
2 Normed spaces

Mathematicians are like Frenchmen: whatever you
say to them they translate into their own language

and forthwith it is something entirely different.
— Johann Wolfgang von Goethe

When speaking about the complex numbers C, we already observed
that basically everything regarding convergence that can be done in R

can be transferred to C by using the modulus in the complex numbers
instead of the modulus in the real numbers. The notion of a norm further
abstracts the essential properties of the modulus. Moreover, we have (at
least as a set) identified C with R2 and equipped it with componentwise
operations. This is a very elementary construction for finite-dimensional
vector spaces. In this chapter we study normed spaces which generalise
these concepts in the following sense: normed spaces are vector spaces
equipped with a map called the norm, which plays the role of the modu-
lus.

There are many examples of normed spaces, the simplest being RN

and KN. We will be particularly interested in the infinite-dimensional
normed spaces, like the sequence spaces `p or function spaces like C(K).
Also the important Lebesgue spaces Lp(Ω, Σ, µ) and the abstract Hilbert
spaces that we will study later on will be examples of normed spaces.

2.1 Vector spaces

In this section we give a brief reminder of vector spaces and associated
notions. In what follows, K denotes either the field of real numbers R or
the field of complex numbers C.

Definition 2.1. A vector space E over K is a set E together with two maps
+ : E× E → E (addition) and · : K× E → E (scalar multiplication) such
that the following properties are satisfied. Firstly, the pair (E,+) is an
Abelian group:

(VA1) For all x, y, z ∈ E, one has (x + y) + z = x + (y + z).

(VA2) There exists an element 0, such that x + 0 = x for all x ∈ E.
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2 Normed spaces

To say that a set is a
vector subspace of
a given vector space
means that it is a
subset that contains
the identity element
that is a vector space
when equipped with
the restriction of the
same operations.
It is not hard to
see that to prove
that a subset is a
vector subspace it
suffices to check that
addition and scalar
multiplication of el-
ements in the subset
yield elements in the
subset.

In other words, a
collection of vectors
is linearly indepen-
dent if there is no
redundancy in it,
in the sense that
none of its vectors
can be written as a
linear combination
of (finitely) many
other vectors in the
collection.

It is worthwhile
pointing out that a
linear combination is
always a finite sum
of scaled vectors.

(VA3) For all x ∈ E, there exists a −x ∈ E such that x + (−x) = 0.

(VA4) For all x, y ∈ E, one has x + y = y + x.

Furthermore, the scalar multiplication satisfies the following properties.

(VS1) For all x ∈ E and λ, µ ∈ K, one has (λ + µ) · x = (λ · x) + (µ · x)
and (λµ) · x = λ · (µx)

(VS2) For all λ ∈ K and x, y ∈ E, one has λ · (x + y) = (λ · x) + (λ · y).

This set of axioms has several consequences, most notably, the neutral
element 0 from (VA2) is unique and for every x ∈ E its inverse element
−x from (VA3) is unique and equal to (−1) · x.

In what follows, we will denote scalar multiplication by mere concate-
nation and write λx rather than λ · x. As is customary, we will insist that
scalar multiplications are carried out before additions, thus λx+ y should
be interpreted as (λx) + y rather than λ(x + y). Moreover, we will write
x− y := x + (−y). Finally, we will usually simply write 0 for the neutral
element 0 in a vector space.

Important examples of vector spaces are the spaces KN, endowed with
component-wise addition and scalar multiplication, i.e.

(x1, . . . , xN) + (y1, . . . , yN) = (x1 + y1, . . . , xN + yN)

and
λ(x1, . . . , xN) = (λx1, . . . , λxN)

for all x, y ∈ KN and λ ∈ K. In particular, R is a vector space over R

and C is a vector space both over R and C. Another example is the vector
space of all functions from a set A to R with respect to pointwise addition
and scalar multiplication of functions. More specifically, one can consider
the vector space of all functions [0, 1] → R, which can also be written as
R[0,1]. It is easily observed that the continuous functions from [0, 1] to
R are a vector subspace of this space, and that the polynomial functions
from [0, 1] to R are a vector subspace of the vector space of the continuous
functions. Analogous statements hold for C-valued functions.

Definition 2.2. Let V be a vector space (over K). A collection (xj)j∈J of
elements in V (where J is an arbitrary index set) is called linearly inde-
pendent if

αj1 xj1 + . . . + αjN xjN = 0

with N ∈ N and αjk ∈ K for k ∈ {1, . . . , N} implies αj1 = . . . = αjN = 0.
The linear span of a subset A ⊂ V is the set

span A := {α1x1 + . . . + αNxN : N ∈N, αk ∈ K, xk ∈ A, k = 1, . . . , N}.

The above elements of span A are called linear combinations. A linearly
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2.2 Definition and basic properties of a normed space

We have not prop-
erly introduced

the cardinality of
sets. We use it here

informally as ‘the
possibly infinite
number that de-

scribes the size of the
set’. For a finite set it
simply is the number

of its elements.

independent collection of elements (xj)j∈J is called a (Hamel) basis of V
if span{xj : j ∈ J} = V. In this case the cardinality of J is called the
dimension of V.

We note without proof that the dimension of a vector space is well-
defined, i.e. every basis has the same cardinality. Moreover, the dimen-
sion is the largest cardinality a linearly independent collection of vectors
can have. For example, the elements (1, 0, 0), (0, 5, 0), (0, 1, 1) form a basis
of R3. So dim R3 = 3 and any collection of 4 or more vectors in R3 must
be linearly dependent.

Vector spaces are a very suitable setting for basic geometry. Frequently
the elements of vector spaces are called points or vectors. In a vector space
one can speak about lines, line segments and convex sets.

Definition 2.3. Let V be a vector space. A line is a set of the form {αx+ y :
α ∈ K} with x, y ∈ V and x 6= 0. If x, y ∈ V, the (closed) line segment
between x and y is the set {λx + (1− λy) : λ ∈ [0, 1]}. A subset A ⊂ V
is called convex if for all x, y ∈ A the closed line segment between x and
y is contained in A. A linear combination ∑N

k=1 λkxk such that λk ∈ [0, 1]
with ∑N

k=1 λk = 1 is called a convex combination of x1, . . . , xN ∈ V.

Exercise 2.4. Draw convex and nonconvex sets of R2. Think geometri-
cally about linear combinations and convex combinations. Observe that
convexity is a very strong geometric property that implies that the set
cannot have holes and must be connected. Show that the set under the
graph of log : (0, ∞)→ R is convex.

2.2 Deänition and basic properties of a normed

space

We introduce a notion of length for elements of a vector space. Note that
a ‘length’ is something that a single element on its own should have,
whereas ‘distance’ is something that only makes sense for a pair of el-
ements.

Definition 2.5. Let X be a vector space over K. A norm on X is a map
‖·‖ : X → [0, ∞) that satisfies the following three properties.

(N1) ‖x‖ = 0 implies x = 0. (definiteness)

(N2) ‖λx‖ = |λ| · ‖x‖ for all x ∈ X and λ ∈ K. (homogeneity)

(N3) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X. (triangle inequality)

A normed space is a pair (X, ‖·‖), where X is a vector space and ‖·‖ is a
norm on X.
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2 Normed spaces

When dealing with
metric spaces (or
topological spaces),
one encounters
further consis-
tent extensions of
convergence.

It is clear that (R, |·|) is a normed space (over R). In the following sec-
tion we shall encounter more interesting examples of normed spaces. To
practice dealing with complex numbers, we give the following example.

Example 2.6. We shall verify that (C, |·|) is a normed space over both C

and R, where |z| =
√

z · z. It follows straight from the field axioms of R

and the definition of the operations in C that C is a vector space over C

and R. So it remains to show that |·| is a norm on C (both over C and R).
First of all |·| : C → [0, ∞) as |z| =

√
(Re z)2 + (Im z)2 ≥ 0. If |z| = 0,

then (Re z)2 + (Im z)2 = 0; consequently Re z = 0 and Im z = 0, hence
z = 0. So (N1) is satisfied.

To check (N2), we first let λ, z ∈ C. Then λ = α + iβ and z = x + iy.
Note that

λ · z = αx− βy− i(αy + βx) = λ · z.

So

‖λ · z‖ =
√

λ · z · λ · z =
√

λ · λ · z · z =
√

λ · λ
√

z · z = |λ||z|,

and (N2) is satisfied for K = C. If λ ∈ R, then |λ|C = |λ|R. So (N2) also
holds for K = R.

Finally, let w, z ∈ C. Observe that

Re(wz) ≤
√

Re(wz)2 + Im(wz)2 = |wz| ≤ |w||z| = |w||z|,

where we also used that (N2) holds. Hence

|z + w|2 = (z + w)(z + w) = zz + ww + wz + zw

= |z|2 + |w|2 + 2 Re(wz)

≤ |z|2 + |w|2 + 2|w||z|
= (|z|+ |w|)2.

Taking the square root on both sides yields (N3).

In a normed space the norm quantifies the length of a vector. To quan-
tify how far a point x is from a point y in a normed space, one takes the
norm of x − y (which is equal to the norm of y − x). This allows to ex-
tend all the definitions regarding convergence from R to general normed
spaces. It is important to note that this is a consistent extension, i.e., in
R convergence in the sense of normed spaces agrees with the previously
defined notion of convergence.

