Linearität des Riemann-Integrals (Satz 6(i)): Es sei $f \in R[a,b]$ und (2) $c \in \mathbb{R}$. Zeigen Sie, dass $cf \in R[a,b]$ mit

$$\int_a^b cf(x) \, \mathrm{d}x = c \int_a^b f(x) \, \mathrm{d}x.$$

Hinweis: Unterscheiden Sie die Fälle c > 0 und $c \le 0$.

- **9.** Bestimmen Sie jeweils eine Stammfunktion der nachfolgenden Funktionen f(x). (8)
 - (a) $\sqrt[3]{x^2}$
- (c) $x \cosh(x)$
- (g) $\sinh^2(x)$

- (b) $\frac{1}{x^7}$
- (d) $\frac{1}{x^2} \ln(x)$
- (e) Z^{∞} (g) $\sinh^{2}(x)$ (f) $\cos(x)\cosh(x)$ (h) $x\arctan(x)$

(4)

- 10. Berechnen Sie jeweils den Wert der nachfolgenden Integrale
 - (a) $\int_{1}^{2} x^{3} \ln(x) dx$

(c) $\int_{1}^{T} \frac{1}{x^2} dx \text{ für } T > 1$

(b) $\int_{-\pi}^{\pi} \cos(x) \, \mathrm{d}x$

(d) $\int_{1}^{T} \frac{1}{x} dx \text{ für } T > 1$

Berechnen Sie für die Integrale aus Aufgabenteil (c) und (d) den Grenzwert für $T \to \infty$. (1)