
3 Measure and Integration

Instead of [0, 1] we
could use a general
metric space here.

Properties (a) and (b)
say that f is a so-
called Caratheodory
function.

3.9 Integrals depending on a parameter

The main topic of this section is to interchange operations like integra-
tion, differentiation and taking limits. This is a topic at the very heart of
analysis.

Suppose that (Ω, Σ, µ) is a measure space. If we are given a map
f : [0, 1]×Ω → C such that f (t, ·) is integrable for all t ∈ [0, 1], we may
define F(t) :=

∫
Ω f (t, x)dµ(x). It is then natural to ask how F depends

on the parameter t ∈ [0, 1]. In this short section, we use the dominated
convergence theorem to prove some results in this direction.

Proposition 3.85. Let (Ω, Σ, µ) be a measure space. Furthermore, let f : [0, 1]×
Ω→ K be such that the following three properties hold.

(a) x 7→ f (t, x) is measurable for all t ∈ [0, 1].

(b) t 7→ f (t, x) is continuous for almost all x ∈ Ω.

(c) There exists a g ∈ L 1(Ω, Σ, µ) such that | f (t, x)| ≤ g(x) for all (t, x) ∈
[0, 1]×Ω.

Then F : [0, 1]→ C defined by F(t) =
∫

Ω f (t, x)dµ(x) is continuous.

Proof. Let tn → t in [0, 1]. Then f (tn, x) → f (t, x) for almost all x ∈ Ω by
(b). Since | f (tn, x)| ≤ g(x) for all x ∈ Ω by assumption and g ∈ L 1(Ω),
it follows from the dominated convergence theorem, Theorem 3.75, that

F(tn) =
∫

Ω
f (tn, x)dµ(x)→

∫
Ω

f (t, x)dµ(x) = F(t).

This proves the continuity of F.

Proposition 3.86. Let I be an interval in R and (Ω, Σ, µ) be a measure space.
Furthermore, let f : I×Ω→ K be such that the following three properties hold.

(a) x 7→ f (t, x) ∈ L 1(Ω, Σ, µ) for all t ∈ I.

(b) t 7→ f (t, x) is differentiable for all x ∈ Ω.

(c) There exists a g ∈ L 1(Ω, Σ, µ) such that | ∂
∂t f (t, x)| ≤ g(x) for all

(t, x) ∈ I ×Ω.

Then F : I → K defined by F(t) =
∫

Ω f (t, x)dµ(x) is differentiable. Moreover,
∂
∂t f (t, x) is integrable for all t ∈ I and

F′(t) =
d
dt

∫
Ω

f (t, x)dµ(x) =
∫

Ω

∂

∂t
f (t, x)dµ(x).

Proof. Fix t ∈ I and let (tn) be a sequence in I that converges to t. De-
fine hn, h : Ω → C by hn(x) := (tn − t)−1( f (tn, x)− f (t, x)) and h(x) =
∂
∂t f (t, x). Then hn is integrable for every n ∈N as a linear combination of
integrable functions. Moreover, hn(x) → h(x) for all x ∈ Ω by assump-
tion. By the mean-value theorem, hn(x) = ∂

∂t f (ξn, x) for some ξn between
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Observe that the
2-dimensional

Lebesgue measure
λ2 is the product

measure of the
one-dimensional

Lebesgue measure
with itself on the
respective Borel

σ-algebras. More
precisely, λ2 = λ⊗ λ

on B(R2) =
B(R) ⊗B(R).

However, ifM de-
notes the Lebesgue

measurable sets,
thenM(R) ⊗

M(R) $ M(R2).
So the product

measure space of
complete measure

spaces does not
need to be complete.

t and tn. In particular, |hn| ≤ g. Thus the dominated convergence theo-
rem shows that h is integrable and

F(tn)− F(t)
tn − t

=
∫

Ω
hn(x)dµ(x)→

∫
Ω

h(x)dµ(x) =
∫

Ω

∂

∂t
f (t, x)dµ(x).

This finishes the proof.

3.10 Product measures

In this section we construct a σ-algebra and a corresponding measure on
the product of two suitable measure spaces. Our motivation is to extend
the theory in order to deal with iterated integrals. The product measure
will allow us to write an iterated integral as a single integral with resprect
to the product measure.

Definition 3.87. Let (Ωk, Σk) be a measurable space for k = 1, . . . , n.
The product (measurable space) of the spaces (Ωk, Σk) is the measurable
space (∏n

k=1 Ωk,
⊗n

k=1 Σk), where ∏n
k=1 Ωi is the Cartesian product of the

sets Ωk, i.e., the set of all tuples (x1, . . . , xn) where xk ∈ Ωk and
⊗n

k=1 Σk
is the σ-algebra generated by the cuboids A1 × · · · × An where Ak ∈ Σk.

Note that the ‘diagonal’ {(x, x) : x ∈ R} is not contained in B(R)×
B(R), but it is contained in B(R)⊗B(R) = B(R2). The latter identity
is an important exercise based on the principle of good sets.

