
4 Hilbert spaces

The proof of the Hilbert basis theorem is not
mathematics, it is theology.

— Camille Jordan

Wir müssen wissen, wir werden wissen.
— David Hilbert

We now continue to study a special class of Banach spaces, namely
Hilbert spaces, in which the presence of a so-called “inner product” al-
lows us to define angles between elements. In particular, we can intro-
duce the geometric concept of orthogonality. This has far-reaching con-
sequences.

4.1 Deänition and Examples

Definition 4.1. Let H be a vector space over K. An inner product (or a
scalar product) on H is a map (· | ·) : H× H → K such that the following
three properties hold.

(IP1) For all x ∈ H, one has (x | x) ≥ 0, and (x | x) = 0 if and only if
x = 0.

(IP2) For all x, y ∈ H, one has (x | y) = (y | x).
(IP3) For all x, y, z ∈ H and λ ∈ K, one has (λx + y | z) = λ(x | z) +

(y | z).

The pair (H, (· | ·)) is called inner product space or pre-Hilbert space.

Example 4.2. (a) On H = KN,

(x | y) :=
N

∑
k=1

xkyk

defines an inner product.
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4 Hilbert spaces

(b) On H = `2,

(x | y) :=
∞

∑
k=1

xkyk

for x = (xk) and y = (yk) defines an inner product.

(c) On C([a, b]),

( f | g) :=
∫ b

a
f (t)g(t)dt

defines an inner product. If w : [a, b] → R is such that there exist
constants 0 < ε < M, such that ε ≤ w(t) ≤ M for all t ∈ [a, b], then
also

( f | g)w :=
∫ b

a
f (t)g(t)w(t)dt

defines an inner product on C([a, b]).

(d) If (Ω, Σ, µ) is a measure space, then

( f | g) :=
∫

Ω
f g dµ

defines an inner product on L2(Ω, Σ, µ).
Note that for examples (b), (c) and (d), it follows from Hölder’s in-

equality that the sum, respectively the integral, is well-defined.

Remark 4.3. Condition (IP1) is called definiteness of (· | ·), (IP2) is called
symmetry. Note that if K = R, then (IP2) reduces to (x | y) = (y | x). (IP3)
states that (· | ·) is linear in the first component. Note that it follows from
(IP2) and (IP3) that

(x | λy + z) = λ(x | y) + (x | z).

If (H, (· | ·)) is an inner product space, we set

‖x‖ :=
√
(x | x).

Lemma 4.4 (Cauchy–Schwarz). Let (H, (· | ·)) be an inner product space.
Then

|(x | y)| ≤ ‖x‖ · ‖y‖ (4.1)

for all x, y ∈ H and equality holds if and only if x and y are linearly dependent.

Proof. Let λ ∈ K. Then

0 ≤ (x + λy | x + λy) = (x | x) + λ(y | x) + λ(x | y) + |λ|2(y | y)
= ‖x‖2 + 2 Re(λ(x | y)) + |λ|2‖y‖2.

If y = 0, then (x | y) = 0 and the claimed inequality holds true. If y 6= 0,
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4.1 Definition and Examples

In fact, also a con-
verse holds: If the

parallelogramm
identity holds in
a normed space

(X, ‖·‖), then there
exists a unique

inner product (· | ·)
on X such that
‖x‖2 = (x | x).

we may put λ = −(x | y)‖y‖−2. Then we obtain

0 ≤ ‖x‖2 − 2 Re
|(x | y)|2

‖y‖2 +
|−(x | y)|2

‖y‖4 ‖y‖2 = ‖x‖2 − |(x | y)|2

‖y‖2 ,

which establishes (4.1). By (IP1), equality holds if and only if x = −λy.

Lemma 4.5. Let (H, (· | ·)) be an inner product space. Then ‖·‖ :=
√
(· | ·)

defines a norm on H.

Proof. If ‖x‖ = 0, then (x | x) = 0 and therefore x = 0 by (IP1). This
proves (N1). For (N2), let x ∈ H and λ ∈ K be given. Then ‖λx‖2 =

(λx | λx) = λλ(x | x) = |λ|2‖x‖2. Property (N3) holds since

‖x + y‖2 = ‖x‖2 + 2 Re (x | y) + ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2,

where we used the Cauchy–Schwarz inequality.

