
3 Measure and Integration

Man is the measure of all things.
— Pythagoras

Lebesgue is the measure of almost all things.
— Anonymous

3.1 Motivation

We shall give a few reasons why it is worth bothering with measure the-
ory and the Lebesgue integral. To this end, we stress the importance of
measure theory in three different areas.

3.1.1 Wewant a powerful integral

At the end of the previous chapter we encountered a neat application of
Banach’s fixed point theorem to solve ordinary differential equations. An
essential ingredient in the argument was the observation in Lemma 2.77
that the operation of differentiation could be replaced by integration.
Note that differentiation is an operation that destroys regularity, while in-
tegration yields further regularity. It is a consequence of the fundamental
theorem of calculus that the indefinite integral of a continuous function
is a continuously differentiable function. So far we used the elementary
notion of the Riemann integral. Let us quickly recall the definition of the
Riemann integral on a bounded interval.

Definition 3.1. Let [a, b] with −∞ < a < b < ∞ be a compact in-
terval. A partition of [a, b] is a finite sequence π := (t0, . . . , tN) such
that a = t0 < t1 < · · · < tN = b. The mesh size of π is |π| :=
max1≤k≤N|tk − tk−1|. Given a partition π of [a, b], an associated vector
of sample points (frequently also called tags) is a vector ξ = (ξ1, . . . , ξN)
such that ξk ∈ [tk−1, tk]. Given a function f : [a, b] → R and a tagged
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3 Measure and Integration

We note that there
are many different
notions of integrals
(Cauchy, Riemann,
Choquet, Lebesgue,
Stieltjes, Daniell,
Henstock–Kurzweil,
Itô, to name a few).
Each notion has its
specific advantages
and use cases. A
common theme is
that integration is
linear and gener-
alises summation.

partition (π, ξ) of [a, b], the Riemann sum S( f , π, ξ) is defined by

S( f , π, ξ) :=
N

∑
k=1

f (ξk)(tk − tk−1).

A function f is called Riemann integrable if there exists a number
A ∈ R such that for every sequence of tagged partitions (πn, ξn) with
|πn| → 0 one has S( f , πn, ξn)→ A as n→ ∞. In this case, A is called the
Riemann integral of f over [a, b]. Notation: R-

∫ b
a f (t)dt := A.

Exercise 3.2. Show that a Riemann integrable function must be bounded,
i.e., if f : [a, b] → R is Riemann integrable then f ∈ Fb[a, b]. Moreover, if
α ∈ R and f , g : [a, b] → R are Riemann integrable, show that α f + g is
Riemann integrable with

R-

∫ b

a
(α f (t) + g(t))dt = αR-

∫ b

a
f (t)dt + R-

∫ b

a
g(t)dt.

It is not hard to see that every continuous function f : [a, b] → R is
Riemann integrable. Moreover, one has the following result.

Theorem 3.3 (Fundamental theorem of calculus). Let f : [a, b] → R be
continuous. Then F : [a, b]→ R defined by

F(t) := R-

∫ t

a
f (s)ds

is differentiable such that F′ = f , i.e., F is an antiderivative of f . Moreover, if
F is any antiderivative of f , then

R-

∫ b

a
f (t)dt = F(b)− F(a).

This theorem is remarkable in that it allows to conveniently compute
values of definite Riemann integrals. The following exercise is a direct
application for Riemann sums.

Exercise 3.4. Calculate the value of the limit

lim
N→∞

N

∑
k=1

N
k2 + N2

by using the Riemann integral.

However, the Riemann integral has some serious shortcomings for the
applications that we have in mind.

Clearly, it is inconvenient that merely bounded functions can be Rie-
mann integrable and that the Riemann integral is only defined for com-
pact intervals. For example, to integrate a bounded function f over the
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3.1 Motivation

Note that
limA→∞ R-

∫ A
−A t dt =

0, while the doubly
infinite improper

Riemann inte-
gral of f (t) = t

does not exist.

Let M be a set
and A ⊂ M.

Then the function
1A : M → R defined

by 1A(x) = 1
if x ∈ M and
1A(x) = 0 if

x /∈ M is called
the indicator

function of A in M.

whole of R, one needs to consider expressions like

lim
A→−∞

lim
B→∞

R-

∫ B

A
f (t)dt

and, provided the limit exists, call it the improper Riemann integral of f
over R. While one can similarly use improper Riemann integrals to inte-
grate mildly unbounded functions, this is a siginificant inconvenience.

The second shortcoming is more fundamental. Suppose we have a se-
quence ( fn) in C[0, 1] that converges pointwise to a function f ∈ Fb[0, 1].
We wish to ensure that f is Riemann integrable and that R-

∫ 1
0 fn converges

to R-
∫ 1

0 f making only weak additional assumptions. While it is sufficient
to assume that ( fn) converges uniformly to f , such a result is insatisfac-
tory as uniform convergence is a very strong form of convergence and
its assumption is therefore extremely restrictive. The Riemann integral is
not well-suited for obtaining better convergence results, one reason being
that not enough functions are Riemann integrable.

Example 3.5 (Dirichlet function). Let (qn) be an enumeration of Q∩ [0, 1].
Let f : [0, 1]→ R be defined by f (t) := 1Q∩[0,1](t). Then f is not Riemann
integrable. However, f is the pointwise limit of the Riemann integrable
functions fn : [0, 1]→ R given by f (t) := 1{q1,...,qn}(t).

So we would like to be able to integrate much larger classes of func-
tions, and obtain convergence results for the integrals under less restric-
tive assumptions.

Exercise 3.6. Show that the map

‖ f ‖L 1 :=
∫ 1

0
| f (t)|dt

defines a norm on C[0, 1]. Construct a sequence ( fn) of functions in C[0, 1]
that is bounded with respect to ‖·‖∞ such that ( fn) is a Cauchy sequence
with respect to ‖·‖L 1 that converges pointwise to a non-Riemann inte-
grable indicator function. Deduce that (C[0, 1], ‖·‖L 1) is not complete.

So the norm ‖ f ‖L 1 on the Riemann integrable functions does not yield
a complete space. We wish to consider a notion of the integral that makes
limit functions as in Exercise 3.6 integrable. The overall aim is to obtain
complete normed spaces of suitably integrable functions.

Finally, we wish to be able to integrate over more general sets than
compact intervals of the real line. This is both important for geometry
(say we would like to integrate functions defined on a 2-dimensional sur-
face) as it is for probabilty theory (where we wish to determine expected
values of random variables on general probability spaces).

We shall see that the notion of the Lebesgue integral addresses all the
aforementioned shortcomings of the Rieman integral. It allows us to
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3 Measure and Integration

If f : A → B is a
map, the preimage
of M ⊂ B under f
is the set f−1[M] :=
{x ∈ A : f (x) ∈ M}.

integrate more functions, provides us with powerful and easy to check
convergence results and is capable of integrating in a much more general
setting.

We close this first subsection by hinting on how the Lebesgue inte-
gral, which we shall properly introduce in the following sections, com-
pares to the Riemann integral for functions on the compact interval [0, 1].
While for the Riemann integral one directly partitions the inteval [0, 1],
the Lebesgue integral works by partitioning the range of f . One then
looks at the preimages under f of these parts of the range of f , which are
possibly rather irregular subsets of [0, 1]. For the example of the Dirich-
let function, one obtains that the preimage of {1} is Q ∩ [0, 1], while the
preimage of {0} is [0, 1] \Q. Now suppose that λ(A) is some hypothetical
function that assigns a ‘measure’ to subsets A ⊂ [0, 1]. Then the integral
of the Dirichlet function should equal 0 · λ([0, 1] \Q) + 1 · λ([0, 1] ∩Q).
Intuitively λ([0, 1]) should be 1, and since a single point q ∈ [0, 1] is con-
tained in an arbitarily short interval λ({q}) should be 0. As Q ∩ [0, 1]
is merely a countable union of such one point sets, it should have ‘mea-
sure’ 0 (also since it is much ‘smaller’ than [0, 1] \Q). So we expect that
λ(Q ∩ [0, 1]) = 0 and λ([0, 1] \ R) = 1 because λ([0, 1]) = 1. Conse-
quently the Lebesgue integral of the Dirichlet function should (and in
fact does) equal 0.