Exercise 3.88. Let (Ω, Σ) and, for k = 1, . . . , n, also (Ωk, Σk) be measure
spaces. Let fk : Ω → Ωk be a function and define f : Ω → ∏n

k=1 Ωk by
f (x) = ( f1(x), . . . , fn(x)). Show that f is Σ/

⊗n
k=1 Σk-measurable if and

only if fk is Σ/Σk-measurable for all k = 1, . . . , n.

In the following, let (Ωi, Σi, µi) be σ-finite measure spaces for i = 1, 2.
We define a measure µ1⊗ µ2 on the σ-algebra Σ1⊗ Σ2 which is the prod-
uct of the measures µ1 and µ2 in the sense that

µ1 ⊗ µ2(A× B) = µ1(A)µ2(B)

for all A ∈ Σ1 and B ∈ Σ2. Note that as µ1 and µ2 are σ-finite, by Corol-
lary 3.38 there exists at most one such measure.

For a set Q ⊂ Ω1 ×Ω2 and x ∈ Ω1, y ∈ Ω2, we define the cuts [Q]x
and [Q]y by

[Q]x := {y ∈ Ω2 : (x, y) ∈ Q} and [Q]y := {x ∈ Ω1 : (x, y) ∈ Q}.

Lemma 3.89. For x ∈ Ω1, y ∈ Ω2 and Q ∈ Σ1 ⊗ Σ2 we have [Q]x ∈ Σ2 and
[Q]y ∈ Σ1.
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3 Measure and Integration

Proof. We put G := {Q ∈ Σ1 ⊗ Σ2 : [Q]x ∈ Σ2}. We claim that G is a σ-
algebra on Ω1 ×Ω2. Clearly (S1) holds, since [Ω1 ×Ω2]x = Ω2. (S2) and
(S3) follow from the identities

[Qc]x = ([Q]x)
c and

[ ⋃
n∈N

Qn

]
x
=

⋃
n∈N

[Qn]x,

which hold for every Q ∈ Σ1 ⊗ Σ2 and every sequence (Qn) in Σ1 ⊗ Σ2,
respectively.

To finish the proof, it suffices to observe that for A ∈ Σ1 and B ∈ Σ2
we have [A × B]x = B or [A × B]x = ∅ depending on whether x ∈ A
or x 6∈ A. Since B, ∅ ∈ Σ2, it follows that every rectangle A× B belongs
to G . As these rectangles generate the product σ-algebra, one obtains
G = Σ1 ⊗ Σ2.

The proof for the cuts [Q]y is completely analogous.

By Lemma 3.89, it makes sense to consider µ2([Q]x) and µ1([Q]y) for
Q ∈ Σ1 ⊗ Σ2, x ∈ Ω1 and y ∈ Ω2.

Lemma 3.90. Let Q ∈ Σ1 ⊗ Σ2. If µ1 and µ2 are σ-finite, then the maps

x 7→ µ2([Q]x) and y 7→ µ1([Q]y)

are well-defined and Σ1-measurable, respectively Σ2-measurable.

Proof. We put ϕQ(x) := µ2([Q]x) and prove that ϕQ is Σ1-measurable for
all Q ∈ Σ1 ⊗ Σ2. The proof for the second map is analogous.

Let us first assume that µ2(Ω2) < ∞. Then

D := {Q ∈ Σ1 ⊗ Σ2 : ϕQ is Σ1-measurable}

is a Dynkin system. Indeed, ϕΩ1×Ω2(x) ≡ µ2(Ω2) is constant, hence mea-
surable. So (D1) holds as Ω1×Ω2 ∈ D . For (D2) note that if ϕQ is measur-
able then ϕQc = ϕΩ1×Ω2 − ϕQ is measurable as difference of measurable
functions. Finally, if (Qn) is a sequence of pairwise disjoint sets in D , then
ϕ⋃

n Qn = ∑∞
n=1 ϕQn is measurable by Proposition 3.50.

Next observe that if A ∈ Σ1 and B ∈ Σ2, then ϕA×B = µ2(B)1A is
measurable. Hence A× B ∈ D . Since these rectangles generate Σ1 ⊗ Σ2
and are stable under intersections, it follows that D = Σ1 ⊗ Σ2.

Now assume that µ2 is merely σ-finite. Then there exists a sequence
(Bn) with µ2(Bn) < ∞ and Bn ↑ Ω2. In this case, µ(n)

2 : B 7→ µ2(B ∩ Bn)
is a finite measure on Σ2, whence, by the above, ϕ(n)

Q : x 7→ µ(n)
2 ([Q]x)

is measurable for all Q ∈ Σ1 ⊗ Σ2. Since µ(n)
2 ([Q]x) ↑ µ2([Q]x) for all

x ∈ Ω1, it follows that ϕQ = supn ϕ(n)
Q is measurable as the pointwise

limit of measurable functions.

We can now prove the existence of the product measure.
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This result holds
without the as-

sumption that the
measure space is

σ-finite. Moreover,
the integral on the

right hand side can
be understood as an

improper Riemann
integral. So this

identity describes
the Lebesgue inte-

gral in terms of a
Riemann integral.