Definition 4.6. A Hilbert space is an inner product space (H, (· | ·)) which
is complete with respect to the norm ‖·‖ :=

√
(· | ·).

Example 4.7. The inner product spaces from Example 4.2 (a), (b) and (d)
are Hilbert spaces, see for example Theorem 3.105. The inner product
space from Example 4.2 (c) is not complete and therefore not a Hilbert
space. It suffices to note that C([a, b]) is dense in L2([a, b]) and that the
given inner product gives rise to the restriction of the usual norm in
L2([a, b]) to C([a, b]).

Lemma 4.8 (Parallelogram identity). Let H be an inner product space. Then

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

for all x, y ∈ H.

Proof.

‖x + y‖2 + ‖x− y‖2

= ‖x‖2 + 2 Re (x | y) + ‖y‖2 + ‖x‖2 − 2 Re (x | y) + ‖y‖2

= 2(‖x‖2 + ‖y‖2)

Exercise 4.9. Show that in (Rd, ‖·‖p), (`
p, ‖·‖p) and (Lp([0, 1]), ‖·‖p) the

parallelogram identity fails if p 6= 2. Hence in this case there is no inner
product (· | ·)p such that ‖x‖p =

√
(x | x)p.

Lemma 4.10. Let H be an inner product space. Then (· | ·) : H × H → K is
continuous.
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4 Hilbert spaces

In fact, an inner
product allows
to define angles
between two vectors.
Consider H = R2

and describe the
angle between two
vectors x, y ∈ R2

with ‖x‖ = ‖y‖ = 1
in terms of the inner
product!

Proof. Let xn → x and yn → y. Then M := supn∈N‖xn‖ < ∞. By the
Cauchy–Schwarz inequality,

|(xn | yn)− (x | y)| ≤ |(xn | yn − y)|+ |(xn − x | y)|
≤ M‖yn − y‖+ ‖y‖‖xn − x‖ → 0.

4.2 Orthogonal Projection

In this section we show that in a Hilbert space one can project onto any
closed subspace. In other words, for any point there exists a unique best
approximation in any given closed subspace. For this the geometric prop-
erties arising from the inner product are crucial.

Definition 4.11. Let (H, (· | ·)) be an inner product space. We say that
two vectors x, y ∈ H are orthogonal (and write x ⊥ y) if (x | y) = 0.
Given a subset S ⊂ H, the annihilator S⊥ of S is defined by

S⊥ := {y ∈ H : y ⊥ x for all x ∈ S}.

If S is a subspace, then S⊥ is also called the orthogonal complement of S.

In an inner product space the following fundamental and classic geo-
metric identity holds.

Lemma 4.12 (Pythagoras). Let H be an inner product space. If x ⊥ y, then

‖x + y‖2 = ‖x‖2 + ‖y‖2.

Proof.

‖x + y‖2 = ‖x‖2 + 2 Re (x | y) + ‖y‖2 = ‖x‖2 + ‖y‖2.

Proposition 4.13. Let H be an inner product space and S ⊂ H.

(a) S⊥ is a closed, linear subspace of H.

(b) span S ⊂ (S⊥)⊥.

(c) span S ∩ S⊥ = {0}.

Proof. (a) If x, y ∈ S⊥ and λ ∈ K, then, for z ∈ S, we have (λx + y | z) =
λ(x | z) + (y | z) = 0, hence λx + y ∈ S⊥. This shows that S⊥ is a linear
subspace. If (xn) is a sequence in S⊥ which converges to x, then we infer
from Lemma 4.10 that (x | z) = lim (xn | z) = 0 for all z ∈ S.

(b) By (a), (S⊥)⊥ is a closed linear subspace which contains S. Thus
span S ⊂ (S⊥)⊥.

(c) If x ∈ span S ∩ S⊥, then, by (b), x ∈ S⊥ ∩ (S⊥)⊥ and hence x ⊥ x.
But this means (x | x) = 0. By (IP1) it follows that x = 0.
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4.2 Orthogonal Projection

Give an example
of a subspace of `2

that is not closed!

In a Hilbert space
the orthogonal pro-
jection can be more

generally defined
for all closed and

convex subsets. But
then the orthogoal

projection does not
need to be a linear

map, of course.