Definition 2.7. Let (X, ‖·‖) be a normed space. A sequence (xn)n∈N in X
is said to converge to a ∈ X if

∀ε > 0 ∃N0 ∈N : ∀n ≥ N0 : ‖xn − a‖ < ε.
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2.2 Definition and basic properties of a normed space

In a nontrivial
normed space

there are always
unbounded subsets

due to properties
(N1) and (N2).

We shall see later
that the open

ball deserves to
be called ‘open’.

Also note that the
notation B(x, r)

does not specify the
normed space. As
usual, if confusion

is possible, one
might choose to

write BX(x, r),
for example.

So a function is
continuous if an

approximation of
the inputs yields a

sequence of outputs
that approximate the

desired output. In
other words, one can
swap limits with the
continuous function,

i.e., f (lim xn) =
lim f (xn). In appli-

cations often only
approximations are

available, which
makes continuity a

very desirable prop-
erty of functions.

In this case one writes limn→∞ xn = a or xn → a as n → ∞. A sequence
(xn)n∈N in X is called a Cauchy sequence if

∀ε > 0 ∃N0 ∈N : ∀n, m ≥ N0 : ‖xn − xm‖ < ε.

A subset A ⊂ X is called bounded in X if there exists an M > 0 such that
‖x‖ ≤ M for all x ∈ A. Similarly, a sequence (xn) in X is called bounded
if supn∈N‖xn‖ < ∞. The open ball about x ∈ X with radius r > 0 is the
set

B(x, r) := {y ∈ X : ‖y− x‖ < r}.

In addition, let (Y, ‖·‖Y) be a normed space. Let A ⊂ X and f : A→ Y
a map. Then f is called continuous at a ∈ A (as a map from (X, ‖·‖X) to
(Y, ‖·‖Y)), if for all sequences (xn)n∈N in A such that xn → a in (X, ‖·‖X)
one has f (xn) → f (a) in (Y, ‖·‖Y). If f is continuous at all points in A,
then f is called continuous. If there exists an L ≥ 0 such that

‖ f (x)− f (y)‖Y ≤ L‖x− y‖X

for all x, y ∈ A, then f is called Lipschitz continuous, and L is called the
Lipschitz constant.

Exercise 2.8. Show that a Lipschitz continuous function is continuous,
but that there are continuous functions that are not Lipschitz continuous.

Exercise 2.9. Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed spaces, A ⊂ X and
f : A→ Y. Show that f is continuous at a ∈ A if and only if

∀ε > 0 ∃δ > 0 : ∀y ∈ BX(x, δ) : f (y) ∈ BY( f (a), ε).

Definition 2.10 (Product spaces). Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed
spaces over the same field K. Then X × Y is made into a vector space
using the componentwise operations

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)

and
λ · (x, y) := (λx, λy)

for λ ∈ K. Define ‖·‖X×Y : X×Y → [0, ∞) by

‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y.

Then (X × Y, ‖·‖X×Y) is a normed space called the product space of
(X, ‖·‖X) and (Y, ‖·‖Y).

Exercise 2.11. Show that (X × Y, ‖·‖X×Y) in the previous definition re-
ally is a normed space. Prove that a sequence ((xn, yn))n∈N converges in
(X×Y, ‖·‖X×Y) if and only if (xn)n∈N and (yn)n∈N converge in (X, ‖·‖X)
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2 Normed spaces

This is sometimes
called the ‘reverse
triangle inequality’.

This exercise is
somewhat more
difficult.

and (Y, ‖·‖Y), respectively. Use induction to show that analogously the
Cartesian product of normed spaces X1, . . . , XN for N ∈ N can be made
into a normed space.

Proposition 2.12. Let (X, ‖·‖) be a normed space.

1. Every Cauchy sequence in (X, ‖·‖) (and therefore every convergent se-
quence) is bounded.

2. One has
|‖x‖ − ‖y‖| ≤ ‖x− y‖ (2.1)

for all x, y ∈ X.

3. The map X × X → X given by (x, y) 7→ x + y, the map K× X → X
given by (α, x) 7→ αx and the map X 7→ R given by x 7→ ‖x‖ are
continuous. Here X × X and K × X are to be understood as product
spaces.

Proof. 1. Let (xn) be a Cauchy sequence in X. So for ε = 1 there exists
an n0 ∈ N such that ‖xn − xm‖ ≤ ε = 1 for all n, m ≥ n0. Note that
‖xn‖ ≤ ‖xn0‖+ 1 for all n ≥ n0. Hence

sup
n∈N

‖xn‖ ≤ max{‖x1‖, . . . , ‖xn0−1‖, ‖xn0‖+ 1} < ∞.

Therefore (xn) is bounded.
2. Observe that

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖.

Therefore ‖x‖ − ‖y‖ ≤ ‖x− y‖. Swapping the role of x and y, we also
obtain −‖x‖+ ‖y‖ ≤ ‖x− y‖. This implies (2.1).

3. Recall that a sequence (xn, yn) converges to (x, y) in the product
space X × X if and only if xn → x in X and yn → y in X for n → ∞.
Similarly, (αn, xn) converges to (α, x) in the product space K× X if and
only if αn → α in K and xn → x in X. So suppose (xn, yn) converges to
(x, y) in X × X. Then ‖(xn + yn)− (x + y)‖ ≤ ‖xn − x‖+ ‖yn − y‖ → 0
for n→ ∞. This shows that the map X× X → X given by (x, y) 7→ x + y
is continuous. One argues similarly for the map K× X → X given by
(α, x) 7→ αx. Note that (2.1) implies that ‖·‖ is Lipschitz continuous with
Lipschitz constant 1.

Definition 2.13. A complete normed space is called a Banach space.

Exercise 2.14. Let (X, ‖·‖) be a normed space and (xk) be a sequence in
X. Then the partial sums sn := ∑n

k=1 xk are well-defined. If the sequence
(sn) is convergent in (X, ‖·‖), then we say that the series ∑∞

k=1 xk con-
verges. If the (real-valued) series ∑∞

k=1‖xk‖ converges, we say that the
series ∑∞

k=1 xk is absolutely convergent.
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2.3 Examples of normed spaces

Show that (X, ‖·‖) is a Banach space if and only if every absolutely
convergent series converges.

Hint: Given a Cauchy sequence (xn), consider a suitable subsequence (xnk ) and tele-
scopic sums like ∑N

k=M(xnk+1 − xnk ).

2.3 Examples of normed spaces

2.3.1 Finite dimensional spaces

Example 2.15. Let 1 ≤ p < ∞. Then ‖·‖p defined by

‖x‖p :=
( N

∑
k=1
|xk|p

)1/p

is a norm on the vector space KN. Similarly, ‖x‖∞ := max{|x1|, . . . , |xN|}
defines a norm on KN. In fact, the norm properties (N1) and (N2) follow
straight from the definition. The verification of property (N3) consists in
establishing Minkowski’s inequality, which we shall prove in the follow-
ing.

Exercise 2.16. Sketch the open unit balls B(0, 1) in the normed spaces
(R2, ‖·‖p) for p = 1, 2, ∞. How do the the open unit balls look like for
general 1 < p < ∞.

For the proof of Minkowski’s inequality we first need the following
inequality which is interesting in its own right.

Theorem 2.17 (Hölder’s inequality). Let x, y ∈ KN. Let p, q ∈ [1, ∞] be
such that 1

p +
1
q = 1, where 1

∞ := 0. Then

N

∑
k=1
|xkyk| ≤ ‖x‖p‖y‖q. (2.2)

Proof. We only give the proof in the case where p, q ∈ (1, ∞). The cases
where p, q might be 1 or ∞ are easier and left as an exercise.

We first establish an auxiliary inequality. Let λ := 1
p ∈ (0, 1). Then

1− λ = 1
q . Since log : (0, ∞)→ R is concave (i.e., the set under the graph

of the function is convex), we obtain

λ log(a) + (1− λ) log(b) ≤ log(λa + (1− λ)b)

for all a, b > 0. Applying the monotonically increasing exponential func-
tion exp to both sides yields

aλb1−λ ≤ λa + (1− λ)b. (2.3)
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2 Normed spaces

Note that (2.3) holds for all a, b ≥ 0.
We may assume that x, y 6= 0. Using the homogeneity and after rescal-

ing, we may assume that ‖x‖p = ‖y‖q = 1. So it remains to show that

N

∑
k=1
|xkyk| ≤ 1.

It follows from (2.3) that

|xkyk| = |xk||yk| = (|xk|p)
λ
(|yk|q)

1−λ ≤ λ|xk|p + (1− λ)|yk|q

for all k = 1, . . . , N. Summing up and using that ‖x‖p = ‖y‖q = 1 gives

N

∑
k=1
|xkyk| ≤ λ

N

∑
k=1
|xk|p + (1− λ)

N

∑
k=1
|yk|q = λ− (1− λ) = 1.

This establishes the inequality.

Corollary 2.18 (Minkowski’s inequality). For p ∈ [1, ∞] we have

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ KN.