Theorem 3.91. Let (Ωi, Σi, µi) be σ-finite measure spaces for i = 1, 2. Then
there exists a unique measure π on (Ω1×Ω2, Σ1⊗Σ2) such that π(A× B) =
µ1(A)µ2(B) for all A ∈ Σ1 and B ∈ Σ2. Moreover, for all Q ∈ Σ1 ⊗ Σ2 we
have

π(Q) =
∫

Ω1

µ2([Q]x)dµ1(x) =
∫

Ω2

µ1([Q]y)dµ2(y). (3.2)

Proof. We define π(Q) :=
∫

Ω1
µ2([Q]x)dµ1(x) for all Q ∈ Σ1 ⊗ Σ2. This

is well-defined by Lemma 3.90. Then π is a measure. Indeed, π(∅) =
0 and, if (Qn) is a sequence of disjoint sets in Σ1 ⊗ Σ2, then [Qn]x is a
sequence of disjoint sets in Σ2. Thus

π
( ⋃

n∈N

Qn

)
=
∫

Ω1

µ2

( ⋃
n∈N

[Qn]x
)

dµ1(x) =
∫

Ω1

∞

∑
n=1

µ2([Qn]x)dµ1(x)

=
∞

∑
n=1

∫
Ω1

µ2([Qn]x)dµ1(x) =
∞

∑
n=1

π(Qn),

where we have used monotone convergence in the third step. Since

π(A× B) =
∫

Ω1

µ2([A× B]x)dµ1(x) =
∫

Ω1

µ2(B)1A dµ1 = µ1(A)µ2(B),

there exists a measure with the required properties. Its uniqueness fol-
lows from Corollary 3.38. Now define π̃(Q) :=

∫
Q2

µ1([Q]y)dµ2(y). Re-
peating the above computations, we see that π̃ is also a measure with
with π̃(A× B) = µ1(A)µ2(B). Consequently, by uniqueness, π = π̃ and
thus (3.2) holds.

Here is a neat application that allows to evaluate an integral by inte-
grating the measures of the super-level sets.

Proposition 3.92. Let (Ω, Σ, µ) be a σ-finite measure space and f : Ω →
[0, ∞] be measurable. Then∫

Ω
f dµ =

∫ ∞

0
µ({ f ≥ t})dt.

Proof. We may assume that f (x) < ∞ for all x ∈ Ω. Consider the set
G := {(x, t) ∈ Ω× [0, ∞) : f (x) ≥ t}. Then G ∈ Σ⊗B([0, ∞]). Indeed,
the maps Φ, Ψ : Ω× [0, ∞), given by Φ(x, t) = f (x) and Ψ(x, t) = t, are
clearly Σ ⊗B([0, ∞])-measurable. Hence so is Φ − Ψ. But then G =
(Φ−Ψ)−1[[0, ∞]] is measurable.

By Theorem 3.91, we have, on the one hand,

(µ⊗ λ)(G) =
∫ ∞

0
µ([G]t)dt =

∫ ∞

0
µ({ f ≥ t})dt
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3 Measure and Integration

and, on the other hand,

(µ⊗ λ)(G) =
∫

Ω
λ([G]x)dµ(x) =

∫
Ω

f (x)dµ(x).

We next turn to the task to determine when a map f : Ω1 ×Ω2 → K is
integrable with respect to µ1 ⊗ µ2 and how to compute the integral. We
start with a lemma about measurability.

Lemma 3.93. Let (Ωi, Σi) for i = 1, 2, 3 be measurable space. If f : Ω1 ×
Ω2 → Ω3 is (Σ1 ⊗ Σ2)/Σ3-measurable, then f (x, ·) is Σ2/Σ3-measurable for
all x ∈ Ω1 and f (·, y) is Σ1/Σ3-measurable for all y ∈ Ω2.

Proof. For A ∈ Σ3, we have

f (x, ·)−1[A] = {y : f (x, y) ∈ A} = [ f−1[A]]x

and
f (·, y)−1[A] = {x : f (x, y) ∈ A} = [ f−1[A]]y.

Hence the claim follows from Lemma 3.89.

Theorem 3.94 (Tonelli). Let (Ωi, Σi, µi) be σ-finite measure spaces for i = 1, 2.
Moreover, let f : Ω1 ×Ω2 → [0, ∞] be Σ1 ⊗ Σ2/B([0, ∞])-measurable. Then
the maps

y 7→
∫

Ω1

f (x, y)dµ1(x) and x 7→
∫

Ω2

f (x, y)dµ2(y)

are measurable and∫
Ω1×Ω2

f dµ1 ⊗ µ2 =
∫

Ω2

∫
Ω1

f (x, y)dµ1(x)dµ2(y)

=
∫

Ω1

∫
Ω2

f (x, y)dµ2(x)dµ1(y).
(3.3)

In particular, if one of the iterated integrals is finite, then f is integrable with
respect to µ1 ⊗ µ2.

Proof. Set Ω := Ω1 ×Ω2, Σ := Σ1 × Σ2 and π := µ1 ⊗ µ2. First, let f be
a simple function, say f = ∑n

k=1 αk1Qk . Then f (x, ·) = ∑n
k=1 αk1Qk(x, ·) =

∑n
k=1 αk1[Qk]x

(·). Thus

∫
Ω2

f (x, y)dµ2(y) =
n

∑
k=1

αkµ2([Qk]x).