We now come to the main result of this section.

Theorem 4.14. Let (H, (· | ·)) be a Hilbert space and K ⊂ H be a closed linear
subspace. Then for every x ∈ H, there exists a unique element PKx of K such
that

‖PKx− x‖ = min {‖y− x‖ : y ∈ K}.

Proof. Let d := inf {‖y− x‖ : y ∈ K}. By the definition of the infimum,
there exists a sequence (yn) in K with ‖yn − x‖ → d. Applying the paral-
lelogram identity 4.8 to the vectors x− yn and x− ym, we obtain

2(‖x− yn‖2 + ‖x− ym‖2)

= ‖(x− yn) + (x− ym)‖2 + ‖x− yn − (x− ym)‖2

= ‖2x− yn − ym‖2 + ‖yn − ym‖2

= 4
∥∥∥x− 1

2
(yn + ym)

∥∥∥2
+ ‖yn − ym‖2.

Since znm := 1
2(yn + ym) ∈ K, we have ‖x− znm‖2 ≥ d2 and thus

‖yn − ym‖2 ≤ 2(‖x− yn‖2 + ‖x− ym‖2)− 4d2.

By the choice of the sequence (yn), the right-hand side of this equation
converges to 0 as n, m → ∞, proving that (yn) is a Cauchy sequence.
Since H is complete, (yn) converges to some vector PKx. Since K is closed,
PKx ∈ K. We have thus proved existence.

As for uniqueness, if ‖z− x‖ = min {‖y− x‖ : y ∈ K}, then, by the
parallelogram identity,

2‖x− PKx‖2 + 2‖x− z‖2 = 4
∥∥∥x− 1

2
(PKx + z)

∥∥∥2
+ ‖z− PKx‖2

and thus

4d2 = 4
∥∥∥x− 1

2
(PKx + z)

∥∥∥2
+ ‖PKx− z‖2 ≥ 4d2 + ‖PKx− z‖2

proving that ‖PKx− z‖ = 0; hence PKx = z.

Definition 4.15. The map PK : H → H from Theorem 4.14 is called the
orthogonal projection onto K.

We now collect some properties of PK.

Proposition 4.16. Let H be a Hilbert space, K be a closed subspace of H and PK
be the orthogonal projection onto K.

(a) For all x, y ∈ H, we have PKx = y if and only if y ∈ K and x− y ∈ K⊥.

(b) PK is a bounded linear operator on H.
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4 Hilbert spaces

(c) P2
K = PK and (PKx | y) = (x | PKy) for all x, y ∈ H.

Proof. (a) If y ∈ K and x− y ∈ K⊥, then for every z ∈ K we have y− z ∈ K
and thus x− y ⊥ y− z. By Pythagoras,

‖x− z‖2 = ‖x− y‖2 + ‖y− z‖2 ≥ ‖x− y‖2.

Thus ‖x− y‖ = min {‖x− z‖ : z ∈ K}, proving that PKx = y.
Conversely, if PKx = y, then clearly y ∈ K. Assume that x − y /∈ K⊥.

Then there exists z ∈ K \ {0} with (x− y | z) 6= 0. We may assume that
(x− y | z) = 1 (otherwise, we divide z by (x− y | z)). Then, for λ ∈ R,

‖x− y− λz‖2 = ‖x− y‖2 − 2 Re λ(x− y | z) + λ2‖z‖2

= ‖x− y‖2 − 2λ + λ2‖z‖2.

The latter is strictly less than ‖x− y‖2 for small λ > 0, for example if
λ2‖z‖2 < 2λ, i.e. λ < 2‖z‖−2. Hence we find an element in K, namely
y + ‖z‖−2z, for example, which is closer to x than to y. But then y 6= PKx.

