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Abstract

A connected graph G is called t-perfect if its stable set polytope is

determined by the non-negativity, edge and odd-cycle inequalities. More-

over, G is called strongly t-perfect if this system is totally dual inte-

gral. It is an open problem whether t-perfection is equivalent to strong

t-perfection. We prove the equivalence for the class of claw-free graphs.

1 Introduction

For a graph G = (V,E) define the polytope TSTAB(G) as the set of all vectors
x ∈ R

V satisfying

0 ≤ xv ≤ 1 for every vertex v ∈ V,

xu + xv ≤ 1 for every edge uv ∈ E, (1)
∑

v∈V (C)

xv ≤ ⌊
|V (C)|

2
⌋ for every odd cycle C in G.

The graph G is called t-perfect if TSTAB(G) coincides with the stable set poly-
tope of G (the convex hull of characteristic vectors of stable sets in R

V ). We
call G strongly t-perfect if the system (1) is totally dual integral (TDI). Hence,
by definition strong t-perfection implies t-perfection. Whether the converse is
true is not known.

Question 1. Is every t-perfect graph also strongly t-perfect?

The question is briefly discussed in Schrijver [14, Vol. B, Ch. 68], where
also more details about strong and ordinary t-perfection can be found. Our
main theorem, which we prove in Section 4, answers Question 1 affirmatively
for claw-free graphs. (A graph is claw-free if it does not contain K1,3 as an
induced subgraph.)

Theorem 2. A claw-free graph is t-perfect if and only if it is strongly t-perfect.

The class of t-perfect graphs has been introduced by Chvàtal [3], and has
been studied by Sbihi and Uhry [12], Shepherd [15], and Gerards and Shep-
herd [8], among others. Recently, we characterised claw-free t-perfect graphs in
terms of forbidden substructures, see [2]. Strongly t-perfect graphs have been
investigated by Gerards [7] and Schrijver [13].

The class of strongly t-perfect graphs includes bipartite, as well as almost
bipartite graphs, that is, graphs whose odd cycles all share a common vertex.
A graph that is neither t-perfect nor strongly t-perfect is K4. The first can
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be seen by considering the vector with value 1
3 at every vertex of K4. This

vector belongs to TSTAB(K4) but not to its stable set polytope. On the other
hand, the weight vector wv = 1 for every v ∈ V (K4) is a witness for the strong
t-imperfection of K4.

The K4 is also at the heart of the most wide-reaching certificate for strong
t-perfection known so far. Call a subdivision of K4 odd if every triangle of K4

becomes an odd cycle in the subdivision.

Theorem 3 (Gerards [7]). A graph without an odd-K4-subdivision as a subgraph
is strongly t-perfect.

The theorem has been strengthened by Schrijver in [13]. See also Gijswijt
and Schrijver [9] for a more general result.

As throughout the paper, the cycles and their squares will play a prominent
role, let us quickly fix some notation in that respect. The (induced) cycle of
length i is denoted Ci, and we assume Ci to have vertices {v1, . . . , vi} occurring
in this order on Ci. The square of Ci is C2

i , and it is obtained from Ci by adding
an edge between any two vertices of distance 2.

All graphs in this paper are finite and simple. For general graph theoretical
notation and concepts, we refer to Diestel [5].

2 t-minors and strong t-perfection

We start by giving an alternative, and sometimes more convenient, definition of
strong t-perfection. Then, we will describe substructures that are compatible
with strong t-perfection.

Let G be a graph and let K = V ∪E ∪C be a family of vertices (set V), edges
(set E) and odd cycles (set C) of G. We say K has cost

|V| + |E| +
∑

C∈C

|V (C)| − 1

2
.

We say that K covers a vertex v k times if v lies in at least k members of K.
For a weight function w ∈ Z

V (G), we call K a w-cover of G if every vertex v is
covered at least wv times by K.

Observe that every w-cover can be turned into an exact cover with the same
or lower cost, i.e. into a cover that covers every vertex v exactly wv times
(provided w ≥ 0). Indeed, this can easily be achieved by replacing odd cycles
incident with an overly covered vertex v by a maximal matching of the cycle
that misses v, by replacing incident edges by the other endvertex and/or by
omitting v itself from the cover, if present.

Furthermore, we can usually assume that any cycle in a w-cover is induced.
To achieve this, suppose a w-cover K contains an odd cycle C that has a chord.
Then E(C) + e decomposes into the edge set of an odd cycle C ′ through e and
the edge set of an odd subpath P of C between the endvertices of e. Replacing
C by C ′ plus every other edge in P yields a cover of the same cost in which
every vertex is as often covered as in K.