3.1.2 Wewant to measure the volume of general geometric

objects

The objective of measure theory is to assign to subsets A of a given basic
set Ω a nonnegative number µ(A), called the measure of A, which, in one
way or another, measures its ‘size’. Geometrically this ‘size’ could be the
volume.

As an instructive example, let us look at determining the area of a two
dimensional object. Our basic set Ω is R2 and, for A ⊂ R2, the measure
λ(A) should be its area. If R is a rectangle with side lengths a and b, then
λ(R) should be a · b. With this information alone and some geometric
considerations, one can already determine the area of more complicated
objects. For example, the area of a right triangle T, where the two shorter
sides have length a resp. b should be 1

2 a · b, since two of these triangles
can be assembled into a rectangle of side lengths a and b.

Proceeding, we can determine the area of any object which can be de-
composed into finitely many right triangles, in particular for polygons.
We could then use polygons to approximate a more complex object, e.g.
a circle. Already Archimedes (287–212 BC) approximated the circle with
regular polygons to obtain an approximation for the area of a circle.

Analyzing the operations above, such an geometric measure λ on RN

should have the following properties:
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3.1 Motivation

1. The unit cube should have measure 1.

2. If A1, . . . , An are disjoint, then

λ(A1 ∪ · · · ∪ An) = λ(A1) + · · ·+ λ(An).

3. If B is obtained by translating (i.e., rigidly moving) and rotating A,
then λ(A) = λ(B).

4. If An is an increasing sequence with
⋃∞

n=1 An = B, then λ(B) =
supn∈N λ(An).

It is not at all clear, whether a measure λ with the above geometric
properties can be defined on all subsets of RN. In fact, this is not possible.
The following example is particularly drastic. In three dimensions, Ba-
nach and Tarski proved, making use of the set theoretic axiom of choice,
that one can partition a 3-dimensional ball into finitely many (actually,
five will do) pieces and then, rotating and translating these pieces, re-
assemble them into two copies of the ball (thus doubling its volume?). As
you can imagine, one cannot imagine how these pieces look like, but they
must be rather irregular.

To get around such problems, one generally defines measures merely
on a collection Σ of ‘well-behaved’ subsets that can sensibly be assigned a
measure. Sometimes Σ will be the whole power set of a given set Ω, but
for the geometric Lebesgue measure (even in one dimension) Σ cannot
contain all of P(R).

Let us point out that not all measures are of a geometric nature. On ar-
bitrary sets Ω geometric operations like translation and rotation make no
sense. Specifically in probability theory one frequently consideres mea-
sures that have no geometric intepretation attached. We want a theory
that is flexible enough to accomodate for this!

3.1.3 Wewant notions that are suited for probability theory

In an elementary probability course, you may have encountered Laplace
experiments, i.e. random experiments with only finitely many possible
outcomes. Typical examples are the tossing of a coin or the rolling of
a die. Here the basic set Ω consists of all possible outcomes, in the afore-
mentioned examples

Ω1 = {H, T} for coin tossing

and
Ω2 = {1, 2, 3, 4, 5, 6} for rolling a die.

A subset A of Ω is then called an event: A1 = {H} corresponds in the
first experiment to the event ‘the coin came up heads’; in the second ex-
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3 Measure and Integration

This can be inter-
preted in the context
of probability
spaces. The full
space should be
an event by (S1)

(with probability
1), and (S2) says
that if A is an event,
then also its nega-
tion/complement is
one.

Property (S3) is
the reason for the
prefix σ in σ-algebra.
The prefix σ means
‘countable’.

periment, A2 = {1, 3, 5} corresponds to the event ‘an odd number was
rolled’. Such an event can now be assigned a ‘likelihood’ or ‘probability’
P(A), for example by setting

P(A) =
#A
#Ω

,

where #S denotes the number of elements in a set S.
We would like to have a theory that allows to deal seamlessly with

different measures and probability distributions, with the associated in-
tegration of functions and random variables, and it should be suitable
to describe concepts like information. The study of stochastic processes
requires all of the aforementioned.

3.2 σ-Algebras and their generators

We begin with the concept of a σ-algebra. A σ-algebra has the right struc-
ture for the collection of ‘well-behaved’ sets. In fact, measures will be
(certain) maps defined on a σ-alegbra.

Definition 3.7. Let Ω be a nonempty set. A subset Σ of the power set
P(Ω) is called σ-algebra (on Ω) if the following three properties hold.

(S1) Ω ∈ Σ.

(S2) A ∈ Σ implies Ac ∈ Σ.

(S3) Ak ∈ Σ for all k ∈N implies
⋃

k∈N Ak ∈ Σ.

A measurable space is a pair (Ω, Σ), where Ω is a nonempty set and Σ is
a σ-algebra on Ω. The elements A of Σ are called measurable sets.

Example 3.8. Let Ω be a nonempty set. Then {∅, Ω} is a σ-algebra on Ω;
it is the smallest σ-algebra on Ω. Moreover, P(Ω) is a σ-algebra on Ω;
it is the largest σ-algebra on Ω. Finally, if A ⊂ Ω, then {∅, A, Ac, Ω} is a
σ-algebra on Ω.

Lemma 3.9. Let (Ω, Σ) be a measurable space. Then one has the following.

(a) ∅ ∈ Σ.

(b) If A1, . . . , An ∈ Σ, then A1 ∪ · · · ∪ An ∈ Σ and A1 ∩ · · · ∩ An ∈ Σ.

(c) If Ak ∈ Σ for all k ∈N, then
⋂

k∈N Ak ∈ Σ.

Proof. (a) Follows directly from (S1) and (S2).
(b) Put Bk := Ak for k = 1, . . . , n and Bk = ∅ for k ≥ n+ 1. Then Bk ∈ Σ

for all k ∈ N and thus
⋃

k∈N Bk = A1 ∪ · · · ∪ An ∈ Σ by (S3). Moreover,
A1 ∩ · · · ∩ An = (Ac

1 ∪ · · · ∪ Ac
n)

c ∈ Σ by (S2) and what was just proved.
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3.2 σ-Algebras and their generators

In other words, an
arbitrary intersection

of σ-algebras on
the same base set is

again a σ-algebra.

The Borel σ-algebra
can more generally

be defined for metric
and topological

spaces. The impor-
tant point is that the
Borel σ-algebra con-

nects measure theory
with topology. In

particular, continu-
ous functions behave

well with respect to
the Borel σ-algebra.

(c) By DeMorgan’s law,⋂
k∈N

Ak = (
⋃

k∈N

Ac
k)

c ∈ Σ

by (S2) and (S3).

Lemma 3.10. Let Ω be a nonempty set, J a nonempty index set and Σj a σ-
algebra on Ω for all j ∈ J. Then

⋂
j∈J Σj is a σ-algebra on Ω.

Proof. By (S1), one has Ω ∈ Σj for all j ∈ J and thus Ω ∈ ⋂j∈J Σj, proving
(S1).