Taking Lemma 3.90 into account, it follows in particular that the map
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x 7→
∫

Ω2
f (x, y)dµ2(y) is measurable. Moreover, by (3.2), one has

∫
Ω1

∫
Ω2

f (x, y)dµ2(y)dµ1(y) =
n

∑
k=1

αk

∫
Ω1

µ2([Qk]x)dµ1(x)

=
n

∑
k=1

αkπ(Qk) =
∫

Ω
f dπ.

Now let f be an arbitrary nonnegative, measurable function and ( fn)
be a sequence of simple functions increasing to f . Such a sequence ex-
ists by Proposition 3.53. By the above, ( fn(x, ·)) is a sequence of simple
functions which increases to f (x, ·). Thus, by monotone convergence,

ϕ(x) :=
∫

Ω2

f (x, y)dµ2(y) = sup
n∈N

∫
Ω2

fn(x, y)dµ2(y) =: sup
n∈N

ϕn(x)

for all x ∈ Ω1. In particular, ϕ is measurable as the pointwise limit of
simple functions. It now follows that∫

Ω
f dπ = sup

n∈N

∫
Ω

fn dπ = sup
n∈N

∫
Ω1

ϕn dµ1 =
∫

Ω1

ϕ dµ1.

Here, we have used monotone convergence on (Ω, Σ, π), then the above
result for simple functions and finally monotone convergence on (Ω1, Σ1, µ1).
This proves the first equality in (3.3). The rest follows by interchanging
the roles of x and y.

The following example shows that one can not do without the assump-
tion that the measure spaces are σ-finite in Tonelli’s theorem.

Example 3.95. Let (Ω1, Σ1, µ1) = ([0, 1], B([0, 1]), λ) and (Ω2, Σ2, µ2) =
([0, 1], P([0, 1]), ζ), where ζ is the counting measure. Note that µ2 is
not σ-finite. Now consider the function f : Ω1 × Ω2 → [0, 1] given by
f (x, y) = 0 if x 6= y and f (x, x) = 1 for all x, y ∈ [0, 1]. It is easily seen
that f is (Σ1 ⊗ Σ2)-measurable. However,∫

Ω1

∫
Ω2

f (x, y)dµ2(y)dµ1(x) = 1 6= 0 =
∫

Ω2

∫
Ω1

f (x, y)dµ1(x)dµ2(y).

Theorem 3.96 (Fubini). Let (Ωi, Σi, µi) be σ-finite measure spaces for i = 1, 2.
If f : Ω1 × Ω2 → K is Σ1 ⊗ Σ2-measurable and integrable with respect to
µ1 ⊗ µ2, then f (x, ·) is integrable with respect to µ2 for µ1-a.e. x ∈ Ω1 and
f (·, y) is integrable with respect to µ1 for µ2-a.e. y ∈ Ω2. Moreover,∫

Ω1×Ω2

f dµ1 ⊗ µ2 =
∫

Ω2

∫
Ω1

f (x, y)dµ1(x)dµ2(y)

=
∫

Ω1

∫
Ω2

f (x, y)dµ2(x)dµ1(y).
(3.4)
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3 Measure and Integration

Proof. First let K = R. By Tonelli,∫
Ω2

∫
Ω1

| f (x, y)|dµ1(x)dµ2(y) =
∫

Ω1

∫
Ω2

| f (x, y)|dµ2(x)dµ1(y)

=
∫

Ω1×Ω2

| f |dµ1 ⊗ µ2 < ∞

by assumption. Hence x 7→
∫

Ω1
| f (x, y)|dµ2(y) is µ1-integrable and thus,

in particular, µ1-a.e. finite. This proves that f (x, ·) is µ2-integrable for
µ1-a.e. x. By the definition of the integral and Tonelli,∫

Ω1×Ω2

f dµ1 ⊗ µ2 =
∫

Ω1×Ω2

f+ dµ1 ⊗ µ2 −
∫

Ω1×Ω2

f− dµ1 ⊗ µ2

=
∫

Ω1

∫
Ω2

f+ dµ1 dµ2 −
∫

Ω1

∫
Ω2

f− dµ1 dµ2

=
∫

Ω1

∫
Ω2

f dµ1 dµ2.

This proves one equality in (3.4). The other one follows by interchanging
the roles of x and y. If K = C, consider Re f and Im f separately.

Example 3.97. Consider (Ωi, Σi, µi) = ((0, ∞), B(0, ∞), λ) for i = 1, 2.
Then the product space is ((0, ∞)2, B((0, ∞)2), λ2). Consider f : (0, ∞)2 →
R, given by f (x, y) = ye−(1+x2)y2

. Since f is positive and continuous, we
may evaluate the one-dimensional integrals as improper Riemann inte-
grals. We obtain∫ ∞

0
| f (x, y)|dy =

[
− 1

2
1

1 + x2 e−(1+x2)y2
∣∣∣∞
0
=

1
2

1
1 + x2 .

Hence∫ ∞

0

∫ ∞

0
| f (x, y)|dy dx =

∫ ∞

0

1
2

1
1 + x2 dx =

1
2

arctan x
∣∣∣∞
0
=

π

4
.

