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x–y holes

x–y HOLE

Given: G, x , y
Is there a hole through x and y?
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Theorem (Bienstock ’91)

x–y HOLE is NP-complete.
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Easy for line graphs G = L(H)
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hole through x and y
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H

cycle through x and y

just need to check for two disjoint paths

simple polynomial time algorithm



Polynomial time algorithm

Existence of polynomial time algorithm...
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Lévêque, Lin, Maffray and Trotignon:

O(n4)-algorithm for G (n vertices)

algorithm not very practical
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Naive conjecture

No clique that separates x from y
⇒ x–y hole
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Structure theorem

Theorem

Let G be claw-free and x, y non-adjacent and without common
neighbours. Then there exists a hole through x and y iff there
is no clique separating x and y.

x y

false with common neighbours



With common neighbours

x y

q

N(q) a hole through a common
neighbour

Theorem

Let G be claw-free and x, y non-adjacent. Then:

There exists a hole through x and y; or

there exists a clique separating x and y in G − N(x) ∩ N(y),
and for every q ∈ N(x) ∩ N(y): q ∪ N(q) \ {x , y} separates x
and y in G.



Algorithmic consequences

x–y HOLE

Given G, x , y check whether G
contains a hole through x and y .

∃ hole through x and y iff @ x–y
clique separator

For claw-free G...

Use Tarjan’s clique decomposition algorithm

x–y HOLE can be solved in O(|E | · |V |)-time
previously O(|V |4) (Lévêque et al)



Three-in-a-Tree
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THREE-IN-A-TREE

Given G, x , y , z check whether G
contains an induced tree containing
x , y and z.

Theorem (Chudnovsky & Seymour)

THREE-IN-A-TREE can be solved in O(|V |4)-time.



Three-in-a-Path
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G claw-free→
tree becomes induced path

When is there an induced x–z path
through y?

obstructions:

y
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z
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N(z)
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Induced x–z path through y

Theorem

Let G be claw-free and x, y, z non-adjacent. Then:

There exists an induced x–z path through y; or

there exists a clique separating {x , z} and y, or N(x)
separates z from y, or N(z) separates x from y.

follows from x–y hole theorem

allows for O(|E | · |V |)-algorithm



Extensions?

Given k vertices X in claw-free G, when is there a
hole through all of X?

→ in line graphs: search for cycle through k edges
→ too ambitious

Lovász-Woodall Conjecture

Let H be k -connected, F set of k independent
edges, and if k is odd, assume G − F to be
connected. Then there is a cycle through F .

true for k = 3, 4

full proof announced by Kawarabayashi



Open problem

When is there a hole through x , y , z in a
claw-free graph?

complexity?