If A ∈ ⋂j∈J Σj, then A ∈ Σj for all j ∈ J. Hence, by (S2), Ac ∈ Σj for all
j ∈ J and thus Ac ∈ ⋂j∈J Σj, proving (S2).

Finally, if Ak ∈
⋂

j∈J Σj for all k ∈ N, then Ak ∈ Σj for all k ∈ N and
j ∈ J. Thus, by (S3),

⋃
k∈N Ak ∈ Σj for all j ∈ J, proving

⋃
k∈N Ak ∈⋂

j∈J Σj.

Definition 3.11. Let Ω be a nonempty set, A ⊂P(Ω). Then

σ(A ) :=
⋂
{Σ ⊂P(Ω) : Σ is a σ-algebra and contains A }

is a σ-algebra by Lemma 3.10. It is called the σ-algebra generated by A .
If Σ is a σ-algebra on Ω, then any A ⊂ P(Ω) with σ(A ) = Σ is called a
generator of Σ.

Example 3.12. If A ⊂ Ω, then σ({A}) = {∅, A, Ac, Ω}. Moreover, σ(∅) =
{∅, Ω}.

If we have a topological structure on our base set, i.e., if we can speak
about open subsets of the base set, we usually consider a special σ-algebra
connected to this structure.

Definition 3.13. Let (X, ‖·‖) be a normed space and M ⊂ X. Let τ be the
collection of all relatively open subsets of M, i.e.

τ := {U ∩M : U is open in (X, ‖·‖)}.

Then σ(τ) is called the Borel σ-algebra on M and denoted by B(M)
understanding (X, ‖·‖) as a given.

Example 3.14. Let X, Y be normed spaces and f : X → Y a map. We shall
show that f is continuous if and only if every preimage of an open set is
open, i.e. if for all V open in Y one has that f−1[V] is open in X.

It will be a consequence of the above and Lemma 3.18 that f−1[V] ∈
B(X) for all V ∈ B(Y).

Proof. Suppose f : X → Y is continuous. Let V be open in Y. Define
U := f−1[V]. If U = ∅, then U is trivially open. So suppose x ∈ U and
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3 Measure and Integration

In this case M is
called σ-compact.

Both (b) and (c) in
Proposition 3.15
are false without
the additional
assumptions.

set y := f (x). Then y ∈ V. Let ε > 0 be such that B(y, ε) ⊂ V. Assume
for contradiction that there exists no δ > 0 such that B(x, δ) ⊂ U. In other
words, assume

∀δ > 0 ∃z ∈ B(x, δ) : f (z) /∈ B(y, ε).

Then ∀n ∈ N ∃xn ∈ B(x, 1
n ) : f (xn) /∈ B(y, ε). It follows that xn → x and

by continuity of f that f (xn)→ f (x) = y. This contradicts ‖y− f (xn)‖Y ≥
ε for all n ∈N. So there exists a δ > 0 such that B(x, δ) ⊂ U. As x was an
arbitrary element of U, we obtain that U is open.

Conversely, suppose that preimages under f of open sets are open. Let
(xn) be a sequence in X such that xn → x in X. Define y := f (x). Let
ε > 0. Then by assumption U := f−1[B(y, ε)] is open. As x ∈ U, there
exists a δ > 0 such that B(x, δ) ⊂ U. Since xn → x, there exists an
n0 ∈ N such that xn ∈ B(x, δ) for all n ≥ n0. But then xn ∈ U and
‖y− f (xn)‖Y < ε for all n ≥ n0. Hence f (xn) → f (x). As (xn) was an
arbitrary convergent sequence, this shows that f is continuous.

Proposition 3.15. Let (X, ‖·‖) be a normed space and M ⊂ X. Denote by C
the collection of relatively closed subsets of M, i.e.

C := {F ∩M : F is closed in (X, ‖·‖)}.

Moreover, let K be the collection of all subsets of M that are compact in X.

(a) B(M) = σ(C).
(b) If M is the countable union of compact sets, then B(M) = σ(K).
(c) If M has a countable subset D such that M ⊂ D, then B(M) is generated

by a countable collection of sets of the type B(x, ε) ∩M with x ∈ M and
ε > 0.

Proof. For the proof we shall assume that M = X. The general case fol-
lows in the same way by intersecting with M and using realtively open
sets instead of open sets, for example. This is best understood in the con-
text of metric spaces which we will briefly encounter later.

(a) Let Σ be a σ-algebra containing all closed sets. By (S2), Σ contains
all open sets and thus B(X). Hence B(X) ⊂ σ(C). Conversely, if Σ be
a σ-algebra containing all open sets, Σ contains all closed sets and thus
σ(C) by (S2). Hence σ(C) ⊂ B(X).

(b) Since K ⊂ C we clearly have σ(K) ⊂ σ(C) ⊂ B(X). Now assume
that X =

⋃
k∈N Kn where Kn is compact. If F is closed then F ∩ Kn is

compact (Exercise!) and hence an element of σ(K) for all n ∈ N. Since⋃
n∈N Kn = Ω, we have

⋃
n∈N F∩Kn = F. Hence, by (S3), F ∈ σ(K). Thus

σ(K) contains all closed sets and thus the σ-algebra generated by them,
i.e. B(X).
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3.3 Measurable maps

The principle
of good sets is a

standard method
of proof in mea-

sure theory. In the
proof to the left, G

is defined as the
collection of ‘good’

sets in Σ2. Then it
is shown that G

is as big as it can
be, i.e., G = Σ2.

(c) We only have to show that there is a countable union of open balls
such that any open set is contained in the σ-algebra generated by these
balls. To that end, let {xn : n ∈ N} be a countable dense subset of X.
Consider the open balls B(xn, 1

k ) for all n ∈ N and k ∈ N. This is a
countable collection of open balls and every open subset U of M is a
countable union of such balls. Indeed, if U is empty, there is nothing to
prove. If x ∈ U then B(x, 2

k0
) ⊂ U for some k0 ∈N. Since {xn : n ∈N} is

dense, there exists an n0 ∈ N with xn0 ∈ B(x, 1
k0
). Hence x ∈ B(xn0 , 1

k0
).

Moreover, B(xn0 , 1
k0
) ⊂ B(x, 2

k0
) ⊂ U.

It now follows by (S3) that U belongs to the σ-algebra generated by
these open balls.

3.3 Measurablemaps

We introduce the concept of a measurable map. Loosely speaking, mea-
surable maps are for measurable spaces what continuous maps are for
normed (or more generally metric or topological) spaces.

Definition 3.16. Let (Ω1, Σ1) and (Ω2, Σ2) be measurable spaces. A map
f : Ω1 → Ω2 is called measurable, more precisely Σ1/Σ2-measurable, if
f−1[A] ∈ Σ1 for all A ∈ Σ2.

Exercise 3.17. Show that the composition of measurable maps is measur-
able.

Lemma 3.18. Let (Ω1, Σ1) and (Ω2, Σ2) be a measurable spaces and f : Ω1 →
Ω2 be a map. Moreover, let A ⊂P(Ω2) be a generator of Σ2, i.e. σ(A ) = Σ2.
Then f is Σ1/Σ2-measurable if and only if f−1[A] ∈ Σ1 for all A ∈ A .

Proof. We use the principle of good sets:
Let G := {A ∈ Σ2 : f−1[A] ∈ Σ1}. Then G is a σ-algebra. Indeed,

f−1[Ω2] = Ω1 ∈ Σ1. Moreover, it follows from the properties of the
preimage that f−1[Ac] = ( f−1[A])c and

f−1
[ ⋃

k∈N

Ak

]
=
⋃

k∈N

f−1[Ak].