It follows from Tonelli’s theorem that f is integrable with respect to λ2.
Moreover, the integral is given by

∫
(0,∞)2 f dλ2 = π

4 . On the other hand,
interchanging the order of integration (which is possible by Tonelli’s the-
orem), we see that

π

4
=
∫ ∞

0

∫ ∞

0
ye−(1+x2)y2

dx dy

=
∫ ∞

0
e−y2

∫ ∞

0
yex2y2

dx dy =
∫ ∞

0
e−y2

dy
∫ ∞

0
e−z2

dz,

where we have used the substitution z = xy in the last step. It follows
that ∫ ∞

0
e−x2

dx =

√
π

2
.
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In fact, there exists
a suitable product

measure also for the
countable (actually

even arbitrary)
product of proba-
bility spaces. This

is convenient to
construct an abstract

probability space
that supports a

sequence of suit-
ably distributed

independent
random variables.

So by symmetry, ∫
R

e−x2
dx =

√
π.

By substituting x = t√
2
, it follows that

1√
2π

∫
R

e−
t2
2 dx = 1.

Remark 3.98. It is possible to generalize the results of this section also to
finite products of σ-finite measure spaces. The main task is to prove that
the product σ-algebra Σ1 ⊗ · · · ⊗ Σn is the product of the two σ-algebras
Σ1 and Σ2 ⊗ · · · ⊗ Σn. One can then proceed by induction. We leave the
details to the reader.

3.11 The Lp
-spaces

In this section we introduce and study the Banach spaces of p-integrable
‘functions’ on a general measure space (Ω, Σ, µ). These spaces are very
important for applications and generalise the sequence spaces `p. In the
case p = 2, for example, one obtains a Banach space with particularly
nice geometric properties that plays a central role in quantum mechanics,
thermodynamics and signal processing.

Definition 3.99. Let (Ω, Σ, µ) be a measure space. For f : Ω → K mea-
surable and 1 ≤ p < ∞, put

‖ f ‖p :=
( ∫

Ω
| f |p dµ

)1/p
.

We define L p(Ω, Σ, µ) :=
{

f : Ω→ K measurable : ‖ f ‖p < ∞
}

. If it is
clear which Σ and µ we use (or we make a statement over generic mea-
sure spaces), we will just write L p(Ω).

We now prove that L p(Ω) is a vector space and that ‖·‖p is nearly a
norm on L p(Ω).

Proposition 3.100. Let (Ω, Σ, µ) be a measure space and 1 ≤ p < ∞. Then
the following statements hold.

(a) For all f ∈ L p(Ω), we have ‖ f ‖p ≥ 0 and ‖ f ‖p = 0 if and only if
f = 0 almost everywhere.

(b) For all f ∈ L p(Ω) and λ ∈ K, we have λ f ∈ L p(Ω) and ‖λ f ‖p =

|λ|‖ f ‖p.

(c) For all f , g ∈ L p(Ω), we have f + g ∈ L p(Ω) and ‖ f + g‖p ≤
‖ f ‖p + ‖g‖p.
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3 Measure and Integration

Proof. (a) ‖ f ‖p ≥ 0 is obvious and the second assertion follows from
Corollary 3.68.

(b) By Corollary 3.64,

‖λ f ‖p =
(∫

Ω
|λ f |p dµ

)1/p
=
(
|λ|p

∫
Ω
| f |dµ

)1/p
= |λ|‖ f ‖p.

In particular, if ‖ f ‖p < ∞ then ‖λ f ‖p < ∞.
(c) Let us first assume that f and g are simple functions, say f =

∑m
k=1 ak1Ak and g = ∑n

k=1 bk1Bk . We may assume without loss of gen-
erality that m = n and Ak = Bk for all k = 1, . . . , m. We can moreover
assume that the Ak are disjoint. Then

‖ f + g‖p =

∥∥∥∥ n

∑
k=1

(ak + bk)1Ak

∥∥∥∥
p

=
( n

∑
k=1
|ak + bk|pµ(Ak)

) 1
p

≤
( n

∑
k=1

(|ak|µ(Ak)
1
p + |bk|µ(Ak)

1
p )

p
) 1

p

≤
( n

∑
k=1
|ak|pµ(Ak)

) 1
p
+
( n

∑
k=1
|bk|pµ(Ak)

) 1
p
= ‖ f ‖p + ‖g‖p,

where for the first inequality we put µ(Ak)
1/p into the absolute value and

used the triangle inequality, and for the second inequality we employed
Minkowski’s inequality for Rn, Theorem 2.17. This proves (c) for simple
functions.

Now let f , g ∈ L p(Ω). By Proposition 3.53, there exist sequences ( fn)
and (gn) of simple functions converging pointwise to f and g, respec-
tively, with | fn| ≤ 2| f | and |gn| ≤ 2|g|. In particular, fn and gn belong to
L p(Ω) for all n ∈N. It also follows that | fn + gn|p → | f + g|p pointwise
and hence, by Fatou’s lemma, Theorem 3.71,( ∫

Ω
| f + g|p dµ

) 1
p
=
( ∫

Ω
lim inf

n→∞
| fn + gn|p dµ

) 1
p

≤ lim inf
n→∞

( ∫
Ω
| fn + gn|p dµ

) 1
p

≤ lim inf
n→∞

(‖ fn‖p + ‖gn‖p)

= lim
n→∞

(‖ fn‖p + ‖gn‖p)

= ‖ f ‖p + ‖g‖p.