Proof. Again we only give the proof in the case where p ∈ (1, ∞). The
remaining cases are an easy exercise.

Let q := p
p−1 . Then 1 = 1

p +
1
q . Let x, y ∈ KN. Using Hölder’s inequal-

ity, we obtain

‖x + y‖p
p =

N

∑
k=1
|xk + yk||xk + yk|p−1

≤
N

∑
k=1
|xk||xk + yk|p−1 +

N

∑
k=1
|yk||xk + yk|p−1

≤ ‖x‖p

( N

∑
k=1
|xk + yk|p

)1/q
+ ‖y‖p

( N

∑
k=1
|xk + yk|p

)1/q

= (‖x‖p + ‖y‖p)‖x + y‖p/q
p .

The assertion follows since p− p
q = 1.

Remark 2.19. There are many more norms in KN than only positive mul-
tiples of the p-norms ‖·‖p for p ∈ [1, ∞]. For example, also ‖·‖p + ‖·‖q is
a norm in KN. We shall see later, however, that all norms in KN lead to
the same notion of convergence.

Finally, note that 1 = ‖ek‖p = ‖ek‖q for all k ∈ {1, . . . , N}, where ek =
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2.3 Examples of normed spaces

In the following
we will frequently

encounter the
vectors en. Note

that the collection
(en)n∈N is linearly

independent, but not
a Hamel basis of `p.
In fact, it only spans
the proper subspace

c00, which will be
introduced later.

(0, . . . , 1, 0, . . .) ∈ KN has a single 1 in the kth component. Consequently
a norm is not determined by its behaviour on a basis.

2.3.2 Sequence spaces

We now generalise the finite dimensional spaces (KN, ‖·‖p) to infinite-
dimensional sequence spaces.

Definition 2.20 (The spaces `p). For p ∈ [1, ∞) we let `p be the set of all
K-valued sequences x = (xk)k∈N such that

‖x‖p :=
( ∞

∑
k=1
|xk|p

)1/p
< ∞,

i.e., `p = {x = (xk) sequence in K : ‖x‖p < ∞}. The set `∞ is the set of
all bounded K-valued sequences and we set

‖x‖∞ := sup
k∈N

|xk|

for all x ∈ `∞.

Proposition 2.21. Let p ∈ [1, ∞]. The set `p is an infinite-dimensional vector
space over K with respect to scalar multiplication and componentwise addition,
i.e., for x, y ∈ `p and α ∈ K we set

x + y := (xk + yk)k∈N and αx := (αxk)k∈N.

Moreover, ‖·‖p is a norm on `p. Furthermore, (`p, ‖·‖p) is a Banach space.

Proof. We already know that KN is a vector space with respect to scalar
multiplication and componentwise addition. So it suffices to show that
`p are vector subspaces. To this end, it suffices to show that αx, x + y ∈ `p

for α ∈ K and x, y ∈ `p. Suppose that 1 ≤ p < ∞. Then applying the
Minkowsi inequality to the first N components we obtain

( N

∑
k=1
|xk + yk|p

)1/p
≤
( N

∑
k=1
|xk|p

)1/p
+
( N

∑
k=1
|yk|p

)1/p

≤ ‖x‖p + ‖y‖p < ∞.

(2.4)

As this holds independently of N, it follows that x + y ∈ `p. It is obvious
that αx ∈ `p. So `p is a vector space. For all n ∈N let en = (0, . . . , 1, 0, . . .),
so en is a sequence with a single 1 in the nth component. Clearly en ∈ `p

for all n ∈ N. Moreover, the collection (en)n∈N is linearly independent
in `p, which implies that the dimension of `p is at least as large as the
(infinite) cardinality of N.
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2 Normed spaces

This proof also
shows that conver-
gence in `p implies
componentwise
convergence. Show
that the opposite
implication is not
true, not even in `∞!

Moreover, it is easily verified that ‖·‖p satisfies (N1) and (N2). For 1 ≤
p < ∞ property (N3) follows from (2.4) after taking the limit N → ∞.
Hence (`p, ‖·‖p) is a normed space for 1 ≤ p < ∞. The corresponding
statement for p = ∞ is an exercise.

It remains to prove that (`p, ‖·‖p) is complete. We again suppose that
1 ≤ p < ∞ and leave the case p = ∞ as an exercise. So let (xn)n∈N be
a Cauchy sequence in `p. We write xn = (x(n)1 , x(n)2 , . . .). Let k ∈ N and
ε > 0. Then for all n, m ≥ N0 one has∣∣x(n)k − x(m)

k

∣∣ = (∣∣x(n)k − x(m)
k

∣∣p)1/p
≤ ‖xn − xm‖p < ε.

Hence (x(n)k )n∈N is a Cauchy sequence in K. Since K is complete, we
define the sequence (yk)k∈N via yk := limn→∞ x(n)k .

It remains to prove that y ∈ `p and that xn → y in `p. Note that

( N

∑
k=1
|yk|p

)1/p
= lim

n→∞

( N

∑
k=1

∣∣x(n)k

∣∣p)1/p

≤ lim sup
n→∞

( ∞

∑
k=1

∣∣x(n)k

∣∣p)1/p

= lim sup
n→∞

‖xn‖p ≤ M,

where the bound M > 0 exists as (yk) is a Cauchy sequence. Since the
bound is independent of N, we obtain y ∈ `p. Next, observe that for
ε > 0 there exists an N0 ∈N such that

N

∑
k=1

∣∣x(n)k − yk
∣∣p = lim

m→∞

N

∑
k=1

∣∣x(n)k − x(m)
k

∣∣p ≤ lim sup
m→∞

‖xn − xm‖p
p ≤ ε

for all n, m ≥ N0. As this is independent of N it follows that ‖xn − y‖p
p <

ε for all n ≥ N0. We have shown that the Cauchy sequence (xn) converges
in `p.

Exercise 2.22. Let 1 ≤ p ≤ ∞. Show that (KN, ‖·‖p) is a Banach space.

Remark 2.23. The `p spaces that we consider here are frequently also
denoted by `p(N) since the elements are sequences indexed by N. It is
possible to more generally consider `p(J) for arbitrary index sets J, but
for uncountable index sets this requires a few technical adjustments. We
point out that `p({1, . . . , N}) would directly correspond to (KN, ‖·‖p).
Later in the chapter about measure theory we will study the so-called Lp

spaces which will generalise the `p(J) spaces even further.
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2.4 Topological notions in normed spaces

Intuitively, open
sets allow for some

‘wiggle-room’
around all of

their elements.

2.4 Topological notions in normed spaces

We have already introduced open balls in normed spaces.

Definition 2.24. Let (X, ‖·‖) be a normed space. A subset G ⊂ X is called
open (in (X, ‖·‖)) if for all x ∈ G there exists an ε > 0 such that B(x, ε) ⊂
G. A subset F ⊂ X is called closed if Fc := X \ F is open. The interior of
A ⊂ X is the union of all open subsets contained in A, i.e.,

int A :=
◦
A :=

⋃
G ⊂ A, G open

G.

The closure of A ⊂ X is the intersection of all closed supersets of A, i.e.,

cl A := A :=
⋂

A ⊂ F, F closed

F.

The following properties now follow straight from the definitions and
de Morgan’s laws.

Proposition 2.25. Let (X, ‖·‖) be a normed space.

1. The open balls in X are open.

2. ∅ and X are open.

3. If U1, . . . , UN are open, then
⋂N

k=1 Uk is open.

4. If (Uj)j∈J is a collection of open sets, then
⋃

j∈J Uj is open.

5. ∅ and X are closed.

6. If A1, . . . AN are closed, then
⋃N

k=1 Ak is closed.

7. If (Aj)j∈J is a collection of closed sets, then
⋂

j∈J Aj is closed.

8. Let A ⊂ X. Then the interior of A is open, the closure of A is closed, and
int A ⊂ A ⊂ cl A. Moreover, A is open if and only if A = int A, and A
is closed if and only if A = cl A.

The definition of closed sets and the closure is inconvenient for practi-
cal purposes. The following result connects these notions with the con-
vergence of sequences.

Proposition 2.26. Let (X, ‖·‖) be a normed space and A ⊂ X. Then x ∈ cl A
if and only if there exists a sequence (xn)n∈N in A such that xn → x in X.

Proof. Let x ∈ cl A. We claim that then for all n ∈ N one has B(x, 1
n ) ∩

A 6= ∅. In fact, assume for contradiction that there exists an n0 ∈N such
that B(x, 1

n0
) ∩ A = ∅. Then B(x, 1

n0
)c is closed and contains A. Hence
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2 Normed spaces

cl A ⊂ B(x, 1
n0
)c, and hence x /∈ A, which is a contradiction. So there

exists a sequence (xn)n∈N in A such that xn ∈ B(x, 1
n ) for all n ∈N. Then

xn → x in X.
Conversely, suppose that (xn)n∈N is a sequence in A that converges to

x ∈ X. We need to show that x ∈ cl A. Let F be closed such that A ⊂ F.
It suffices to show x ∈ F as then by generalisation x is in the intersection
of all closed supersets of A. Assume for contradiction that x ∈ Fc. As
Fc is open, there exists an ε > 0 such that B(x, ε) ⊂ Fc. But there exists
an N0 ∈ N such that for all n ≥ N0 one has xn ∈ B(x, ε) ⊂ Fc. This
is a contradiction since B(x, ε) ∩ F = ∅, but xN0 ∈ B(x, ε) ∩ F. We have
proved that x ∈ cl A.