These equalities and the axioms of a σ-algebra for Σ1 imply that G con-
tains Ac if it contains A and it contains

⋃
k∈N Ak provided it contains Ak

for every k ∈N.
Thus, if G contains A , then it contains σ(A ) = Σ2, i.e. if f−1[A] ∈ Σ1

for all A ∈ A , then f is Σ1/Σ2-measurable. The converse is obvious.

Example 3.19. Let X, Y be normed spaces, M ⊂ X and f : M → Y be
continuous. Then f is B(M)/B(Y)-measurable by Exercise 3.14 and
Lemma 3.18.
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We only assume
K = R for conve-
nience. The result
also holds in the
context of metric
spaces.

Observe that the
somewhat am-
biguous notation
σ({πt : t ∈ [0, 1]}) is
supposed to yield a
σ-algebra on C[0, 1].

In the lecture we
skipped the proof
of Proposition 3.24
and the following
example.

We next prove that, in a certain sense, the Borel σ-algebra is the smallest
σ-algebra such that all continuous functions are measureable. To that
end, we first introduce the following concept.

Definition 3.20. Let Ω1 be a nonempty set and (Ω2, Σ2) be a measurable
space. Moreover, let F be a collection of maps from Ω1 to Ω2.

Then σ(F ) := σ({ f−1[A] : f ∈ F , A ∈ Σ2}) is called the σ-algebra
generated by F (on Ω1).

Remark 3.21. In the situation of Definition 3.20, σ(F ) is the smallest σ-
algebra Σ1 such that every f ∈ F is Σ1/Σ2-measurable. Using the prin-
ciple of good sets, one sees that if A is a generator of Σ2, then σ(F ) is
generated by { f−1[A] : f ∈ F , A ∈ A }.

Exercise 3.22. Let Ω := {0, 1}2 and f : Ω → R be given by f (x1, x2) =
x1 + x2. Endow R with its Borel σ-algebra and determine σ({ f }). Decide
whether the map g : Ω → R given by g(x1, x2) = x1 is σ({ f })/B(R)-
measurable.

We now prove that we can actually characterize the Borel σ-algebra as
the one generated by the continuous functions.

Proposition 3.23. Let K = R and X a normed space. Then B(X) =
σ(C(X; R)).

Proof. Since f−1[U] is open in X for all open subsets U of R and f ∈
C(X; R), we have

σ({ f−1[U] : f ∈ C(X; R), U ⊂ R open}) ⊂ B(X).

By Lemma 3.18, σ(C(X; R)) ⊂ B(X).
Conversely, let F be a closed subset of X. Then

Fn :=
{

x ∈ X : inf
y∈F
‖x− y‖ ≥ 1

n

}
is closed and disjoint from F for all n ∈ N. By Urysohn’s lemma 2.64
there exist continuous functions fn : X → [0, 1] such that fn(x) = 1 for
x ∈ F and fn(x) = 0 for x ∈ Fn. But then F =

⋂
n∈N f−1

n [{1}]. It follows
that σ(C(X; R)) contains all closed sets and hence B(X).

Proposition 3.24. Define the point evaluation maps πt : C[0, 1] → R by
πt( f ) = f (t) for all t ∈ [0, 1]. Then one has

B(C[0, 1]) = Σ := σ({πt : t ∈ [0, 1]}).
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3.4 Measures

The exercise to the
side has an interest-

ing interpretation
in the context of
stock values. In

case of the event
Amax(t), it would

be ideal to sell stock
at time t. However,

normally the knowl-
edge/information

at time t is equal to
Bt, but not to Bt+.
So it is not possible
to decide at time t,

whether one is in
a local maximum

(and whether it is an
ideal time to sell).

Proof. Note that πt is a continuous function from C[0, 1] to R for all t ∈
[0, 1]. Thus, by Proposition 3.23, Σ ⊂ B(C[0, 1]).

To prove the converse inclusion, fix g ∈ C[0, 1] and ε > 0 and consider

C(g, ε) := { f ∈ C[0, 1] : ‖ f − g‖∞ ≤ ε}.

Let {tk : k ∈N} = [0, 1] ∩Q. Clearly,

F :=
⋂

k∈N

π−1
tk

[
[g(tk)− ε, g(tk) + ε]

]
is a set in Σ. We claim that C(g, ε) = F. Indeed, the inclusion ‘⊂’ is
clear. To see the converse, let f ∈ F. Then | f (t)− g(t)| ≤ ε for all t ∈
[0, 1] ∩ Q. Now let t ∈ [0, 1]. By density, there exists a sequence tk ∈
[0, 1] ∩Q converging to t. Since f and g are continuous, | f (t)− g(t)| =
limk→∞| f (tk)− g(tk)| ≤ ε, proving that f ∈ C(g, ε).

Hence Σ contains all closed balls. But then also

B(g, ε) =
⋃

n∈N

C(g, (1− 1
n )ε) ∈ Σ.

Since C[0, 1] is separable by Corollary 2.69, it follows from Proposition 3.15
that B(C[0, 1]) ⊂ Σ.

Example 3.25. A set A ⊂ C[0, 1] is called a cylinder set if there exists
n ∈N, t1, . . . , tn ∈ [0, 1] and A1, . . . , An ∈ B(R) such that

A = { f ∈ C[0, 1] : f (tk) ∈ Ak for all k = 1, . . . , n}.

It follows from Proposition 3.24 that the Borel σ-algebra B(C[0, 1]) is gen-
erated by the cylinder sets.

Exercise 3.26. We define Bt := σ({πs : s ∈ [0, t]}) and Bt+ :=
⋂

s>t Bs.
Prove that Bt 6= Bt+ for all t ∈ [0, 1).

Hint: If g, h : Ω → R and R is endowed with the Borel sigma algebra, show that the
set {x ∈ Ω : g(x) ≤ h(x)} is contained in σ({g, h}). The same holds if ≤ is replaced
with < or =. Deduce that { f ∈ C[0, 1] : πq( f ) ≤ πr( f )} ∈ Bt if 0 ≤ q, r ≤ t.

Now consider the set Amax(t) := { f ∈ C[0, 1] : f has a local maximum at t}. Prove
that Amax(t) ∈ Bt+. Show then that if B ∈ Bt, then f ∈ B and f (s) = g(s) for all
s ∈ [0, t] implies that g ∈ B. Use this to prove that Amax(t) 6∈ Bt.

3.4 Measures

In this section we study measures. A measure is a map that assigns some-
thing like a ‘volume’ to sets in a σ-algebra.

Definition 3.27. Let (Ω, Σ) be a measurable space. A measure on (Ω, Σ)
is a map µ : Σ→ [0, ∞] such that
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3 Measure and Integration

The property (M2) is
called σ-additivity.

(M1) µ(∅) = 0.

(M2) If (Ak) is a sequence of pairwise disjoint sets in Σ, then

µ
( ⋃

k∈N

Ak

)
= ∑

k∈N

µ(Ak).

A measure space is a triple (Ω, Σ, µ) where (Ω, Σ) is a measurable
space and µ is a measure on (Ω, Σ).

A measure space (Ω, Σ, µ) (or sometimes the measure µ) is called finite
if µ(Ω) < ∞. If µ(Ω) = 1, then (Ω, Σ, µ) is called probability space and
µ is called probability measure. The measure space is called σ-finite if
there exists a sequence (Ωn) in Σ with µ(Ωn) < ∞ and

⋃
n∈N Ωn = Ω.

Remark 3.28. The σ-additivity (M2) ensures that the measure is well-
behaved with respect to taking countable unions. As we will see below
in Proposition 3.30, (M2) implies items 2. and 4. from Subsection 3.1.2 in
the introduction. In fact, it is equivalent to them.