Here we have used the continuity of t 7→ |t|
1
p in the first and second step,

Fatou’s lemma in the second step, the established inequality for simple
functions in the third step and the dominated convergence theorem and
the existence of the limits in the last two steps.
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3.11 The Lp-spaces

An equivalence
relation is a relation

on a set that is
reflexive, symmetric

and transitive. It
partitions the set into

classes of ‘equiv-
alent’ elements.

By Proposition 3.100 the map ‖·‖p satisfies all properties of a norm on
L p(Ω) except for (N1), i.e., it is possible that ‖ f ‖p = 0 without f being
constantly zero. In order to overcome this difficulty, we identify func-
tions which are equal almost everywhere. More precisely, on the space
of measurable functions on Ω that we denote by L 0(Ω, Σ, µ) and which
obviously contains L p(Ω, Σ, µ), we introduce the equivalence relation∼
by defining f ∼ g : ⇔ f = g almost everywhere. We then consider the
equivalence classes [ f ] := {g : f ∼ g} as our primary objects.

Exercise 3.101. Consider the measure space ([0, 1], B([0, 1]), λ). Show
that if f , g are continuous functions with f = g almost everywhere, then
f = g everywhere. Now endow ([0, 1], B([0, 1])) with the Dirac measure
δ1. For a measurable function f , determine its equivalence class [ f ].

Definition 3.102. For a measure space (Ω, Σ, µ), we define

Lp(Ω, Σ, µ) := {[ f ] : f ∈ L p(Ω, Σ, µ)}.

We put ‖[ f ]‖p := ‖ f ‖p and define λ[ f ] := [λ f ] and [ f ] + [g] := [ f + g].
In this way, Lp(Ω, Σ, µ) becomes a normed vector space.

Remark 3.103. That Lp(Ω, Σ, µ) is a normed vector space is an immediate
consequence of Proposition 3.100 and the definition of the norm, scalar
multiplication and addition on Lp. However, one needs to check that
these maps are well defined, i.e., that they do not depend on the choice
of the particular representative of [ f ]. For example, we have to show that
if f ∼ g then ‖ f ‖p = ‖g‖p (this follows from Corollary 3.68) and λ f = λg
almost everywhere, etc.

Remark 3.104. As is customary, we will not distinguish between f and [ f ]
and treat elements of Lp(Ω, Σ, µ) as functions, rather than as equivalence
classes, and understand equalities, inequalities, etc. only to hold almost
everywhere.

Theorem 3.105. Let (Ω, Σ, µ) be a measure space and 1 ≤ p < ∞. Then
(Lp(Ω), ‖·‖p) is complete.

The proof of Theorem 3.105 rests on the following Lemma which is also
of independent interest.

Lemma 3.106. Let (Ω, Σ, µ) be a measure space and let 1 ≤ p < ∞. If ( fn)n∈N

is a Cauchy sequence in (Lp(Ω), ‖·‖p) (in particular, if ( fn) converges in Lp),
then there exists a subsequence ( fnk)k∈N which converges pointwise almost ev-
erywhere to an f ∈ Lp(Ω). Moreover, the subsequence can be chosen such that
there exists a g ∈ Lp(Ω) such that | fnk | ≤ g for all k ∈N.
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3 Measure and Integration

This is a ‘teleskopic’
sum; all the middle
terms cancel.

So in general con-
vergence almost
everywhere (almost
sure convergence)
and convergence in
Lp (convergence in
the p-th mean) do
not imply each other.
Under additional
assumptions, the
dominated conver-
gence theorem can
help to show the first
implication.

Proof. Since ( fn) is a Cauchy sequence, there exists a subsequence ( fnk)
with ‖ fnk+1 − fnk‖p ≤ 2−k. We now define

hk := fnk+1 − fnk and h :=
∞

∑
k=1
|hk|.

Then, using Proposition 3.100, we see that for every N ∈N, we have∥∥∥∥ N

∑
k=1
|hk|
∥∥∥∥

p

≤
N

∑
k=1
‖ fnk+1 − fnk‖p ≤

N

∑
k=1

2−k ≤ 1.

It follows from monotone convergence, that h ∈ Lp(Ω) with ‖h‖p ≤ 1.
Note that since h ∈ Lp(Ω) it follows that |h| < ∞ a.e. (Exercise!). In par-
ticular, the series ∑∞

k=1 hk(x) converges (absolutely) for almost all x ∈ Ω.
Noting that ∑N

k=1 hk = fnN+1 − fn1 , it follows that ( fnk) converges almost
everywhere to f := fn1 + ∑∞

k=1 hk. We may suppose that f is defined
everywhere and measurable. Then f ∈ Lp(Ω) as ‖ f ‖p < ∞. Moreover,

| fnk | = |h1 + · · ·+ hk−1 + fn1 | ≤ h + | fn1 | =: g.