For a subset S of V (G), write w(S) :=
∑

s∈S ws, and define the weighted
stability number of G

αw(G) := max{w(S) : S ⊆ V (G) is stable}.
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By linear programming duality, G is strongly t-perfect if and only if there is
a w-cover of cost αw(G) for all w ∈ Z

V (G), see Schrijver [14] for more details.
Moreover, it is easy to see that we need only consider non-negative w.

Let v be a vertex of a graph G so that its neighbourhood N(v) forms a stable
set. Then G̃ is obtained from G by a t-contraction at v if G̃ = G/E(v), i.e. if
G̃ is the result of contracting all the edges incident with v. We say that G′ is
a t-minor of G if G′ can be obtained from G by a sequence of vertex deletions
and t-contractions.

It is not hard to check that t-perfection is stable under taking t-minors.
Indeed, verifying that induced subgraphs of t-perfect graphs are t-perfect is
easy, and in Gerards and Shepherd [8] it is shown that if G′ is obtained from a
t-perfect graph G by t-contraction then G′ is t-perfect, too.

The same holds for strong t-perfection:1

Proposition 4. Every t-minor of a strongly t-perfect graph is strongly t-perfect.

Proof. Let G be strongly t-perfect. It is straightforward to see that induced
subgraphs of G are strongly t-perfect, too. It remains to show, therefore, that
for every vertex v with stable neighbourhood N(v) the graph G̃ := G/E(v) is
strongly t-perfect as well.

Denote the new vertex of G̃ by ṽ. Given a non-negative weight w̃ ∈ Z
V (G̃),

we have to find a w̃-cover K̃ of G̃ that has cost αw̃(G).
Set β := w̃(V (G̃)) + 1, and define w ∈ Z

V (G) as wu := w̃u for u ∈ V (G̃− ṽ),
wp := β for p ∈ N(v) and wv := d(v) · β − w̃ṽ. Note that by the choice of β,
every stable set of maximal weight with respect to w either contains v, or all of
N(v). In either case,

αw(G) ≤ αw̃(G̃) + d(v) · β − w̃ṽ = αw̃(G̃) + wv. (2)

As G is strongly t-perfect, there exists a w-cover K of cost αw(G), which
we may assume to cover v exactly wv times. Moreover, we may require all the
cycles in K to be induced.

Let Kv ⊆ K consist of all K ∈ K that are incident with v. For each cycle
C ∈ Kv contract the two edges incident with v. Note that this gives a cycle
in G̃ as C was induced by assumption. Denote the family of the thus obtained
cycles by K̃v. Since we omit all the edges and vertices of Kv in K̃v, and since
every cycle in K̃v is two edges shorter than the corresponding cycle in Kv, it
follows that K̃v costs wv less than Kv.

Next, we turn K \ Kv into a family K̃′ of vertices, edges and odd cycles
in G̃. For this, interpret all the elements of K \ Kv that do not meet N(v) as
a subgraph of G̃ and put them (with repetitions) in K̃′. For every occurrence
of a vertex in N(v) add {ṽ} to K̃′, and for every occurrence of an edge rs with
s ∈ N(v) add the edge rṽ to K̃′. For every cycle C in K \ Kv that is incident
with a vertex in N(v), the edge set E(C) can be partitioned into the edge sets
of cycles in G̃. Add all the odd cycles to K̃′ and every second edge from every
even cycle. This yields a family K̃′ of the same cost as K \Kv that covers every
vertex in V (G̃ − ṽ) as often as K \ Kv, and which covers ṽ as often as N(v) is
covered in total by K \ Kv.

1While this result was known before [6], it does not appear to have been published any-
where.
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Thus the cost of K̃ := K̃v ∪ K̃′ is at most the cost of K minus wv, that is,
αw(G)−wv. By (2), this is at most αw̃(G̃). Hence, it only remains to show that
K̃ is a w̃-cover of G̃. By construction, every vertex u 6= ṽ is covered adequately
by K̃, so we only have to check how often we covered ṽ. Clearly ṽ is covered by
K̃ at least as often as K covered N(v) minus |Kv|, since all we lose are the edges
in Kv, and for each cycle C ∈ Kv we observe that while C covered two vertices
in N(v) its counterpart in K̃ still covers ṽ once. As K covers v exactly wv times,
it follows that |Kv| = wv. Hence, K̃ covers ṽ at least d(v) · β − wv = w̃ṽ times,
as desired.

3 Minimally strongly t-imperfect graphs

A graph G is minimally (strongly) t-imperfect if it is (strongly) t-imperfect but
every proper t-minor of G is (strongly) t-perfect. An example of a minimally
strongly t-imperfect graphs is K4, which is also minimally t-imperfect. Thus, if
a graph contains, for instance, K4 as a t-minor then it is strongly t-imperfect
as well as t-imperfect. This observation enabled a succinct characterisation of
t-perfection in claw-free graphs [2], and will be helpful in what follows.