Frequently, statements about σ-finite measure spaces can be reduced to
the corresponding statements about finite measure spaces. So σ-finiteness
is a convenient assumption that is often satisfied and easily checked.

Example 3.29. We give some preliminary examples:

(a) Let (Ω, Σ) be a measurable space. Then 0 : Σ → [0, ∞) given by
0(A) = 0 is a measure on (Ω, Σ).

(b) Let (Ω, Σ) be a measurable space and x ∈ Ω. Then δx : Σ → {0, 1},
defined by δx(A) = 1 if x ∈ A and δx(A) = 0 if x 6∈ A, is a proba-
bility measure on (Ω, Σ), the so-called Dirac measure in x.

(c) Consider (N, P(N)). Then

ζ(A) :=
{

∞, if A is infinite,
#A, if A is finite,

where #A is the number of elements in A, defines a σ-finite measure
on (N, P(N)), the so-called counting measure on N.

(d) On M := R, consider Σ = {A ⊂ M : A is countable or Ac is countable}.
Define

ζ(A) :=
{

∞, if A is infinite,
#A, if A is finite.

Then ζ defines a measure on (M, Σ), which is not σ-finite.

We next collect basic properties of measures.

Proposition 3.30. Let (Ω, Σ, µ) be a measure space.
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3.4 Measures

σ-subadditivity

Continuity
from below

Continuity from
above. Give an ex-

ample which shows
that the assump-
tion µ(A1) < ∞
is needed in (e).

If (Ω, Σ, µ) is a
probability space

and (Ω2, Σ2) =
(R, B(R)), then

the push-forward µ f
is the distribution of
the random variable

f . In particular,
in this case µ f

is a probability
measure on R.

(a) If A, B ∈ Σ with A ⊂ B, then µ(A) ≤ µ(B).

(b) If A, B ∈ Σ with A ⊂ B and µ(B) < ∞, then µ(B \ A) = µ(B)− µ(A).

(c) If (Ak) is a sequence in Σ (not necessarily disjoint), then

µ
( ⋃

k∈N

Ak

)
≤

∞

∑
k=1

µ(Ak).

(d) If (Ak) is an increasing sequence in Σ, i.e. Ak ⊂ Ak+1 for all k ∈N, and
A =

⋃
k∈N Ak (we write Ak ↑ A), then µ(Ak) ↑ µ(A).

(e) If Ak ↓ A, i.e. Ak+1 ⊂ Ak for all k ∈ N and A =
⋂

k∈N Ak, and
µ(A1) < ∞, then µ(Ak) ↓ µ(A).

Proof. (a) B is the disjoint union of B and B \ A. Hence, by (M2), µ(B) =
µ(A) + µ(B \ A) ≥ µ(A), since µ(A \ B) ≥ 0. If µ(B) < ∞ then also
µ(A) < ∞ and subtracting µ(A), also (b) follows.

(c) Define B1 := A1, B2 := A2 \ A1, B3 = A3 \ (A1 ∪ A2),. . . , Bk :=
Ak \ (A1 ∪ · · · ∪ Ak−1). By the properties of a σ-algebra, Bk ∈ Σ for all
k ∈ N. Moreover, Bk ⊂ Ak for all k ∈ N, the sets Bk are disjoint and⋃

k∈N Ak =
⋃

k∈N Bk. Hence, by (M2)

µ
( ∞⋃

k=1

Ak

)
= µ

( ∞⋃
k=1

Bk

)
=

∞

∑
k=1

µ(Bk) ≤
∞

∑
k=1

µ(Ak),

where we have used (a) in the last estimate.
(d) By (a) µ(Ak) increases in k. Now put A0 = ∅ and then Bk := Ak \

Ak−1. Then the Bk are pairwise disjoint, belong to Σ and
⋃

k∈N Bk = A.
Hence, by (M2)

µ(A) =
∞

∑
k=1

µ(Bk) = lim
n→∞

n

∑
k=1

µ(Bk) = lim
n→∞

µ
( n⋃

k=1

Bk

)
= lim

n→∞
µ(An).

(e) This is immediate from (b) and (d), since (A1 \ An) ↑ (A1 \ A).
Hence

µ(A1)− µ(A) = µ(A1 \ A) = lim µ(A1 \ An) = µ(A1)− lim µ(An).

A convenient way to obtain new measures from known ones is through
measurable maps:

Lemma 3.31. Let (Ω, Σ, µ) be a measure space and (Ω2, Σ2) be a measurable
space. Let f : Ω → Ω2 be measurable. Then µ f : Σ2 → [0, ∞], defined by
µ f (A) := µ( f−1[A]) is a measure. It is called the push-forward of µ under
f .

Proof. This follows from the fact that f−1[∅] = ∅ and f−1[
⋃

k∈N Ak] =⋃
k∈N f−1[Ak], where the latter sets are disjoint if the Ak are.
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3 Measure and Integration

We now study the question, whether a measure is already uniquely
determined by its values on a smaller set than Σ. Of particular impor-
tance is the question whether it is uniquely determined by its values on
a generator of Σ.

Let us first look at an example.

Example 3.32. Let Ω = {0, 1, 2, 3} and Σ = σ({0, 1}, {1, 2}). Then µ =
δ0 + δ1 + δ2 and ν = 2δ1 + δ3 satisfy µ({0, 1}) = ν({0, 1}) = 2 and
µ({1, 2}) = ν({1, 2}) = 2, but µ 6= ν since µ({1}) = 1 6= 2 = ν({1}).

The key in studying uniqueness of measures lies in considering so-
called Dynkin systems.

Definition 3.33. Let Ω be a nonempty set. A Dynkin system is a collec-
tion D ⊂P(Ω) such that the following three properties hold.

(D1) Ω ∈ D .

(D2) If A ∈ D then Ac ∈ D .

(D3) If (Ak) is a sequence of pairwise disjoint subsets of D , then⋃
k∈N

Ak ∈ D .

Obviously, every σ-algebra is a Dynkin system. In fact, the only differ-
ence between a Dynkin system and a σ-algebra is that in (D3), different
from (S3), the sequence (Ak) is required to consist of disjoint subsets. Sim-
ilarly to σ(A ) there is a smallest Dynkin system containing a given A ,
denoted by dyn(A ), the Dynkin system generated by A .

Exercise 3.34. Show that the arbitrary intersection of Dynkin systems on
Ω is again a Dynkin system.

Lemma 3.35. A Dynkin system D is a σ-algebra if and only if whenever A and
B belong to D then also A ∩ B ∈ D . For the latter we say that D is stable
under intersections.

Proof. Since every σ-algebra is stable under intersections (see Lemma
3.9), we only need to prove that if a Dynkin system is stable under in-
tersection, then it satisfies (S3) (since (S1) and (S2) clearly hold).

So let a sequence (Ak) of (not necessarily disjoint) sets in D be given.
We put B1 := A1 and then inductively Bk+1 := Ak ∩ (B1 ∪ · · · ∪ Bk)

c. One
then proves that the sequence Bk consists of disjoint sets, which then in
turn proves that Bk ∈ D , since the latter was assumed to be stable under
intersections. Moreover,

⋃
k∈N Ak =

⋃
k∈N Bk and the latter belongs to D

by the pairwise disjointness and (D3). This proves (S3).
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Lemma 3.36 (Dynkin’s π–λ theorem). Let Ω be a nonempty set and A ⊂
P(Ω) be stable under intersections. Then dyn(A ) = σ(A ).

Proof. Clearly, dyn(A ) ⊂ σ(A ) since σ(A ) is a Dynkin system contain-
ing A . To prove the converse inclusion, by Lemma 3.35 it suffices to
prove that dyn(A ) is stable under intersections.