Since g ∈ Lp(Ω), the proof is complete.

Let us give some examples illustrating Lemma 3.106.

Example 3.107. Consider the measure space ([0, 1], B([0, 1]), λ). Then
fn(t) := tn converges to f (t) ≡ 0 in Lp([0, 1]) for all 1 ≤ p < ∞. Indeed,

‖ fn − f ‖p =
( ∫ 1

0
tnp dt

) 1
p
=
( 1

np + 1

) 1
p → 0.

Moreover, fn(t) converges to f (t) for all t ∈ [0, 1). Since the singleton {1}
has Lebesgue measure zero, fn converges to f almost everywhere, but fn
does not converge to f pointwise.

Example 3.108. Consider the measure space ((0, 1], B((0, 1]), λ). If m =
2n + k for n ∈ N and 0 ≤ k ≤ 2n − 1, put fm = 1(k2−n,(k+1)2−n]. Then
fm → 0 in Lp((0, 1]), since ‖ f2n+k‖p = 2−n/p → 0. By Lemma 3.106, ( fm)
has a subsequence converging to 0 almost everywhere (an example being
( fmn), where mn = 2n such that fmn = 1(0,2−n]). In fact, every subsequence
of ( fm) has a subsequence that converges to 0 almost everywhere, but the
whole sequence ( fm) does not converge to 0 almost everywhere. This can
be used to show that convergence almost everywhere is not a notion of
convergence that comes from a metric.

Proof of Theorem 3.105. Let ( fn) be a Cauchy sequence in (Lp(Ω), ‖·‖p).
By Lemma 3.106, there exists a subsequence ( fnk) that converges almost
surely to a function f ∈ Lp(Ω) and is dominated by a function g ∈ Lp(Ω).
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3.11 The Lp-spaces

We point out that
Lp((0, 1], B((0, 1]), λ)

can be
identified with

Lp((0, 1), B((0, 1)), λ).
Moreover, the spaces

Lp(Rd, B(Rd), λd)
and Lp(Rd, M , λ∗d)
are the same; here

M are the Lebesgue
measurable sets

and λ∗d is the
completion of λd as

in Carathéodory’s
theorem.

By the dominated convergence theorem, ‖ fnk − f ‖p → 0, that is, fnk → f
with respect to ‖·‖p. Since a Cauchy sequence converges if and only if it
has a convergent subsequence, the whole sequence ( fn) converges to f
with respect to ‖·‖p.

We now complement/complete the scale of Lp-spaces by introducing
the space L∞(Ω, Σ, µ). As before, we are formally dealing with equiva-
lence classes of functions rather than with functions themselves.

Definition 3.109. Let (Ω, Σ, µ) be a measure space. An equivalence class
[ f ] is said to belong to L∞(Ω, Σ, µ) if there exists a constant c > 0 such
that | f | ≤ c almost everywhere. In this case, we set

‖[ f ]‖∞ := inf {c > 0 : | f | ≤ c a.e.}.

In practice, we again do not distinguish between f and [ f ]. As is to be
expected, the normed space (L∞(Ω), ‖·‖∞) turns out to be complete. We
formulate this result and leave the proof to the reader.

Proposition 3.110. Let (Ω, Σ, µ) be a measure space. Then (L∞(Ω), ‖·‖∞) is
a complete normed space.

Remark 3.111. In what follows, Lp(Ω, Σ, µ) will always be endowed with
the norm ‖·‖p. We will therefore frequently drop it from our notation and
say, e.g., that fn → f in Lp(Ω, Σ, µ) or that ( fn) is a Cauchy sequence in
Lp(Ω, Σ, µ) with the understanding, that this is to be understood with
respect to the norm ‖·‖p.

Example 3.112. Consider the measure space (N, P(N), ζ). Then it fol-
lows that Lp(N, P(N), ζ) = `p for 1 ≤ p ≤ ∞.

We now also extend Hölder’s inequality to the Lp setting.

Theorem 3.113. Let (Ω, Σ, µ) be a measure space and 1 ≤ p, q ≤ ∞ with
1
p + 1

q = 1. If f ∈ Lp(Ω) and g ∈ Lq(Ω), then f g ∈ L1(Ω) and ‖ f g‖1 ≤
‖ f ‖p‖g‖q.

Proof. The proof is similar to that of Minkowski’s inequality in Proposi-
tion 3.100. We give a rough sketch.

If f and g are simple functions, then the claim follows from Hölder’s
inequality for finite sums, Theorem 2.17. The general case follows from
an approximation argument using Fatou’s lemma and dominated con-
vergence.

Exercise 3.114. Work out the details of the proof of Theorem 3.113.

95



3 Measure and Integration

Recall that `q ⊂ `p

for 1 ≤ q ≤ p ≤ ∞.
So for the sequence
spaces the inclusions
are opposite to the
finite measure case.
Combining both
cases shows that in
general one cannot
expect the Lp spaces
to be ordered by
inclusion in either
way.

This result also holds
for a general metric
space (M, d).

Exercise 3.115. Let (Ω, Σ, µ) be a measure space and 1 ≤ p, q ≤ ∞ be
such that 1

p +
1
q = 1. Given g ∈ Lq(Ω), define ϕg : Lp(Ω)→ K by

ϕg( f ) =
∫

Ω
f g dµ.