We obtain the following consequence.

Corollary 2.27. Let (X, ‖·‖) be a normed space and A ⊂ X. Then A is closed
if and only if it contains the limit of every convergent sequence of elements in A,
i.e., if (xn)n∈N is a sequence in A such that xn → x in X, then x ∈ A.

Exercise 2.28. Show that {y ∈ X : ‖x− y‖ ≤ r} is the closure of B(x, r).

Exercise 2.29. Consider the set

A := {x ∈ `∞ : |xn| < 1 for all n ∈N}.

Is A open in (`∞, ‖·‖∞)?

Definition 2.30. Let (X, ‖·‖) be a normed space. A subset A ⊂ X is called
dense in X if cl A = X. The normed space (X, ‖·‖) is called separable if
there exists a countable subset A ⊂ X such that cl A = X. A normed
space that is not separable is called inseparable.

Example 2.31. As Q is dense in R, the normed space (R, |·|) is separa-
ble. Moreover, C is separable as Q + iQ is dense in C. Similarly KN is
separable.

Proposition 2.32. A normed space (X, ‖·‖) is separable if and only if there
exists a countable set A such that the linear span of A is dense in X, i.e., if
X = cl(span(A)).

Proof. If X is separable, then there exists a countable set A ⊂ X such that
cl(A) = X. As A ⊂ span A, it is trivial that X = cl(span(A)).

So suppose now that A ⊂ X is countable such that X = cl(span(A)).
Let L = Q if K = Q and L = Q + iQ if K = C. For all N ∈ N, consider
the set

DN := {α1x1 + . . . + αNxN : αk ∈ L and xk ∈ A for k = 1, . . . , N}.

Note that DN is countable for all N ∈ N. It follows that D :=
⋃

N∈N DN
is countable.
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2.4 Topological notions in normed spaces

Any element in span(A) can be approximated by elements in D. Here
we make use of Proposition 2.12.3. It follows that span(A) ⊂ cl D. There-
fore X = cl(span(A)) ⊂ cl D. This shows that X is separable.

We introduce three other vector spaces of sequences that are related to
the `p spaces.

Definition 2.33. By c one denotes the vector subspace of KN consisting
of all convergent K-valued sequences, i.e.,

c := {(xk) : (xk) convergent sequence in K}.

The vector subspace of c consisting of all sequences converging to zero is
denoted by

c0 := {(xk) : lim
k→∞

xk = 0}.

Finally, let c00 be the vector subspace of c0 consisting of all sequences (xk)
where xk 6= 0 for only finitely many indices, i.e.,

c00 := {(xk) : xk = 0 for almost all indices k ∈N}.

Exercise 2.34. Show that while c0 is not a vector subspace of (`p, ‖·‖p) for
any p ∈ [1, ∞), both c and c0 are closed vector subspaces of (`∞, ‖·‖∞).
Show that c00 is a nonclosed vector subspace of (`p, ‖·‖p) for all p ∈
[1, ∞], and that KN, after extending the vectors by 0 to sequences, is a
closed vector subspace of (`p, ‖·‖p) for all p ∈ [1, ∞].

We give the proof that c is a closed subspace of `∞.

Proof. Let (xn)n∈N be a sequence in c such that xn → y in `∞. We need to
show that y ∈ c. Firstly, for all n ∈ N there exists an αn ∈ K such that
xn = (x(n)k )k∈N → αn as k→ ∞. Let ε > 0. As (xn) is a Cauchy sequence,
there exists an N0 ∈N such that

|αn − αm| = lim
k→∞

∣∣x(n)k − x(m)
k

∣∣ ≤ sup
k∈N

∣∣x(n)k − x(m)
k

∣∣ = ‖xn − xm‖∞ < ε

for all n, m ≥ N0. So (αn)n∈N is a Cauchy sequence in K. As K is com-
plete, let α ∈ K be the limit of (αn).

Let ε > 0 and N0 ∈ N such that |αn − α| < ε and ‖y− xn‖∞ < ε for all
n ≥ N0. Let N1 ∈N be such that

∣∣x(N0)
k − αN0

∣∣ < ε for all k ≥ N1. Then

|yk − α| ≤
∣∣yk − x(N0)

k

∣∣+ ∣∣x(N0)
k − αN0

∣∣+ |αN0 − α| < 3ε

for all k ≥ N1. We have proved that y = (yk) → α as k → ∞. Hence
y ∈ c.

We note a few further properties of the `p spaces.
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2 Normed spaces

The remainders
of a convergent
series have to go
to 0 since the partial
sums form a Cauchy
sequence.

Sets that can be
covered by finitely
many ε-balls are
called totally
bounded. In finite
dimensions this
can be seen to
be the same as
boundedness. In
general, however, it
is a much stronger
property than
boundedness.

Proposition 2.35. The normed space (`p, ‖·‖p) is separable for 1 ≤ p < ∞,
and nonseparable for p = ∞.

Proof. Let 1 ≤ p < ∞. By Proposition 2.32 it suffices to show that
c00 = span{en : n ∈ N} is dense in `p, where en := (0, . . . , 1, 0, . . .)
with a single 1 in the nth component. So let x ∈ `p and define yn =
(x1, . . . , xn, 0, 0, . . .) ∈ c00 for all n ∈N. Then, as the partial sums of x are
a Cauchy sequence, it follows that

‖yn − x‖p
p =

∞

∑
k=n+1

|xk|p = lim
N→∞

N

∑
k=n+1

|xk|p < ε

for n, N ≥ N0. This shows that c00 is dense in `p.
Now suppose p = ∞. Note that {0, 1}N ⊂ `∞. Moreover, if x, y ∈
{0, 1}N and x 6= y, then ‖x− y‖∞ = 1. Suppose A ⊂ `∞ is dense. Then
A ∩ B(x, 1

2) 6= ∅ for all x ∈ {0, 1}N as otherwise x /∈ cl A. So for every
x ∈ {0, 1}N there exists an ax ∈ A ∩ B(x, 1

2). Suppose x, y ∈ {0, 1}N such
that x 6= y. Then

‖ax − ay‖∞ = ‖ax − x + x− y + y− ay‖∞

≥ ‖x− y‖∞ − ‖x− ax‖∞ − ‖y− ay‖∞

> 1− 1
2
− 1

2
= 0.

So ax 6= ay. This shows that A has at least the cardinality of {0, 1}N,
which is uncountable. Thus `∞ is nonseparable.

We continue with a very important topological concept.

Definition 2.36. Let (X, ‖·‖) be a normed space. A subset A ⊂ X is
called compact if every sequence in A has a convergent subsequence with
limit in A, i.e. for all sequences (xn)n∈N in A there exists a convergent
subsequence (xnk)k∈N such that limk→∞ xnk ∈ A.

Exercise 2.37. Show that a compact subset is always closed and bounded.
Moreover, show that in R the converse holds due to Bolzano–Weierstraß.

Exercise 2.38. Let (X, ‖·‖) be a normed space and K ⊂ X compact. Then
for all ε > 0 there exists an N ∈ N and x1, . . . , xN ∈ K such that K ⊂⋃N

k=1 B(xk, ε). Deduce that there exists a countable dense subset of K.

In the following result compactness is essential.

Exercise 2.39. Let (X, ‖·‖) be a normed space, A ⊂ X compact and f : A→
R continuous. Then f attains its minimum and maximum on A, i.e. there
exists amin, amax ∈ A such that

f (amin) ≤ f (x) ≤ f (amax)
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2.4 Topological notions in normed spaces

for all x ∈ A.

Proposition 2.40. Let A ⊂ KN. Then A is compact in (KN, ‖·‖∞) if and only
if A is closed and bounded.

Proof. We have already observed the necessity.
It remains to show that A ⊂ Kd is compact if it is closed and bounded.

For simplicity we assume that K = R, otherwise we need to apply the
following arguments to both the real and imaginary parts. Let (xn) be a
sequence in A. Then the first coordinates (x(n)1 )n∈N form a bounded se-
quence. By Bolzano–Weierstraß there exists a convergent subsequence
(x(n1,k)

1 )k∈N. Then the subsequence of second coordinates (x(n1,k)
2 )k∈N

is bounded. So there exists a convergent subsequence (x(n2,k)
2 )k∈N of

this subsequence. Note that the subsequence (x(n2,k)
1 )k∈N still converges.

Proceeding inductively, after N steps of taking subsequences of subse-
quences, we find a subsequence (xnN,k)k∈N that converges in all compo-
nents. It is readily observed that componentwise convergence implies
convergence in (KN, ‖·‖∞).

As A is closed in (KN, ‖·‖∞), we obtain that the limit is contained in A.
This shows that A is compact.

Exercise 2.41. Consider the set

F := {x ∈ `p : ‖x‖p ≤ 1}.