To that end, for B ∈ dyn(A ) define

GB := {A ∈ dyn(A ) : A ∩ B ∈ dyn(A )}.

Fix B ∈ A . Then GB is a Dynkin system. Indeed, Ω ∩ B = B ∈ dyn(A )
proving (D1). Also (D3) easily follows since if the sets Ak ∈ GB are disjoint,
then (

⋃
k∈N Ak) ∩ B =

⋃
k∈N(Ak ∩ B) and the latter union is also disjoint.

For (D2), let A ∈ GB and observe that Ac ∩ B = B∩ (A∩ B)c = (Bc ∪ (A∩
B))c. By assumption, A ∩ B ∈ GB. Since Bc ∩ (A ∩ B) = ∅, it follows that
Ac ∩ B ∈ GB.

By assumption A ⊂ GB for every B ∈ A and hence dyn(A ) ⊂ GB ⊂
dyn(A ) for all B ∈ A . Now set

G := {B ∈ dyn(A ) : A ∩ B ∈ dyn(A ) for all A ∈ dyn(A )}
= {B ∈ dyn(A ) : GB = dyn(A )}.

By what was done so far, A ⊂ G . Similarly as above (Exercise!), one sees
that G is a Dynkin system. It now follows that G = dyn(A ) = σ(A ) =
Σ, as a consequence of Lemma 3.35.

We can now prove the following result on uniqueness of measures.

Theorem 3.37. Let (Ω, Σ) be a measurable space and A be a generator of Σ
which is stable under intersections. If µ and ν are two finite measures on (Ω, Σ)
with µ(Ω) = ν(Ω) such that µ(A) = ν(A) for all A ∈ A , then µ = ν.

Proof. Let G = {A ∈ Σ : µ(A) = ν(A)}. Then Ω ∈ G . If A ∈ G , then
Ac ∈ G since µ(Ac) = µ(Ω)− µ(A) = ν(Ω)− ν(A) = ν(Ac). Moreover,
if (Ak) is a sequence of disjoint sets in G , then

µ
( ⋃

k∈N

Ak

)
=

∞

∑
k=1

µ(Ak) =
∞

∑
k=1

ν(Ak) = ν
( ⋃

k∈N

Ak

)
since µ and ν are measures. Thus G is a Dynkin system. Since A ⊂ G by
assumption, it follows from Lemma 3.36 that Σ = σ(A ) = dyn(A ) ⊂ G ,
proving that µ(A) = ν(A) for all A ∈ Σ.

Corollary 3.38. Let (Ω, Σ) be a measurable space and A be a generator of
Σ that is stable under intersections. Suppose that there exists an increasing
sequence (Ωn) in A with

⋃
Ωn = Ω. If µ and ν are two (σ-finite) measures on

(Ω, Σ) such that µ(A) = ν(A) < ∞ for all A ∈ A , then µ = ν.
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3 Measure and Integration

Note that A ∩ B ∈ R
as A ∩ B = B \ (B \
A).

Proof. For fixed n, consider Σn := σ({A ∩Ωn : A ∈ A }). Then it is easily
checked that Σn = Ωn ∩ Σ (Exercise!). By Theorem 3.37, µ(A) = ν(A) for
all A ∈ Σn. Now if A ∈ Σ, then

µ(A) = lim
n→∞

µ(A ∩Ωn) = lim
n→∞

ν(A ∩Ωn) = ν(A),

where we have used continuity from below for µ and ν, and the fact that
A ∩Ωn ∈ Σn for all A ∈ Σ, which follows from the assumption that A
generates Σ.

3.5 Construction ofmeasures

In order to construct a measure, one first defines it on a system of sets
much smaller than a σ-algebra.

Definition 3.39. Let Ω be a nonempty set. A ring on Ω is a subset R of
P(Ω) such that the following two properties hold.

(R1) ∅ ∈ R.

(R2) If A, B ∈ R, then A ∪ B ∈ R and B \ A ∈ R.

A pre-measure is a function µ : R → [0, ∞] such that µ(∅) = 0 and if
(Ak) is a sequence of disjoint sets in R with

⋃
k∈N Ak ∈ R, then

µ(
⋃

k∈N

Ak) =
∞

∑
k=1

µ(Ak).

Remark 3.40. The properties in Proposition 3.30 remain valid for pre-
measures, if one additionally requires that the countable unions or inter-
sections appearing belong to R. In particular, pre-measures are mono-
tone, finitely additive and, provided that the respective countable union
belongs to R, also σ-subadditive.

Example 3.41. Let Ω = R and R be the collection of all finite unions of
bounded (possibly empty), right-open intervals. A typical element of R
is of the form

[a1, b1) ∪ [a2, b2) ∪ · · · ∪ [an, bn)

with −∞ < a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn < ∞. Then R is a ring.
The map λ : R → [0, ∞), given by

λ([a1, b1) ∪ [a2, b2) ∪ · · · ∪ [an, bn)) =
n

∑
j=1

(bj − aj),

defines a pre-measure on R, called the Lebesgue pre-measure. We leave
the verification that λ is a pre-measure as an (important!) exercise.
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This result is also
called Hahn–
Kolmogorov

theorem.

In the lecture we
have only given

a short outline
of this proof.

We should note that in the above example, σ(R) = B(R), as is easy
to see (Exercise!). The question arises, whether λ can be extended to a
measure on B(R). It follows from the following theorem that this is the
case.

Theorem 3.42 (Carathéodory’s extension theorem). Let R be a ring on the
nonempty set Ω and µ be a pre-measure on R. Then µ extends to a measure on
σ(R).

Proof. For any B ⊂ E, define

µ∗(B) := inf
∞

∑
n=1

µ(An),

where the infimum is taken over all sequences (Ak) in R such that B ⊂⋃
k∈N Ak. If no such sequence exists, we put µ∗(B) = ∞. We now proceed

in several steps:
Step1: We prove that µ∗ is σ-subadditive, i.e. if (Bn) is a sequence of

subsets of Ω, then µ∗(
⋃

n∈N Bn) ≤ ∑∞
n=1 µ∗(Bn).

If µ∗(Bn) = ∞ for some n, then there is nothing to prove. So let us assume
that µ∗(Bn) < ∞ for all n ∈ N. By definition, for all ε > 0 there exist
sequences (Aε

n,m)m∈N in R such that

(i) Bn ⊂
⋃

m∈N Aε
n,m, and

(ii) µ∗(Bn) ≥ ∑∞
m=1 µ(Aε

n,m)− ε2−n.

In this situation, B :=
⋃

n∈N Bn ⊂
⋃

n∈N

⋃
m∈N Aε

n,m and hence, by the
definition of µ∗,

µ∗(B) ≤
∞

∑
n=1

∞

∑
m=1

µ(Aε
n,m) ≤

∞

∑
n=1

(µ∗(Bn) + ε2−n) ≤ ε +
∞

∑
n=1

µ∗(Bn).

Since ε > 0 was arbitrary, the σ-subadditivity follows.
Step 2: We prove that µ∗(A) = µ(A) for all A ∈ R. Clearly, µ∗(A) ≤

µ(A) for A ∈ R, since A ⊂ A ∪∅ ∪∅ ∪ . . .. On the other hand, if A ∈ R
and A ⊂ ⋃n∈N An for some sequence (An) in R, then

µ(A) ≤
∞

∑
k=1

µ(A ∩ Ak) ≤
∞

∑
k=1

µ(Ak)

since µ is countably subadditive and monotone. Hence µ(A) ≤ µ∗(A).
Define M := {A ⊂ Ω : µ∗(B) = µ∗(B ∩ A) + µ∗(B \ A) for all B ⊂ Ω}.