Theorem 2 lends credibility to the conjecture that t-perfection is always
strong. One way to prove the conjecture would consist in verifying whether the
minimally t-imperfect graphs coincide with the minimally strongly t-imperfect
graphs. Unfortunately, a complete list of minimal elements is neither known for
t-perfection nor for strong t-perfection.

...

...

Figure 1: Minimally (strongly) t-imperfect graphs

Figure 1 shows some minimally t-imperfect graphs: the odd wheels and the
even Möbius ladders (see Schrijver [14]), as well as two additional graphs, the
squares C2

7 and C2
10 of the 7-cycle and the 10-cycle (see [2]). All these graphs

are minimally strongly t-imperfect as well.
In fact, that the odd wheels and the even Möbius ladders are minimally
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strongly t-imperfect can easily be deduced from the fact that almost bipartite
graphs are strongly t-imperfect, which follows from Theorem 3. (A graph is
almost bipartite if it can be made bipartite by deleting some vertex.)

The fact that C2
7 and C2

10 are minimally strongly t-imperfect will be proved
in Lemma 5 below. We remark that these are the only squares of cycles that
have this property.

One can obtain a few more minimally t-imperfect and minimally strongly
t-imperfect graphs by adding any number of diagonals to C2

10 [1]. These graphs
are depicted in Figure 2. To our knowledge, Figures 1 and 2 show all minimally
(strongly) t-imperfect graphs known.

Figure 2: Some more minimally (strongly) t-imperfect graphs

Lemma 5. The graphs C2
7 and C2

10 are minimally strongly-t-imperfect.

Proof. As C2
7 and C2

10 are t-imperfect (consider for example the vector x with
xv = 1

3 for each vertex v), they are also strongly t-imperfect. Hence, since
no vertex in C2

7 and C2
10 has independent neighbourhoods, it suffices to prove

that for j ∈ {7, 10} the graph C2
j − vj is strongly t-perfect. In both cases,

j = 7 and j = 10, we proceed by induction on the total weight w(V ), where
V := V (C2

j − vj) and w is the given non-negative vector in Z
V for which we

have to find a w-cover. As the case when w(V ) = 0 is trivial we will assume
that w is given with w(V ) > 0, and that the desired cover exists for all w′ with
w′(V ) < w(V ).

Recall that {v1, . . . , vj} are the vertices of Cj in circular order, so that
v1, v2, vj−2 and vj−1 have degree 3 in C2

j − vj . Denote by S the set of all

stable sets of weight αw := αw(C2
j − vj), and write wi for w(vi).

First of all, if there is a triangle T so that every S ∈ S meets T , then we
define w′(v) := w(v) − 1 for v ∈ T+ := V (T ) ∩

⋃
S∈S S and w′

i = wi otherwise.
As each v ∈ T+ has positive weight w(v)—otherwise S \ {v} would be in S and
miss T—we conclude that w′ is non-negative. Since T+ 6= ∅ by assumption,
the total weight w′(V ) is smaller than w(V ). Hence, by induction there is a
w′-cover K′ of cost αw′ . Since αw′ = αw − 1 the family K′ ∪ T is a w-cover of
cost αw, as desired.

We can argue in a similar way if every S ∈ S meets the edge v1vj−1. So, let
us assume from now on that for each triangle T in C2

j − vj there is a ST ∈ S
avoiding T , and that there exists an Sv1vj−1

∈ S that is disjoint from {v1, vj−1}.
For C2

7 − v7, the stable set Sv4v5v6
of weight αw needs to consist of a single

vertex vk with k ∈ {1, 2, 3} as v1v2v3 forms a triangle in C2
7 − v7. Hence,
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wk = αw. In the same way, we get that for some l ∈ {4, 5, 6} the vertex vl

has weight αw, too. Moreover, vk and vl have to be adjacent. If (k, l) = (1, 6),
then all other vertices have weight 0, and αw times the edge v1v6 is a w-cover
of C2

7 − v7. On the other hand, if k ∈ {2, 3} and l ∈ {4, 5}, then w1 = w6 = 0.
Furthermore, as {v2} = Sv3v4v5

and {v5} = Sv2v3v4
have weight αw, the stable

set {v2, v5} has weight 2αw, a contradiction.
Now, let us consider C2

10 − v10. Let K be a triangle in C2
10 − v10, or let K

be the subgraph consisting of the edge v1v9. Suppose that k ∈ V (K).
If w(k) > 0 and k has only one neighbour s outside K then, as w(SK) = αw,

SK contains s, since otherwise we could increase the weight of SK by including
k. Since SK \ {s}∪{k} is stable, it follows that w(k) ≤ w(s). Observe that this
inequality trivially holds too, if w(k) = 0. We use this rule to obtain a number
of inequalities that are listed in the table below.