Show that F is bounded and closed, but not compact.

As an application of compactness, we will obtain the following result
that shows that in KN all norms essentially behave the same.

Proposition 2.42. Let ‖·‖ be a norm on KN. Then there exist constants m, M >
0 such that

m‖x‖∞ ≤ ‖x‖ ≤ M‖x‖∞

for all x ∈ KN.

Proof. Observe that

‖x‖ ≤
N

∑
k=1
|xk|‖ek‖ ≤

N

∑
k=1
‖ek‖‖x‖∞ = M‖x‖∞,

with M := ∑N
k=1‖ek‖ > 0. So the inequality on the right is established.

Define K := {x ∈ KN : ‖x‖∞ = 1}. Then K is closed and bounded,
and therefore compact in (KN, ‖·‖∞) by Proposition 2.40. Next define
f : K → [0, ∞) by f (x) := ‖x‖. It follows that

| f (x)− f (y)| = |‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤ M‖x− y‖∞
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2 Normed spaces

The implication
(iii)⇒(i) is the one
that requires the
work.

for all x, y ∈ K. This implies that f is continuous as a map from (KN, ‖·‖∞)
to R. Hence f attains its minimum on K by Exercise 2.39. Suppose
the minimum is attained in x∗ ∈ K. As ‖x∗‖∞ = 1, it follows that
m := ‖x∗‖ > 0. As the inequality is trivial for x = 0, suppose x 6= 0.
Then ∥∥∥∥ x

‖x‖∞

∥∥∥∥ ≥ ‖x∗‖ = m,

and hence m‖x‖∞ ≤ ‖x‖, which establishes the inequality on the left.

Exercise 2.43. Let X be a vector space and let N be the set of all norms
on X. We define a relation ∼ on N by saying ‖·‖1 ∼ ‖·‖2 if and only if
there exist m, M > 0 such that

m‖x‖1 ≤ ‖x‖2 ≤ M‖x‖1 (2.5)

for all x ∈ X. Show that ∼ is an equivalence relation.

Definition 2.44. Two norms on the same vector space that dominate each
other like in (2.5) are called equivalent.

Remark 2.45. Equivalent norms yield the same notion of convergence,
i.e. a sequence converges in the first norm if and only if converges in the
second norm (and then with the same limit), and a sequence is Cauchy
with respect to the first norm if and only if it is Cauchy with respect to
the second. Consequently equivalent norms give rise to the same contin-
uous functions, the same closed, bounded or compact sets, and a space is
complete or separable either with respect to both norms or with respect
to none.

Corollary 2.46. Any two norms on KN are equivalent. More specifically, let
‖·‖ be a norm on KN. Then (KN, ‖·‖) is complete and separable, a sequence
converges with respect to ‖·‖ if and only if it converges componentwise and a
set is compact in (KN, ‖·‖) if and only if it is closed and bounded. In particular,
the closed unit ball {x ∈ KN : ‖x‖ ≤ 1} is compact.

The above corollary could have also been formulated with respect to
any finite-dimensional vector space X instead of KN. However, it is es-
sential that the space is finite dimensional. We already observed that in
the infinite-dimensional `p spaces things are completely different. For
example, `p is separable for 1 ≤ p < ∞, but `∞ is not. Moreover, in the `p

spaces a set does not need to be compact if it is closed and bounded, see
Example 2.41. In fact, with a little more effort one can prove the following
characterisation of finite-dimensional normed spaces.

Theorem 2.47. Let (X, ‖·‖) be a normed space. The following are equivalent:

(i) dim X < ∞.

(ii) Every bounded closed set in X is compact.

(iii) The closed unit ball in X is compact.
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2.5 Bounded linear operators

The word ‘isomor-
phic’ is of Greek

origin and means ‘of
same form or shape’.

In fact, isomorphic
spaces not only

behave the same
topologically, but
also with respect
to completeness,

for example.

2.5 Bounded linear operators

In this section, we study the continuity of linear maps between normed
(vector) spaces. The following proposition gives the main characterisa-
tion of such maps. First we shall give the following definition.

Definition 2.48. Let E, F be vector spaces over K. A map T : E → F is
called linear if T(x + λy) = T(x) + λT(y) for all x, y ∈ E and λ ∈ K.

Exercise 2.49. Show that a matrix in KM×N, where M is the number of
rows and N is the number of columns, can be interpreted as a linear map
from KN to KM using matrix multiplication.

Proposition 2.50. Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed spaces and T : X →
Y be a linear map. The following are equivalent:

(i) T is Lipschitz continuous.

(ii) T is continuous at 0.

(iii) There exists a constant C > 0 such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X.

(iv) sup{‖Tx‖Y : ‖x‖X ≤ 1} < ∞.

Proof. (i)⇒(ii) Trivial.
(ii)⇒(iii) Let ε = 1. Then by Exercise 2.9 there exists a δ > 0 such that

for all x ∈ X such that ‖x‖X ≤ δ one has ‖Tx‖Y < 1. Let C > 0 be such
that 1

C < δ. Then ∥∥∥∥T
x

C‖x‖X

∥∥∥∥
Y
< 1

for all x ∈ X \ {0}. Hence ‖Tx‖Y ≤ C‖x‖X for all x ∈ X.
(iii)⇒(iv) Using C > 0 as in (iii), it follows that ‖Tx‖Y ≤ C for all

x ∈ X such that ‖x‖X ≤ 1. Hence the supremum is finite.
(iv)⇒(i) Let x, y ∈ X. Then

‖Tx− Ty‖Y = ‖x− y‖X

∥∥∥∥T
x− y
‖x− y‖X

∥∥∥∥
Y

≤ ‖x− y‖X sup{‖Tz‖Y : ‖z‖X ≤ 1}.

As the supremum is finite, the map T is Lipschitz continuous.

Definition 2.51. Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed spaces. A bounded
operator from X to Y is a continuous linear map T : X → Y. We write
L (X, Y) for the set of all bounded operators from X to Y and set ‖T‖L (X,Y) :=
sup{‖Tx‖Y : ‖x‖X ≤ 1}. If T ∈ L (X, Y) is bijective such that T−1 ∈
L (Y, X), then T is called an isomorphism and one says that (X, ‖·‖X)
and (Y, ‖·‖Y) are isomorphic. An operator T ∈ L (X, Y) is called iso-
metric if ‖Tx‖Y = ‖x‖X for all x ∈ X.
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In fact, we shall
see later that it
follows from the
Riesz–Fréchet rep-
resentation theorem
that every Hilbert
space over R is
in a natural way
isometric isomorphic
to its dual, while
every Hilbert space
over C is isometric
isomorphic to its
bidual, i.e., the dual
of its dual.

If it is clear which norms we use on X and Y, we also write ‖T‖ in-
stead of ‖T‖L (X,Y). If (X, ‖·‖X) = (Y, ‖·‖Y), we write L (X) instead of
L (X, X). If Y = K, we write X′ instead of L (X, K). We call X′ the dual
space of X.

Exercise 2.52. For all a ∈ R let fa : R→ R be given by fa(x) = ax. Show
that the dual of (R, |·|) is given by { fa : a ∈ R}. Moreover, show that
‖ fa‖R′ = |a|. Deduce that there exists an isomorphism T : (R, |·|) →
(R, |·|)′ such that ‖Ta‖R′ = |a| for all a ∈ R. In other words, (R, |·|) is
isometric isomorphic to its dual.

We shall prove that L (X, Y) is a vector space and that ‖·‖L (X,Y) de-
fines a norm on that space. We first prove the following alternative de-
scription of ‖·‖L (X,Y).

Lemma 2.53. Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed spaces and T ∈ L (X, Y).
Then ‖Tx‖Y ≤ ‖T‖L (X,Y)‖x‖X for all x ∈ X. Moreover,

‖T‖L (X,Y) = inf{C > 0 : ‖Tx‖Y ≤ C‖x‖X for all x ∈ X}.

Proof. We write ‖T‖ instead of ‖T‖L (X,Y). Define

A := {C > 0 : ‖Tx‖Y ≤ C‖x‖X for all x ∈ X}.

By rescaling and using homogeneity, it follows that ‖Tx‖Y ≤ ‖T‖‖x‖X
for all x ∈ X. Therefore ‖T‖ ∈ A and inf A ≤ ‖T‖.

Conversely, we give a proof by contradiction. Suppose that inf A <
‖T‖. So there exists a C ∈ A such that C < ‖T‖. Since ‖Tx‖Y ≤ C for
all x ∈ X such that ‖x‖X ≤ 1, it follows that ‖T‖ ≤ C < ‖T‖. This is a
contradiction. Hence inf A = ‖T‖, which was to be shown.

Theorem 2.54. Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed spaces. Then L (X, Y)
is a vector space (with respect to pointwise addition and scalar multiplication)
and ‖·‖L (X,Y) defines a norm on L (X, Y). If Y is complete, then also the space
(L (X, Y), ‖·‖L (X,Y)) is complete. In particular, the dual space X′ is always
complete.