Step 3: We prove that M is a σ-algebra and µ∗ is a measure on (Ω, M ).
By Lemma 3.35, for the first claim it suffices to prove that M is a Dynkin
system that is stable under intersections. Clearly, (D1) and (D2) hold. Now
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3 Measure and Integration

let (Ak) be a sequence of disjoint sets in M . Let B ⊂ Ω be fixed. Then

µ(B) = µ∗(B ∩ A1) + µ∗(B ∩ Ac
1)

= µ∗(B ∩ A1 ∩ A2) + µ∗(B ∩ A1 ∩ Ac
2)

+ µ∗(B ∩ Ac
1 ∩ A2) + µ∗(B ∩ Ac

1 ∩ Ac
2)

= µ∗(B ∩ A1) + µ∗(B ∩ A2) + µ∗(B ∩ Ac
1 ∩ Ac

2),

since A1 and A2 are disjoint, and therefore A1 ∩ A2 = ∅, A1 ∩ Ac
2 = A1

and Ac
1 ∩ A2 = A2.

Proceeding in a similar way, we obtain for all n ∈N that

µ∗(B) = µ∗(B ∩ Ac
1 ∩ · · · ∩ Ac

n) +
n

∑
k=1

µ∗(B ∩ Ak)

≥ µ∗
(

B ∩
( ∞⋃

k=1

Ak

)c)
+

n

∑
k=1

µ∗(B ∩ Ak).

Hence, upon n→ ∞, we obtain

µ∗(B) ≥
∞

∑
k=1

µ∗(B ∩ Ak) + µ∗
(

B ∩
( ⋃

k∈N

Ak

)c)
(3.1)

≥ µ∗
(

B ∩
⋃

k∈N

Ak

)
+ µ∗

(
B ∩

( ⋃
k∈N

Ak

)c)
,

where we have used Step 1 in the last estimate. Since the reverse inequal-
ity holds by subadditivity,

⋃
n∈N An ∈M , i.e. (D3) holds. Moreover, tak-

ing B =
⋃

k∈N Ak in (3.1), the σ-additivity of µ∗ on M follows.
It thus remains to prove that M is stable under intersections. To that end,
let A1, A2 ∈M . Then, for B ⊂ Ω, we have

µ∗(B) = µ∗(B ∩ A1) + µ∗(B ∩ Ac
1)

(as A1 ∈M )
= µ∗(B ∩ A1 ∩ A2) + µ∗(B ∩ A1 ∩ Ac

2) + µ∗(B ∩ Ac
1)

(as A2 ∈M )
= µ∗(B ∩ A1 ∩ A2) + µ∗(B ∩ A1 ∩ Ac

2) + µ∗(B ∩ (A1 ∩ A2)
c ∩ Ac

1)

(as Ac
1 ⊂ (A1 ∩ A2)

c)
= µ∗(B ∩ A1 ∩ A2) + µ∗(B ∩ (A1 ∩ A2)

c ∩ A1) + µ∗(B ∩ (A1 ∩ A2)
c ∩ Ac

1)

(as (A1 ∩ A2)
c ∩ A1 = A1 ∩ Ac

2)
= µ∗(B ∩ (A1 ∩ A2)) + µ∗(B ∩ (A1 ∩ A2)

c).
(as A1 ∈M )

This proves that A1 ∩ A2 ∈M .
Step 4: We finish the proof.
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The Banach–Tarski
paradox, where the

closed unit ball in
three dimensions

is partitioned into
5 pieces that are

rearranged by trans-
lation and rotation

into two copies
of the closed unit
ball, is connected

to the existence of
non-Lebesgue mea-

surable sets in R3.

It remains to prove that R ⊂ M , for this implies σ(R) ⊂ M and thus,
since µ∗ is a measure on M by Step 3, it is a measure on σ(R) which, by
Step 2, extends µ.
Thus, let A ∈ R be given. We need to prove that µ∗(B) = µ∗(B ∩ A) +
µ∗(B \ A) for all B ⊂ Ω. In fact, by subadditivity, it suffices to prove that
µ∗(B) ≥ µ∗(B ∩ A) + µ∗(B \ A) for all B ⊂ Ω. If µ∗(B) = ∞, there is
nothing to prove. So assume that µ∗(B) < ∞. Given ε > 0, we find a
sequence (Ak) in R such that B ⊂ ⋃k∈N Ak and µ∗(B) ≥ ∑∞

k=1 µ(Ak)− ε.
Note that B ∩ A ⊂ ⋃

k∈N(Ak ∩ A) and B \ A ⊂ ⋃
k∈N(Ak \ A), and that

Ak ∩ A and Ak \ A belong to R for all k ∈N. It follows that

µ∗(B ∩ A) + µ∗(B \ A) ≤
∞

∑
k=1

µ(Ak ∩ A) +
∞

∑
k=1

µ(Ak \ A)

=
∞

∑
k=1

µ(Ak) ≤ µ∗(B) + ε.

Since ε > 0 was arbitrary, we are done.

Corollary 3.43. There exists a unique measure λ on (R, B(R)) with λ([a, b)) =
b− a for all b > a. Moreover, λ is translation invariant, i.e., λ(A) = λ(x + A)
for all x ∈ R and A ∈ B(R).

Proof. Apply Theorem 3.42 in Example 3.41 to obtain the existence of
such a measure. Uniqueness follows from Corollary 3.38. The transla-
tion invariance follows from the definition of λ∗ in the proof of Theo-
rem 3.42.

Definition 3.44. The measure λ on (R, B(R)) with λ([a, b)) = b− a for
all b > a is called the Lebesgue measure.

Remark 3.45. Note that Step 3 in the proof of Theorem 3.42 actually pro-
vides a translation invariant measure λ∗ on a σ-algebra M that contains
B(R). The elements of M are called the Lebesgue measurable sets. It is
a natural to ask whether M = P(R), i.e., whether every subset of R is
Lebesgue measurable. The answer to this question is negative. Using the
axiom of choice, one can construct (highly pathological) subsets of R that
are not Lebesgue measurable. In particular, not all subsets of R are Borel
measurable.

It is also possible to define a d-dimensional version of the Lebesgue
measure.

Example 3.46. Similarly as in the one-dimensional situation, one can prove
that there exists a unique measure λd on (Rd, B(Rd)) such that

λd([a1, b1)× · · · × [ad, bd)) = (b1 − a1) · · · · · (bd − ad).

λd is called d-dimensional Lebesgue measure. Again, the measure λd is
translation invariant.
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The Lebesgue–
Stieltjes measure is
used when integrat-
ing with respect to a
distribution function
F in probability
theory. It is instruc-
tional to consider
a few examples of
measures associated
with distribution
functions, including
distribution func-
tions with jump
discontinuities.

Exercise 3.47 (Lebesgue–Stieltjes measures). Let F : R → R be a mono-
tonically increasing function, i.e., F(t) ≤ F(s) if t ≤ s. Define F+(t) :=
inf{F(s) : s > t}. Show that there exists a unique measure µ on B(R)
such that µ((a, b]) = F+(b)− F+(a) for all a ≤ b.

Hint: The uniqueness of such a measure follows from Corollary 3.38 as the collection
{(a, b] : a ≤ b} is a generator of B(R) that is stable under intersection. The existence
follows from Caratheodory’s theorem after establishing that µ extended to finite unions
of left half-open intervals is a pre-measure.

3.6 Measurable functions

We have already defined the notion of a measurable map from one mea-
surable space (Ω1, Σ1) to a second measurable space (Ω2, Σ2). Of partic-
ular importance is the situation where (Ω2, Σ2) = (K, B(K)). Here, K is
as before either R or C and B(K) is the Borel σ-algebra generated by the
topology associated with |·|.