(b) Let x, y ∈ H and λ ∈ K. By (a), x − PKx, y − PKy ∈ K⊥. Since
K⊥ is a subspace by Proposition 4.13, λx − λPKx + y − PKy = (λx +
y) − (λPKx + PKy) ∈ K⊥. Since λPKx + PKy ∈ K, it follows from (a)
that PK(λx + y) = λPKx + PKy, i.e. PK is linear. As for the boundedness,
observe that x = PKx + (x− PKx) where PKx ⊥ x− PKx by (a). Thus, by
Pythagoras,

‖x‖2 = ‖PKx‖2 + ‖x− PKx‖2 ≥ ‖PKx‖2,

proving the boundedness of PK.
(c) PKx ∈ K and 0 = PKx− PKx ∈ K⊥. Hence, by (a), PKPKx = PKx.
For the second part, observe that

(PKx | y) = (PKx | PKy) + (PKx | y− PKy) = (PKx | PKy)

since y− PKy ∈ K⊥ and PKx ∈ K by (a). Similarly, one sees that (x | PKy) =
(PKx | PKy).

We can now refine Proposition 4.13 for linear subspaces.

Corollary 4.17. If H is a Hilbert space and K is a linear subspace of H, then
K = (K⊥)⊥.

Proof. We have seen already that K ⊂ (K⊥)⊥. Now let y ∈ (K⊥)⊥. Then
y = PKy + (I − PK)y =: y1 + y2. Thus ‖y2‖2 = (y2 | y2) = (y2 | y) −
(y2 | y1) = 0, since y2 ∈ K⊥ = K⊥ and y ∈ (K⊥)⊥ and y1 ∈ K. It follows
that y2 = 0, hence y = y1 ∈ K. This shows (K⊥)⊥ ⊂ K.
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4.3 Orthonormal Bases

Recall that H∗ =
L(H; K) is the

space of bounded
linear functionals.

The theorem of
Fréchet–Riesz

says that a Hilbert
space is essentially

its own dual.

This shows that
functionals in H∗

can be used to
separate points
from subspaces

(and, more generally,
closed convex sets).

Give a geometric
interpretation in R2!

We frequently
consider an or-

thonormal system
to be indexed,

i.e., S = (xj)j∈J .
For J = N, this

leads to sequences.

An important consequence of Theorem 4.14 is the following result,
which shows that in a Hilbert space all bounded linear functionals can
be expressed in a specific way in terms of the inner product.

Theorem 4.18 (Fréchet–Riesz). Let H be a Hilbert space. Then ϕ ∈ H∗ if
and only if there exists a y ∈ H such that ϕ(x) = (x | y) for all x ∈ H.

Proof. If ϕ(x) = (x | y), then ϕ is continuous as a consequence of Lemma
4.10.

Conversely, let ϕ ∈ H∗ be given. Then K := ker ϕ is a closed subspace
of H. If K = H, pick y = 0. If K 6= H, there exists an x0 ∈ H with
ϕ(x0) 6= 0. Put z = x0− PKx0. Since x0 6∈ K, we have z 6= 0 and may thus
define w = ‖z‖−1z. Then ‖w‖ = 1 and w ∈ K⊥. In particular, ϕ(w) 6= 0.

Now for x ∈ H, we have ϕ(x) = ϕ(x)
ϕ(w)

ϕ(w). Define λ := ϕ(x)
ϕ(w)

. Then, by

linearity, ϕ(x− λw) = 0 and thus x− λw ∈ K. Put y := ϕ(w)w. Then

(x | y) = ϕ(w)(x |w)

= ϕ(w)((x− λw |w) + (λw |w))

= ϕ(w)λ‖w‖2 = ϕ(x).

Exercise 4.19. Let H be a Hilbert space and K be a closed, linear subspace
of H with K 6= H. Given x0 ∈ H \ K, show that there exists ϕ ∈ H∗ such
that ϕ(x0) = 1 and ϕ(x) = 0 for all x ∈ K.

4.3 Orthonormal Bases

In this section we study orthonormal bases, which are a generalisation
of the rectangular Cartesian coordinate systems of RN to general Hilbert
spaces. An orthonormal basis is very useful practically since it allows to
effectively compute coefficients and associated orthogonal projections.

Definition 4.20. Let H be an inner product space. An orthonormal sys-
tem is a subset S ⊂ H such that

(i) ‖x‖ = 1 for all x ∈ S (i.e. every vector in S is normalized), and

(ii) for every x, y ∈ S with x 6= y we have (x | y) = 0 (i.e. distinct vec-
tors are orthogonal). An orthonormal basis of H is an orthonormal
system S such that span S = H.