Proof. It is easy to see that the set of all (not necessarily linear or continu-
ous) maps from X to Y form a vector space YX with respect to pointwise
addition and scalar multiplication. By Proposition 2.12.3 the sum and
scalar multiple of continuous maps are again continuous. Moreover, it
is obvious that linear combinations of linear maps from X to Y remain
linear. This shows that L (X, Y) is a vector subspace of the vector space
of YX.

We next verify that ‖·‖L (X,Y) is a norm on the space L (X, Y). Let
T, S ∈ L (X, Y) and α ∈ K. If ‖T‖L (X,Y) = 0 then Tx = 0 for all x ∈ X.
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2.5 Bounded linear operators

So (N1) is satisfied. Moreover, one has

‖αT‖L (X,Y) = sup
‖x‖X≤1

‖αTx‖Y = |α| sup
‖x‖X≤1

‖Tx‖Y = |α|‖T‖L (X,Y).

So (N2) is satisfied. The triangle inequality (N3) follows from

‖T + S‖L (X,Y) = sup
‖x‖X≤1

‖(T + S)x‖Y

≤ sup
‖x‖X≤1

(‖Tx‖Y + ‖Sx‖Y)

≤ sup
‖x‖X≤1

‖Tx‖Y + sup
‖x‖X≤1

‖Sx‖Y = ‖T‖L (X,Y) + ‖S‖L (X,Y).

This shows that (L (X, Y), ‖·‖L (X,Y)) is a normed space.
It remains to prove that (L (X, Y), ‖·‖L (X,Y)) is complete if (Y, ‖·‖Y) is

complete. Let (Tn)n∈N be a Cauchy sequence in L (X, Y). Then, for all
x ∈ X, we have

‖Tnx− Tmx‖Y ≤ ‖Tn − Tm‖L (X,Y)‖x‖X,

proving that (Tnx)n∈N is a Cauchy sequence in Y. So (Tnx) converges in
Y. Define T : X → Y by setting Tx = limn→∞ Tnx for all x ∈ X. We first
show that T is linear. Let x, y ∈ X and α ∈ K. Then

T(αx + y) = lim
n→∞

Tn(αx + y) = lim
n→∞

αTnx + Tny = αTx + Ty.

Here we have used the linearity of the Tn in the second step and Propo-
sition 2.12.3 for the third equality.

We next prove that T ∈ L (X, Y) and ‖Tn − T‖L (X,Y) → 0. Given
ε > 0, pick n0 such that ‖Tn − Tm‖L (X,Y) ≤ ε for all n, m ≥ n0. Now let
x ∈ X with ‖x‖X ≤ 1. Then ‖Tnx− Tmx‖Y ≤ ε for all n, m ≥ n0. Letting
m→ ∞, it follows that ‖Tnx− Tx‖Y ≤ ε for all n ≥ n0. On the one hand,
this proves that T ∈ L (X, Y) since

‖Tx‖Y ≤ ‖Tn0 x‖Y + ‖Tx− Tn0 x‖Y ≤ ‖Tn0‖L (X,Y) + ε

for all ‖x‖X ≤ 1. On the other hand, by taking the supremum over x ∈ X
with ‖x‖X ≤ 1, it follows that ‖Tn − T‖L (X,Y) ≤ ε for all n ≥ n0. So
Tn → T in (L (X, Y), ‖·‖L (X,Y)).

Exercise 2.55. Let (Xk, ‖·‖k) be normed spaces for k = 1, 2, 3. Show that
if T ∈ L (X1, X2) and S ∈ L (X2, X3), then ST ∈ L (X1, X3) and

‖ST‖L (X1,X3)
≤ ‖S‖L (X2,X3)

‖T‖L (X1,X2)
.
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2 Normed spaces

The operator Tm
in this example is
commonly called a
multiplication oper-
ator. Such operators
correspond to diag-
onal matrices in the
finite-dimensional
case.

The axiom of choice
also ensures the
existence of a basis
for every vector
space.

Remark 2.56. In finite dimensions, bounded linear operators correspond
to matrices. Moreover, note that the operator norm ‖·‖L (X,Y) depends
on the specific norms chosen on X and Y. So by choosing different norms
on KN one obtains different operator norms for matrices. Note that the
same matrix can be considered as a bounded linear operator for different
norms on KN. However, since the space of matrices of the form KM×N

for N, M ∈ N is finite dimensional, different norms on this space turn
out equivalent thanks to Corollary 2.46.

Example 2.57. Consider the normed space (`p, ‖·‖p) for p ∈ [1, ∞]. For
m ∈ `∞, we define Tm : `p → `p by

Tmx = (m1x1, m2x2, m3x3, . . .).

Then Tm ∈ L (`p) and ‖Tm‖L (`p) = ‖m‖`∞ .

Proof. We give the proof for 1 ≤ p < ∞ and leave the case p = ∞ as an
exercise.

For x ∈ `p, we have

‖Tmx‖p
p =

∞

∑
k=1
|mkxk|p =

∞

∑
k=1
|mk|p|xk|p ≤

∞

∑
k=1
‖m‖p

∞|xk|p = ‖m‖p
∞‖x‖

p
p.

This proves that Tm ∈ L (`p) and that ‖Tm‖L (`p) ≤ ‖m‖∞. To see that
equality holds, consider ek ∈ `p, where ek = (0, . . . , 0, 1, 0, . . .) with a 1 at
the kth position. Then ‖ek‖p = 1 and ‖Tmek‖p = |mk|. Thus ‖Tm‖L (`p) ≥
|mk| for all k ∈N. Hence ‖Tm‖L (`p) ≥ ‖m‖∞.

Exercise 2.58. Let 1 ≤ p, q ≤ ∞ be such that 1
p + 1

q = 1. Given y ∈ `q,
define

ϕy(x) =
∞

∑
k=1

ykxk.

Note that this is well-defined by Hölder’s inequality. Show that ϕy is a
continuous linear map from `p to K, hence ϕy ∈ (`p)′. Moreover, show
that ‖ϕy‖(`p)′ = ‖y‖q.

Remark 2.59. The previous exercise suggests that there might be a con-
nection between (`p)′ and `q for conjugate indices p and q. In fact, it is
not hard to show that for p ∈ [1, ∞) the map y 7→ ϕy is an isomorphism
between `q and the dual of `p. However, it follows from the set theoretic
axiom of choice that the dual of `∞ is ‘strictly larger’ than `1.

We end this section with the following useful result.

Proposition 2.60. Let (X, ‖·‖X) be a normed space, (Y, ‖·‖Y) be a complete
normed space and X0 be a dense vector subspace of X. Given T ∈ L (X0, Y)
there exists a unique operator T̃ ∈ L (X, Y) with Tx = T̃x for all x ∈ X0.
Moreover, ‖T‖L (X0,Y) = ‖T̃‖L (X,Y).

42
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Proof. Let x ∈ X. By density, there exists a sequence (xn) in X0 such that
xn → x. Since ‖Txn − Txm‖Y ≤ ‖T‖L (X0,Y)‖xn − xm‖ → 0 as n, m →
∞, it follows that (Txn) is a Cauchy sequence in Y. By completeness,
Txn converges to some T̃x ∈ Y. Note that T̃x does not depend on the
approximating sequence (xn). Indeed, if (yn) was another sequence in
X0 converging to x and Tyn → z, then

‖z− T̃x‖Y ≤ ‖z− Tyn‖Y + ‖T‖L (X0,Y)‖yn − xn‖X + ‖Txn − T̃x‖Y.

The right hand side tends to 0 as n → ∞ since ‖yn − xn‖ → 0. Hence
z = T̃x. Now it is easy to see that T̃ : X → Y is linear, cf. the proof
of Theorem 2.54. Moreover, T̃x = Tx for all x ∈ X0. To see that T̃ ∈
L (X, Y), let x ∈ X and (xn) be a sequence in X0 converging to x. Then

‖T̃x‖Y = ‖ lim
n→∞

Txn‖Y = lim
n→∞
‖Txn‖Y

≤ lim
n→∞
‖T‖L (X0,Y)‖xn‖X = ‖T‖L (X0,Y)‖x‖X,

where we have used the continuity of the norm. This proves that T̃ ∈
L (X, Y) and ‖T̃‖L (X,Y) ≤ ‖T‖L (X0,Y). The other inequality is trivial.

2.6 Spaces of continuous functions

Function spaces are a particularly important class of normed spaces. As
the name suggests, the elements of a function space are functions of a
certain class, for example, continuous or suitably integrable functions.
This is a most convenient setting if one is looking for solutions of differ-
ential equations, for example, since function spaces allow to formulate a
problem in way that mimics the elementary one-dimensional case of real
analysis and to put the problem in a framework that allows to apply the
abstract functional analytic machinery. A striking example will be given
in the following Section 2.7.

In this section we focus on spaces of continuous functions. It will be
convenient to first introduce the following.

Definition 2.61 (Space of bounded functions). Let Ω be a set. A K-valued
function f : Ω→ K is called bounded if

‖ f ‖∞ := sup
x∈Ω
| f (x)| < ∞.

The set of all bounded functions from Ω to K is denoted by

Fb(Ω) := { f : Ω→ K : f is bounded}.

Proposition 2.62. Let Ω be a set. The set Fb(Ω) is a vector space with respect
to the pointwise addition of functions and the pointwise scalar multiplication.
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2 Normed spaces

This norm ‖·‖∞ is
usually called the
sup-norm.