Definition 3.48. Let (Ω, Σ) be a measurable space. A measurable func-
tion is a measurable map from (Ω, Σ) to (K, B(K)).

Example 3.49. Let Ω be a set and A ⊂ Ω. The indicator function of A is
the function 1A : Ω → R defined by 1A(x) = 1 iff x ∈ A and 1A(x) = 0
iff x 6∈ A.

If (Ω, Σ) is a measurable space, then 1A is a measurable function if and
only if A ∈ Σ. Indeed, if S ∈ B(R), then

1−1
A [S] =


∅, if S ∩ {0, 1} = ∅,
A, if 1 ∈ S and 0 /∈ S,
Ac, if 1 /∈ S and 0 ∈ S,
Ω, if 1 ∈ S and 0 ∈ S.

Proposition 3.50. Let (Ω, Σ) be a measurable space, f , g : Ω→ K be measur-
able and λ ∈ K. Then λ f , f · g, f + g and, if K = R, f ∨ g := max{ f , g} and
f ∧ g := min{ f , g} are measurable. Moreover, if ( fn) is a sequence of measur-
able functions from Ω to K which converges pointwise to a function f : Ω→ K,
i.e. fn(x)→ f (x) for all x ∈ Ω, then f is measurable.

Proof. We define Φ : Ω → K2 by Φ(x) = ( f (x), g(x)). As with K, we
also equip K2 with the Borel σ-algebra. Using Proposition 3.15, it is eas-
ily checked that Φ is measurable by looking at the preimages of balls in
the ‖·‖∞ norm on K2 (Exercise!). Moreover, addition, multiplication and,
if K = R, taking maximum and minimum of two numbers in R2, are
continuous maps from K2 to K and hence measurable. Thus the first as-
sertion follows since the composition of measurable maps is measurable.
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3.6 Measurable functions

It is clear that the
standard represen-

tation of a simple
function is unique

up to reordering.

For the second assertion, let C be a closed subset of K. We set Ck :=
{x ∈ K : d(x, C) ≤ 1

k}. Note that Ck is a closed set for all k ∈N. We claim
that

f−1[C] =
⋂

k∈N

⋃
n0∈N

⋂
n≥n0

f−1
n [Ck].

Note that this finishes the proof since the set on the right-hand side be-
longs to Σ.

It remains to prove the claim. First assume x ∈ f−1[C]. Then f (x) ∈
C. Since fn(x) → f (x), given k ∈ N there exists an n0 ∈ N such that
| fn(x)− f (x)| ≤ k−1 for all n ≥ n0. Thus, fn(x) ∈ Ck for all n ≥ n0,
proving that x belongs to the set on the right-hand side.

Conversely, assume that x belongs to the set on the right-hand side.
This means that for all k ∈N there exists an n0 ∈N such that fn(x) ∈ Ck
for all n ≥ n0. Since Ck is closed and fn(x)→ f (x), it follows that f (x) ∈
Ck for all k ∈N. But then f (x) ∈ ⋂k∈N Ck = C.

Definition 3.51. Let (Ω, Σ) be a measurable space. A simple function is
a measurable function f : Ω→ K taking only finitely many values.

The following lemma gives a description of simple functions.

Lemma 3.52. Let (Ω, Σ) be a measurable space and f : Ω → K be a simple
function. Suppose that a1, . . . , an are the finitely many values that f takes. Then

f (x) =
n

∑
k=1

ak1Ak

where Ak = f−1[{ak}] ∈ Σ. Note that in this case the sets Ak are disjoint and
satisfy Ω =

⋃n
k=1 Ak. We call this the standard representation of f .

Proposition 3.53. Let (Ω, Σ) be a measurable space and f : Ω→ K be a mea-
surable function. Then there exists a sequence of simple functions fn : Ω → K

with | fn(x)| ≤ 2| f (x)| for all n ∈ N which converges pointwise to f . More-
over, if K = R, then fn can be chosen to be real functions. If f ≥ 0, then the
sequence can be chosen to consist of positive functions and to be increasing, i.e.
fn(x) ≤ fn+1(x) ↑ f (x).

Proof. Let us first consider the case where K = R. For n ∈N and k ∈N0,
define

An,k := [k2−n, (k + 1)2−n) and Bn,k := [−(k + 1)2−n,−k2−n).

Note that for all n ∈N one has R =
⋃

k∈N0
(An,k ∪ Bn,k).

Now set

fn :=
22n

∑
k=0

k
2n1 f−1[An,k]

−
22n

∑
k=0

k
2n1 f−1[Bn,k]
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3 Measure and Integration

For example, this is
natural for stopping
times of random
processes.

There exist metrics
on R resp. [0, ∞]
such that B(R) resp.
B([0, ∞]) is the Borel
σ-algebra for this
metric.

Then fn is a simple function and positive whenever f is positive (the
latter follows from the fact that in this case f−1[Bn,k] = ∅ for all k, n).

Moreover, fn(x)→ f (x). Indeed, if x ∈ Ω, then there exists an n0 ∈ N

such that | f (x)| ≤ 2n0 . Then | fn(x)− f (x)| ≤ 2−n for all n ≥ n0.
If f ≥ 0 then fn ≤ fn+1. Indeed, if fn(x) = k2−n then f (x) ∈ [k2−n, (k+

1)2−n). But then either

f (x) ∈ [(2k)2−(n+1), (2k + 1)2−(n+1)),

in which case fn+1(x) = (2k)2−(n+1) = fn(x), or

f (x) ∈ [(2k + 1)2−(n+1), (2k + 2)2−(n+1)),

in which case fn+1(x) = (2k + 1)2−(n+1) > fn(x).
In the case where K = C, we find sequences of simple functions (gn)

and (hn) that converge to Re f and Im f , respectively. Then we set fn :=
gn + ihn for all n ∈N.

We sometimes prefer to work with a slightly more general notion of
measurable functions. It has technical advantages to allow functions to
take the values ∞ or −∞.

Remark 3.54 (Extended real line). We put R := {−∞} ∪R ∪ {∞} which
we endow with the σ-algebra B(R), defined as σ(B(R)∪{{−∞}, {∞}}).
It follows that a function f : (Ω, Σ) → R is measurable if and only if
f−1[{∞}], f−1[{−∞}] ∈ Σ and f−1[A] ∈ Σ for all A ∈ B(R).

Similarly, B([0, ∞]) is defined as σ(B([0, ∞)) ∪ {∞}). We also remark
that Proposition 3.53 generalizes to this situation.

Exercise 3.55. Let (Ω, Σ) be a measurable space and fn : Ω → R be mea-
surable for all n ∈ N. Then the functions lim infn→∞ fn, lim supn→∞ fn,
infn∈N fn and supn∈N fn are measurable.

Hint: Observe that {x ∈ Ω : sup{ fn(x) : n ∈N} > a} = ⋃
n∈N{x ∈ Ω : fn(x) > a}.

3.7 The Lebesgue integral

Given a measure space (Ω, Σ, µ), we now introduce the Lebesgue integral∫
Ω f dµ for suitable complex-valued, measurable functions that we call

‘integrable’. We proceed in several steps and first define the integral for
(real-valued) measurable functions f taking values in [0, ∞].

Definition 3.56. Let (Ω, Σ, µ) be a measure space. If f : Ω → [0, ∞] is a
simple function, with standard representation f = ∑n

k=1 ak1Ak , one de-
fines the Lebesgue integral of f by∫

Ω
f dµ :=

n

∑
k=1

akµ(Ak)
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