Note the closure in the definition of an orthonormal basis. Whereas in
an ordinary vector space basis (also called Hamel basis) every vector can
be (uniquely) written as a finite linear combination of basis elements, this
does not need to be true for an orthonormal basis. However, it will turn
out that every element can be uniquely written as a (at most) countable
series of multiples of the basis elements.

105



4 Hilbert spaces

This orthonormal
basis of L2(0, 2π),
which is also known
as the Fourier basis,
is very important for
applications. Note
that the functions
eikt can be expressed
in terms of sine and
cosine functions,
and vice versa. So
the Fourier series
from Example 4.34
can be understood
as the description
of functions as
the superposition
of trigonometric
functions of different
integer frequency.

The iterative ar-
gument used in
the Gram–Schidt
procedure can be
understood in the
following way.
Let x, en ∈ H and
‖en‖ = 1. Then
(x | en) measures
‘how much en
there is in x’. Then
y := x − (x | en)en
is what remains
of x if ‘all en is
removed’. Note that
(y | en) = 0, so ‘no en
is left in y’.

Example 4.21. Let H = `2. Then define S := {ej : j ∈N}, where ej =
(0, . . . , 0, 1, 0, . . .) and the 1 is at position j, is an orthonormal basis of H.
Indeed, ‖ej‖ = 1 and (ek | ej) = 0 for k 6= j. Finally, let x = (x1, x2, . . .) ∈
`2. Then yn := (x1, . . . , xn, 0, 0, . . .) ∈ span S. Moreover, ‖x− yn‖2 =

∑∞
k=n+1|xk|2 → 0 as n→ ∞, proving that span S is dense in H.

Exercise 4.22. Let H = L2((0, 2π), B((0, 2π)), λ) with the inner product

( f | g) =
∫ 2π

0
f (t)g(t)dt.

Show that S := {ek : k ∈ Z} where ek : [0, 2π] → C is given by ek(t) :=
(2π)−1/2eikt is an orthonormal basis of H.

Hint: Use that by Corollary 2.71 the functions ek are dense in the continuous 2π

periodic functions. Then use a truncation argument and the density of the continuous
functions in L2((0, 2π)).

Lemma 4.23. Let S be an orthonormal system and e1, . . . , en ∈ S be distinct. If
for scalars λ1, . . . , λn ∈ K we have ∑n

k=1 λkek = 0, then λ1 = . . . = λn = 0,
i.e. S is linearly independent.

Proof. If ∑n
k=1 λkek = 0, then for 1 ≤ j ≤ n, we have

0 = (0 | ej) =
( n

∑
k=1

λkek | ej

)
= ∑

k=1
λk(ek | ej) = λj

since S is orthonormal.

Theorem 4.24 (Gram–Schmidt procedure). Let (xk)k∈N be a linearly inde-
pendent sequence in an inner product space H. Then there exists an orthonormal
system (ek)k∈N such that span{x1, . . . , xn} = span{e1, . . . , en} for all n ∈N.
An analogous result holds for finite linearly independent sets.

Proof. Since (xk) is independent, x1 6= 0. We may thus define e1 :=
‖x1‖−1x1. Then ‖e1‖ = 1 and span{x1} = span{e1}.

Now suppose that we have already constructed orthonormal vectors
e1, . . . , en with span{x1, . . . , xk} = span{e1, . . . , ek} for all 1 ≤ k ≤ n. Put
ẽn+1 := xn+1 −∑n

j=1 (xn+1 | ej)ej. Since x1, . . . , xn+1 are linearly indepen-

dent, ẽn+1 6= 0. Hence, we may define en+1 := ‖ẽn+1‖−1ẽn+1.
By construction, ‖en+1‖ = 1 and

(en+1 | ek) = ‖ẽn+1‖−1
(
(xn+1 | ek)−

n

∑
j=1

(xn+1 | ej)(ej | ek)
)

= ‖ẽn+1‖−1((xn+1 | ek)− (xn+1 | ek)) = 0.

Moreover, span{x1, . . . , xn+1} = span{e1, . . . , en+1}. Proceeding by in-
duction, the claim follows.
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4.3 Orthonormal Bases

Corollary 4.25. Every separable Hilbert space has a countable orthonormal ba-
sis.

Proof. If span S = H, then, by linear algebra, we may pick a linearly
independent sequence from span S whose span is also dense in H (this
sequence may be finite). We then apply the Gram–Schmidt procedure to
this sequence to obtain an orthonormal system whose span is dense.