More generally,
one could consider
continuous func-
tions from M into
a normed space
(Y, ‖·‖Y). The cor-
responding function
spaces would be
denoted by C(M; Y)
and Cb(M; Y).

Moreover,
‖ f ‖∞ = sup

x∈Ω
| f (x)|

defines a norm on Fb(Ω). The space (Fb(Ω), ‖·‖∞) is complete.

Proof. We leave the proof as an exercise. The completeness follows analo-
gously as in the proof of Theorem 2.54, where the completeness of L (X, Y)
was shown for a Banach space Y.

We now introduce the following spaces of continuous functions.

Definition 2.63. Let (X, ‖·‖) be a normed space and M ⊂ X. By C(M) =
C(M; K) one denotes the vector space of continuous functions from
M to K with usual pointwise operations. The subspace of bounded
continuous functions in C(M) is denoted by Cb(M) = Cb(M; K). So
Cb(M) = C(M) ∩ Fb(M).

We point out that if K is compact in (X, ‖·‖) then Cb(K) = C(K) by
Exercise 2.39.

Let (X, ‖·‖) be a normed space and M ⊂ X. We study further structural
properties of the vector spaces C(M) and Cb(M). Let f , g ∈ C(M). We
define the product of f and g pointwise by ( f g)(x) := f (x)g(x). Clearly
f g ∈ C(M) and, if f , g ∈ Cb(M), then f g ∈ Cb(M). Moreover, it is
easily observed that polynomials are continuous functions from K to K

and therefore elements of C(K).
The following result shows that there exist many continuous functions.

Exercise 2.64 (Urysohn’s lemma). Let (X, ‖·‖) be a normed space and
A, B ⊂ X be closed sets such that A ∩ B = ∅. Show that there exists
a continuous function f ∈ C(X) such that f (x) = 0 for all x ∈ A and
f (x) = 1 for all x ∈ B.

Hint: First show that x 7→ inf{‖x− y‖ : y ∈ A} is Lipschitz continuous if A 6= ∅.
For f use a suitable combination of these functions.

Proposition 2.65. Let (X, ‖·‖) be a normed space and M ⊂ X. The space
Cb(M) is a closed subspace of (Fb(M), ‖·‖∞). Hence, (Cb(M), ‖·‖∞) is a
Banach space.

Proof. It suffices to prove that Cb(M) is closed in Fb(M). To that end, let
a sequence ( fn) in Cb(M) be given such that ( fn) converges with respect
to ‖·‖∞ to some f ∈ Fb(M). We have to prove that f is continuous. So
let xk → x in M. Then

| f (x)− f (xk)| ≤ | f (x)− fn(x)|+ | fn(x)− fn(xk)|+ | fn(xk)− f (xk)|
≤ 2‖ f − fn‖∞ + | fn(x)− fn(xk)|.

Given ε > 0, we first pick an n0 ∈ N such that ‖ f − fn0‖∞ ≤ ε/4. Since
fn0 is continuous, we can pick a k0 ∈ N such that | fn0(x)− fn0(xk)| ≤ ε

2
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2.6 Spaces of continuous functions

Note that the same
n0 ∈ N is used

simultaneously for
all x ∈ M, hence

the ‘uniformly’.

In the lecture this
proof is skipped.

for all k ≥ k0. Now the above estimate yields | f (x)− f (xk)| ≤ ε for all
k ≥ k0. It follows that f is continuous and hence an element of Cb(M).

Remark 2.66. Let (X, ‖·‖) be a normed space and M ⊂ X. A sequence of
functions fn : M→ K is said to converge uniformly on M to f : M→ K,
if for all ε > 0 there exists an n0 ∈ N such that | fn(x)− f (x)| ≤ ε for all
n ≥ n0 and all x ∈ M.

Obviously, fn → f with respect to ‖·‖∞ if and only if fn → f uniformly
on M. Note that by Proposition 2.65 the uniform limit of bounded con-
tinuous functions is continuous. This is not true for the pointwise limit of
a sequence of bounded continuous functions. For example, let M = [0, 1]
and fn(x) = xn for all x ∈ [0, 1] and n ∈ N. Then the pointwise limit of
( fn) is not continuous.

We content ourselves with presenting the Stone–Weierstrass theorem with-
out proof. It will allow us to deduce that C(K) is separable if K is com-
pact.

Definition 2.67. Let (X, ‖·‖) be a normed space and M ⊂ X. Let A be a
subset of C(M).

1. A vector subspace A of C(M) is called an algebra if A is closed
under multiplication, i.e., f , g ∈ A implies f g ∈ A .

2. An algebra A is called unital if the function 1 : M→ K, defined by
1(x) = 1 for all x ∈ M, belongs to A .

3. A is said to separate points (in M), if for all x, y ∈ M with x 6= y,
there exists an f ∈ A such that f (x) 6= f (y).

4. A is said to be closed under conjugation, if f ∈ A implies f̄ ∈ A .

Note that by Urysohn’s lemma the unital algebra A = C(M) separates
points. Moreover, it is closed under conjugation.

Theorem 2.68. Let (X, ‖·‖) be a normed space and K ⊂ X be compact. Suppose
A ⊂ C(K) is an unital algebra that separates points. If K = C, then suppose in
addition that A is closed under conjugation. Then A is dense in (C(K), ‖·‖∞).

Sketch of proof. We only consider the case K = R. One first shows that
the closure of A contains | f | for all f ∈ A . It follows that the functions
min{ f , g} = 1

2( f + g− | f − g|) and max{ f , g} = 1
2( f + g + | f − g|) are

contained in the closure of A .
Now let f ∈ C(K) and ε > 0 be given. For all points a, b ∈ K such

that a 6= b we find a function ga,b ∈ A such that ga,b(a) = f (a) and
ga,b(b) = f (b). For example,

ga,b(x) := f (a)1+ ( f (b)− f (a))
h(x)− h(a)
h(b)− h(a)

,
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In fact, a compact
set is compact if and
only if every open
cover admits a finite
subcover. We use
this here without
proof.

where h ∈ A is such that h(a) 6= h(b). Let b ∈ K be fixed. For all a ∈ K
define the open set

Ua := {x ∈ K : ga,b(x) < f (x) + ε}.

Note that on Ua the function ga,b is good in that it is not much larger
than f . Moreover, as a ∈ Ua the family (Ua)a∈K is an open cover of K.
Compactness allows to select a finite subcover such that K ⊂ Ua1 ∪ . . . ∪
UaN . By defining

gb := min {gak,b : k = 1, . . . , N}

we obtain a gb in the closure of A such that gb(x) < f (x)+ ε for all x ∈ K.
Similarly, for all b ∈ K one can define the open set

Vb := {x ∈ K : gb(x) > f (x)− ε}.

Note that on Vb the function gb is good in that it is not much smaller
than f . Moreover, as b ∈ Vb the family (Vb)b∈K is an open cover of K.
Compactness allows to select a finite subcover K ⊂ Vb1 ∪ . . . ∪VbM . Now
define

g := max {gbk
: k = 1, . . . , M}.

It is easily checked that g is in the closure of A and ‖ f − g‖∞ < ε.

Corollary 2.69. Let (X, ‖·‖) be a normed space and K ⊂ X be compact. Then
C(K) is separable.

Proof. By Exercise 2.38, there exists a countable set {xn ∈ K : n ∈ N}
that is dense in K. For all n, m ∈ N, the sets cl B(xn, 1

2m ) and B(xn, 1
m )c

are closed and disjoint. Hence, by Urysohn’s lemma there exist contin-
uous (real-valued) functions fn,m : K → [0, 1] with fn,m(x) = 0 for all
x ∈ cl B(xn, 1

2m ) and fn,m(x) = 1 for all x ∈ B(xn, 1
m )c. We define P as the

set of all finite products of functions fn,m including the function 1. This
is a countable set. We then define

A := span P =
{ N

∑
k=1

αkgk : N ∈N, αk ∈ K and gk ∈P
}

.

Then A is unital algebra which is closed under conjugation. Moreover,
it separates points. Indeed if x 6= y, then ρ := ‖x− y‖ > 0. Pick m ∈ N

such that 1
2m < ρ/4 and then n ∈ N such that ‖x− xn‖ ≤ 1

2m . Then
fn,m(x) = 0 and, since

‖y− xn‖ ≥ ‖y− x‖ − ‖x− xn‖ > ρ− 1
2m

>
3
4

ρ >
1
m

,

one has fn,m(y) = 1.
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2.7 Banach’s fixed point theorem

Important!

By Theorem 2.68, A is dense in C(K). Since A is the linear span of the
countable set P , it follows that C(K) is separable by Proposition 2.32.

The Stone–Weierstrass theorem also allows us to deduce approxima-
tion results:

Corollary 2.70. For every f ∈ C[0, 1], there exists a sequence of polynomials
(pn)n∈N which converges uniformly on [0, 1] to f .

Proof. It is an easy exercise to show that the assumptions of Theorem 2.68
are satisfied.