Show that ϕg ∈ (Lp(Ω))′, the dual space of Lp(Ω), such that ‖ϕg‖(Lp(Ω))′ =

‖g‖q.

Corollary 3.116. Let (Ω, Σ, µ) be a finite measure space and 1 ≤ p ≤ q ≤ ∞.
Then Lq(Ω, Σ, µ) ⊂ Lp(Ω, Σ, µ). Moreover, if fn → f in (Lq(Ω, Σ, µ), ‖·‖q),
then fn → f in (Lp(Ω, Σ, µ), ‖·‖p).

Proof. Let us first consider the case where q = ∞. In this case, if f ∈
L∞(Ω), then f ≤ ‖ f ‖∞1Ω almost everywhere. Hence

‖ f ‖p
p =

∫
Ω
| f |p dµ ≤

∫
Ω
‖ f ‖p

∞ dµ = µ(Ω)‖ f ‖p
∞.

This proves that L∞(Ω) ⊂ Lp(Ω). Now let fn → f in L∞(Ω). Then
‖ fn − f ‖p ≤ µ(Ω)1/p‖ fn − f ‖∞ → 0, proving that fn → f in Lp(Ω).

Next let 1 ≤ p < q 6= ∞ and fix f ∈ Lq(Ω). Then r := q
p ∈ (1, ∞). With

s = q
q−p , we have 1

r +
1
s = 1. It is clear that 1Ω ∈ Ls(Ω). Moreover, | f |p ∈

Lr(Ω). By Hölder’s inequality, Theorem 3.113, it follows that | f |p1Ω ∈
L1(Ω) and

∫
Ω
| f |p dµ ≤ ‖1Ω‖s‖| f |

p‖r = µ(Ω)
1
s

( ∫
Ω
| f |q

) 1
r
= µ(Ω)

q−p
q ‖ f ‖p

q .

This proves that f ∈ Lp(Ω). Moreover, taking p-th roots on both sides,
‖ f ‖p ≤ µ(Ω)(q−p)/(pq)‖ f ‖q follows. As above, this inequality also shows
that if fn → f in (Lq(Ω, Σ, µ), ‖·‖q), then fn → f in (Lp(Ω, Σ, µ), ‖·‖p).

Theorem 3.117. Let X be a normed space and M ⊂ X. Let µ be a finite measure
on (M, B(M)). Then Cb(M) is dense in Lp(M, B(M), µ) for all 1 ≤ p < ∞.

Proof. Let E be the closure of Cb(M) in Lp(M, B(M), µ). Clearly, E is a
closed subspace of Lp.

Define G := {A ∈ B(M) : 1A ∈ E}. Then G is a Dynkin system. In-
deed, 1Ω is continuous and integrable since µ(Ω) < ∞. Hence Ω ∈ G . If
A ∈ G , then Ac ∈ G since 1Ac = 1Ω− 1A and E is a vector space. Finally,
let (Ak) be a sequence of pairwise disjoint sets in G . Then

⋃n
k=1 Ak ∈ G

since 1⋃n
k=1 Ak

= ∑n
k=1 1Ak and E is a vector space. Moreover, 1⋃n

k=1 Ak
→

1⋃∞
k=1 Ak

pointwise for n → ∞ and all functions are dominated by the in-
tegrable function 1Ω. By dominated convergence and as E is closed it
follows that

⋃∞
k=1 Ak ∈ G .
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3.11 The Lp-spaces

We note that other
conditions on the

underlying measure
space are sufficient
for the separability
of the correspond-

ing Lp spaces for
1 ≤ p < ∞. For

example, the space
Lp(Rd, B(Rd), λd) is
separable. The space

L∞ is only ‘very
rarely’ separable.
Give an example!

Now let F ⊂ M be relatively closed. With the help of Urysohn’s lemma
we find, as in the proof of Proposition 3.23, a sequence ( fn) of continuous
functions with 0 ≤ fn ≤ 1 and fn → 1F pointwise. It follows from
dominated convergence that F ∈ G .

Since C , the collection of all relatively closed subsets of M, is a gener-
ator of B(M) that is stable under intersections, Dynkin’s π–λ theorem
yields B(M) = dyn(C ) ⊂ G ⊂ B(M). Hence 1A ∈ E for all A ∈ B(M).
By linearity, E contains all simple functions. Now an approximation ar-
gument shows that E = Lp(M).

Corollary 3.118. Let X be a normed space and K ⊂ X be compact. Let µ

be a finite measure on (K, B(K)). Then Lp(K, B(K), µ) is separable for all
1 ≤ p < ∞.

Proof. By Corollary 2.69, there exists a countable set S ⊂ C(K) that is
dense with respect to the norm ‖·‖∞. Let E be the closure of S in Lp.
Then C(K) ⊂ E. Indeed, given f ∈ C(K), there exists a sequence ( fn) in
S ⊂ E such that fn → f with respect to ‖·‖∞. By Corollary 3.116, fn → f
in Lp, hence f ∈ E. Now Theorem 3.117 yields Lp(K, B(K), µ) = E.
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