Example 4.26. Consider the Hilbert space L2(−1, 1). We apply the Gram–
Schmidt procedure to the linearly independent monomials f j(t) = tj for
j = 1, 2, 3.

We have ‖ f0‖2 :=
∫ 1
−1 1 dt = 2. We hence set e0(t) = 1√

2
. Next observe

that

( f1 | e0) =
1√
2

∫ 1

−1
t dt =

1√
2

[1
2

t2
∣∣∣1
−1

= 0.

Hence ẽ1 = f1 − 0e0. Since ‖ẽ1‖2 =
∫ 1
−1 t2 dt = 2

3 , we set e1(t) =
√

3√
2
t. As

for f2, we have

( f2 | e0) =
∫ 1

−1

1√
2

t2 dt =
√

2
3

and

( f2 | e1) =
∫ 1

−1

√
3√
2

t3 dt = 0.

Thus

ẽ2 = f2 − 0 · e1 −
√

2
3

e0 = t2 − 1
3

.

Since ‖ẽ2‖2 =
∫ 1
−1(t

2 − 1
3)

2 dt = 2
5 , we obtain e2(t) =

√
5
2(t

2 − 1
3).

Corollary 4.27 (Orthogonal projection onto a finite dimensional space).
Let H be a Hilbert space and {e1, . . . , en} be an orthonormal system. Then, for
K := span{e1, . . . , en}, the orthogonal projection PK onto K is given by

PKx =
n

∑
j=1

(x | ej)ej.

Proof. In the proof of Theorem 4.24, it was seen that x−∑n
j=1 (x | ej)ej ⊥

ek for k = 1, . . . , n and thus x − ∑n
j=1 (x | ej)ej ∈ span{e1, . . . , en}⊥. By

Proposition 4.16, PKx = ∑n
j=1 (x | ej)ej.

Lemma 4.28 (Bessel’s inequality). Let H be a Hilbert space and (en)n∈N be
an orthonormal system. Then, for every x ∈ H,

∞

∑
n=1
|(x | en)|2 ≤ ‖x‖2.
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4 Hilbert spaces

Theorem 4.30 gives
a useful charac-
terisation of an
orthonormal basis in
a separable Hilbert
space. It actually
generalises to non-
separable Hilbert
spaces, but notation
becomes more
delicate as a basis
will not be countable
in that case. In
combination with
Bessel’s inequality,
the Parseval identity
expresses that an
orthonormal system
is a basis if and only
if it ‘exhausts the
norm’.

Proof. For N ∈ N, let KN := span{e1, . . . , eN} and PN be the orthogo-
nal projection onto KN. By Corollary 4.27, PNx = ∑N

k=1 (x | ek)ek. Now
Pythagoras’ theorem yields

‖x‖2 = ‖PNx‖2 + ‖x− PNx‖2 ≥ ‖PNx‖2 =
N

∑
k=1
|(x | ek)|2.

Since N was arbitrary, the claim follows.

We now can describe also orthogonal projections onto infinite-dimensional
subspaces.

Proposition 4.29. Let H be a Hilbert space and K be a closed linear subspace
of H. If (en)n∈N is an orthonormal basis of K, then the series ∑∞

n=1 (x | en)en
converges for every x ∈ H and the orthogonal projection onto K is given by

PKx :=
∞

∑
n=1

(x | en)en.

Proof. For 1 ≤ m ≤ n, we have by Pythagoras’ theorem∥∥∥∥ n

∑
k=1

(x | ek)ek −
m

∑
k=1

(x | ek)ek

∥∥∥∥2

=
n

∑
k=m+1

|(x | ek)|2.

As a consequence of Bessel’s inequality, the latter converges to 0 as n, m→
∞. Thus the elements ∑n

k=1 (x | ek)ek form a Cauchy sequence in H in n
and is therefore convergent. This proves the first assertion.

For the second assertion, note that

y =
∞

∑
k=1

(x | ek)ek ∈ K = span {ek : k ∈N}

and x − y ⊥ ej for all j ∈ N, which follows from the fact that x −
∑N

k=1 (x | ek)ek ⊥ ej (see Corollary 4.27) and the continuity of the inner
product.