Consider [0, 2π]. A trigonometric polynomial is a function p : [0, 2π]→
C of the form p(t) = ∑N

k=−N αkeikt where N ∈ N and α−N, . . . , αN ∈ C.
Using that eikteilt = ei(k+l)t, it is easy to see that the trigonometric polyno-
mials form a unital algebra. Since eikt = e−ikt, the trigonometric polyno-
mials are closed under conjugation. However, the trigonometric polyno-
mials do not separate points in [0, π], since p(0) = p(2π) for all trigono-
metric polynomials p. Nevertheless, the trigonometric polynomials sep-
arate points in (0, 2π). Indeed, if eit = eis, then it follows that t− s = 2πn
for some n ∈ Z. Hence, if t, s ∈ (0, 2π) and t 6= s, then eit 6= eis.

Corollary 2.71. For every f ∈ C[0, 2π] with f (0) = f (2π) there exists a
sequence of trigonometric polynomials that converges uniformly to f .

Proof. Note that the set

K :=
{

z ∈ C : z = eit with t ∈ [0, 2π]
}
= {z ∈ C : |z| = 1}

is compact in C. For all k ∈ Z let p̃k : K → C be given by p̃k(z) = zk.
Then it follows from a straightforward application of Theorem 2.68 that

˜A := span { p̃k : k ∈ Z} is dense in C(K). Here the closedness under
conjugation of ˜A follows from the identity zk = z−k for z ∈ K. Now let
ε > 0 and define f̃ ∈ C(K) by setting f̃ (z) = f (t) where z = eit. Note
that this is well-defined. Let p̃ ∈ ˜A such that ‖ f̃ − p̃‖∞ < ε. Then p(t) :=
p̃(eit) defines a trigonometric polynomial such that ‖ f − p‖∞ < ε.

2.7 Banach’s äxed point theorem

In this section, we present a result which is of great importance in ap-
plications. Many problems can be reformulated as so-called fixed point
problems.

Definition 2.72. Let M be a set and ϕ : M → M be a map. A fixed point
of ϕ is an element x∗ ∈ M with ϕ(x∗) = x∗. We define the iterates of ϕ

inductively by ϕ1 = ϕ and ϕn+1 = ϕ ◦ ϕn for n ≥ 1.
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Theorem 2.73 (Banach’s fixed point theorem). Let (X, ‖·‖) be a Banach
space and M ⊂ X a closed subset. Let f : M → M be a map such that there
exists a sequence qn ≥ 0 with ∑∞

n=1 qn < ∞ with

‖ϕn(x)− ϕn(y)‖ ≤ qn‖x− y‖

for all x, y ∈ M and n ∈N. Then ϕ has a unique fixed point x∗ ∈ M.

Proof. We first prove existence of a fixed point. To that end, let x0 ∈ M
be arbitrary and define a sequence (xn)n∈N inductively by setting xn :=
ϕ(xn−1) for all n ∈N. Suppose n, m ∈N such that n ≥ m. Then

‖xn − xm‖ =
∥∥∥∥n−1

∑
k=m

(xk+1 − xk)

∥∥∥∥
≤

n−1

∑
k=m

∥∥ϕk(ϕ(x0))− ϕk(x0)
∥∥

≤
( ∞

∑
k=m

qk

)
‖ϕ(x0)− x0‖,

which goes to zero as m→ ∞ since ∑∞
k=1 qk < ∞. This shows that (xn)n∈N

is a Cauchy sequence in X and hence convergent. Because M is closed,
the limit x∗ of (xn)n∈N lies in M.

We now prove that x∗ is a fixed point of ϕ. To that end, first observe
that ϕ is Lipschitz continuous on M with Lipschitz constant q1. Hence

ϕ(x∗) = lim
n→∞

ϕ(xn) = lim
n→∞

xn+1 = x∗.

It remains to prove uniqueness of the fixed point. To that end, assume
that x∗ and y∗ are fixed points of ϕ, i.e. ϕ(x∗) = x∗ and ϕ(y∗) = y∗. Then,
by induction, ϕn(x∗) = x∗ and ϕn(y∗) = y∗ for all n ∈N. Therefore

‖x∗ − y∗‖ = ‖ϕn(x∗)− ϕn(y∗)‖ ≤ qn‖x∗ − y∗‖ → 0

as n → ∞, since ∑∞
n=1 qn < ∞. Thus ‖x∗ − y∗‖ = 0 and hence x∗ =

y∗.

Corollary 2.74 (Classical Banach fixed point theorem). Let (X, ‖·‖) be a
Banach space and ϕ : X → X be a strict contraction, i.e., Lipschitz continuous
with Lipschitz constant L ∈ [0, 1). Then ϕ has a unique fixed point.

Proof. The assumptions of Theorem 2.73 are satisfied with qn = Ln which
is summable since L ∈ [0, 1).

Exercise 2.75. Consider the closed set M := [1, ∞) in the Banach space
(R, |·|). Show that ϕ : M→ M given by ϕ(x) = x + 1

x satisfies

|ϕ(x)− ϕ(y)| < |x− y|.
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2.7 Banach’s fixed point theorem

Note that the
problem (ODE) is
of course depen-

dent on f and x0.

The map Φ is com-
monly called the
Picard operator.

Note that Φ is not
linear in general.

However, ϕ does not have a fixed point. Why does this not contradict
Theorem 2.73?

The usefulness of Banach’s fixed point theorem arises from the fact that
many problems can be reformulated as fixed point problems. As an illus-
tration, we now solve very general ordinary differential equations using
the Banach fixed point theorem. We note that a similar approach also
works for stochastic differential equations.

Definition 2.76. Let I = [0, T] be a compact interval, f : I ×R → R be a
continuous function and x0 ∈ R. A solution to the ordinary differential
equation

(ODE)

{
u′(t) = f (t, u(t)) for t ∈ [0, T],
u(0) = x0,

is a continuously differentiable function u∗ : [0, T] → R such that (ODE)
holds for u = u∗.

We now reformulate (ODE) as a fixed point problem.

Lemma 2.77. Given a compact interval I, x0 ∈ R and f : I ×R → R contin-
uous, define Φ : C(I)→ C(I) by

(Φu)(t) = x0 +
∫ t

0
f (s, u(s)) ds.

Then u∗ solves (ODE) if and only if Φu∗ = u∗.

Proof. If u∗ solves (ODE), then, by the fundamental theorem of calculus,
we have

u∗(t)− x0 = u∗(t)− u∗(0) =
∫ t

0
(u∗)′(s) ds =

∫ t

0
f (s, u∗(s)) ds

for all t ∈ I. Thus Φu∗ = u∗.
Conversely, if Φu∗ = u∗, then, by the fundamental theorem of calculus,

u∗ is continuously differentiable and

(u∗)′(t) =
d
dt

∫ t

0
f (s, u∗(s)) ds = f (t, u∗(t))

for all t ∈ I. Since u∗(0) = x0, it follows that u∗ solves (ODE).

Theorem 2.78 (Picard–Lindelöf). Let I = [0, T] be a compact interval and
f : I ×R→ R be a continuous function such that there exists an L ≥ 0 with

| f (t, x)− f (t, y)| ≤ L|x− y|

for all x, y ∈ R and t ∈ I. Then, for every x0 ∈ R there exists a unique solution
u∗ : [0, T]→ R of the differential equation (ODE).
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Proof. Let Φ be as in Lemma 2.77. By this Lemma it suffices to show that
Φ has a unique fixed point. Since (C(I), ‖·‖∞) is complete, it suffices to
show that the hypothesis of Banach’s fixed point theorem (Theorem 2.73)
is satisfied.

We claim that

|(Φnu)(t)− (Φnv)(t)| ≤ Lntn

n!
‖u− v‖∞

for all u, v ∈ C(I) and t ∈ I. Note that ∑∞
n=1

LnTn

n! is summable and hence
the hypothesis of Banach’s fixed point theorem is satisfied. Thus, proving
the claim finishes the proof.

We proceed by induction. For n = 1, we have

|(Φu)(t)− (Φv)(t)| ≤
∫ t

0
| f (s, u(s))− f (s, v(s))| ds

≤
∫ t

0
L|u(s)− v(s)| ds

≤ Lt‖u− v‖∞.

Now assume that |(Φnu)(t)− (Φnv)(t)| ≤ Lntn

n! ‖u− v‖∞. Then

|(Φn+1u)(t)− (Φn+1v)(t)| ≤
∫ t

0
| f (s, (Φnu)(s))− f (s, (Φnv)(s))| ds

≤
∫ t

0
L|(Φnu)(s)− (Φnv)(s)| ds

≤
∫ t

0
L

Lnsn

n!
‖u− v‖∞ ds =

Ln+1tn+1

(n + 1)!
‖u− v‖∞.

This finishes the proof.

Exercise 2.79. The proof of Banach’s fixed point theorem shows that for
any initial function u ∈ C(I) the sequence Φnu converges to the unique
fixed-point u∗ of Φ that is the unique solution of (ODE). This allows to
approximate the solution u∗ by simply iterating Φ. This method is called
Picard iteration.

For the ordinary differential equation u′(t) = tu(t) on [0, 1], use Pi-
card iteration to construct the solution of the equation for the initial value
u(0) = 1.
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