Theorem 4.30. Let H be a separable Hilbert space, (en)n∈N be an orthonormal
system. The following are equivalent.

(a) (en)n∈N is an orthonormal basis of H.

(b) x ⊥ en for all n ∈N implies that x = 0.

(c) x = ∑∞
k=1 (x | ek)ek for all x ∈ H.

(d) (x | y) = ∑∞
k=1 (x | ek)(ek | y) for all x, y ∈ H.

(e) (Parseval’s identity) For all x ∈ H we have

‖x‖2 =
∞

∑
k=1
|(x | ek)|2.
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4.3 Orthonormal Bases

An isometric iso-
morphism between

normed spaces
preserves not only

the topological and
linear structure,
it also preserves
properties of the

norm, like whether
the parallelogram

identity is satisfied
or not, for example.

Proof. (a)⇒ (b): If x ⊥ en for all n ∈ N, then x ⊥ span{en : n ∈ N}. If
span{en : n ∈N} = H, it follows that x ⊥ x and thus x = 0 by (IP1).

(b)⇒ (c): We have x−∑∞
k=1 (x | ek)ek ⊥ en for all n ∈ N. Thus, by (b)

x = ∑∞
k=1 (x | ek)ek.

(c)⇒ (d): By (c),

(x | y) =
( ∞

∑
n=1

(x | en)en,
∞

∑
m=1

(y | em)en

)
=

∞

∑
n=1

∞

∑
m=1

(x | en)(y | em)(en | em)

=
∞

∑
n=1

(x | en)(en | y),

where we used the continuity of the inner product in the second step and
the orthonormality of the en in the third.

(d)⇒ (e): Put x = y.
(e) ⇒ (a): If x ∈ span{en : n ∈ N}⊥, then ‖x‖2 = 0 by Parseval’s

identity. Thus span{en : n ∈ N}⊥ = {0} and hence H = {0}⊥ =

(span {en : n ∈N}⊥)⊥ = span {en : n ∈N}.

We rephrase Theorem 4.30 in a slightly different way.

Corollary 4.31. Let H be a separable Hilbert space and (en)n∈N be an orthonor-
mal basis of H. Then U : H → `2, defined by

Ux = ((x | en))n∈N
,

is an isometric isomorphism.

Proof. Linearity of U is clear. That it is isometric follows from Theorem
4.30 (e). It thus only remains to show that U is surjective. To that end,
given a ∈ `2, put x = ∑∞

k=1 akek. This series converges in H. Indeed,
putting xN := ∑N

k=1 akek, we have, for N > M, that ‖xN − xM‖H =

∑N
k=M+1|ak|2 → 0 as M → ∞. Hence (xN) is a Cauchy sequence and

therefore convergent. Clearly, Ux = a, proving surjectivity.

Remark 4.32. Corollary 4.31 shows that by fixing an orthonormal basis
of H we can identify H with `2. Hence we can translate problems in an
arbitrary (infinite dimensional) separable Hilbert space H into equiva-
lent problems in `2, provided that they only depend on the Hilbert space
structure. While this is conceptually important, it tends to be not very
useful practically since one usually uses specific properties of the ele-
ments as well, for example, pointwise or measure related properties in
L2(Ω, Σ, µ).
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4 Hilbert spaces

Definition 4.33. Let H be an infinite dimensional, separable Hilbert space
and (en) be an orthonormal basis of H. For x ∈ H, the series

∞

∑
k=1

(x | ek)ek

is called the Fourier series of x with respect to (en). The vector ((x | ek))k∈N ∈
`2 is called the Fourier coefficients of x.

Exercise 4.34. Classical Fourier series arise by considering the Hilbert
space L2(0, 2π), for convenience endowed with the inner product

( f | g) :=
1

2π

∫ 2π

0
f (t)g(t)dt,

and the orthonormal basis ek : t 7→ eikt for k ∈ Z. Then, for u ∈ L2(0, 2π)
the number û(k) := (u | ek) is called the k-th Fourier coefficient.

(a) Show that if u is continuously differentiable with u(0) = u(2π),
then û′(k) = ikû(k).

(b) Compute the Fourier coefficients of u : t 7→ 1
4(π − t)2.

(c) Show that
∞

∑
k=1

1
k2 =

π2

6
.

110