K w(k) ≤ w(s) w(k) ≤ w(s)
v1v2v3 (a) w1 ≤ w9 (b) w2 ≤ w4

v7v8v9 (c) w9 ≤ w1 (d) w8 ≤ w6

v2v3v4 (e) w2 ≤ w1

v6v7v8 (f) w8 ≤ w9

Now assume that the vertex k ∈ V (K) has two adjacent neighbours s and
t outside K (and then no other neighbours outside K). Because SK can only
contain one of s and t, we deduce as above that w(k) ≤ max{w(s), w(t)}. Using
this argumentation, we obtain

K w(k) ≤ max{w(s), w)t)}
v3v4v5 (g) w3 ≤ max{w1, w2}
v5v6v7 (h) w7 ≤ max{w8, w9}
v1v9 (i) w1 ≤ max{w2, w3}
v1v9 (j) w9 ≤ max{w7, w8}

From (a) and (c), we get that w1 = w9, and (g) together with (e) yields
w3 ≤ w1. Symmetrically, we obtain w7 ≤ w9, and with (e), (f), (i) and (j) this
results in

max{w2, w3} = w1 = w9 = max{w7, w8}. (3)

By definition, Sv4v5v6
avoids v4v5v6 but has weight αw. Since Sv4v5v6

meets
both of the triangles v1v2v3 and v7v8v9 at most once we obtain from (3) that
w(Sv4v5v6

) = 2w1. Thus, (3) allows us to choose s ∈ {v7, v8} and s′ ∈ {v2, v3}
so that S := {v1, s} and S′ := {v9, s

′} have weight αw.
Comparing the stable set {v1, s, v4} to S we get w1 + w(s) + w4 ≤ w(S) =

w1 + w(s) and thus w4 = 0. Hence, w2 = 0 too, by (b), and w3 = w1, by (3).
Symmetrically, comparing {v9, s

′, v6} to S′, we get that w6 = w8 = 0.
To sum up, we have discovered that w1 = w3 = w7 = w9 and that w2 =

w4 = w6 = w8 = 0. Furthermore, αw = w(S) = 2w1. Finally, as {v1, v5} is
stable, it follows that w5 ≤ w1. We conclude the proof by choosing a w-cover
consisting of w1 times the 5-cycle v1v3v5v7v9 at a cost of 2w1.
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4 Strongly t-perfect claw-free graphs

In order to prove Theorem 2, we only have to show that every claw-free strongly
t-imperfect graph is t-imperfect. In fact, it suffices to prove this for all minimally
strongly t-imperfect graphs G. Our first step in this direction is to show that G
is 3-connected:

Lemma 6. Let G be a minimally strongly t-imperfect graph. If G is claw-free
then G is 3-connected.

We postpone the lengthy proof of this lemma to the end of the section. Once
equipped with Lemma 6 we may apply the following tool from [2].

Lemma 7. [2]2 Let G be a 3-connected claw-free graph. If G is t-perfect then
one of the following statements holds true:

(i) G is a line graph;

(ii) G ∈ {C2
6 − v1v6, C

2
7 − v7, C

2
10 − v10}.

We need one further ingredient for the proof of Theorem 2. The following
theorem describes a TDI system for the matching polytope of a graph G – this
polytope is the convex hull in R

E(G) of the characteristic vectors of matchings
in G. A graph F is factor-critical if F − v has a perfect matching for every
v ∈ V (F ).

Theorem 8 (Cook [4]). For every graph H the following system of inequalities
is TDI:

y ∈ R
E(H), y ≥ 0∑

e∈E(v)

ye ≤ 1 for every v ∈ V (H) (4)

∑

e∈E(F )

ye ≤ ⌊
|V (F )|

2
⌋ for every 2-connected factor-critical F ⊆ H.

We denote by 1Z the characteristic vector of the set Z ⊆ V (G), where we
abbreviate 1{z} by 1z.

Proof of Theorem 2. We only need to show that a claw-free graph G that is min-
imally strongly t-imperfect is also t-imperfect. By Lemma 6, G is 3-connected.
Thus, Lemma 7 is applicable and therefore, G is either t-imperfect (as desired),
or G is a line graph, or G ∈ {C2

6 − v1v6, C
2
7 − v7, C

2
10 − v10}. Since C2

7 and C2
10

are minimally strongly t-imperfect by Lemma 5, we only need to consider the
cases when G = C2

6 − v1v6 or when G is a line graph.
Suppose that G = C2

6 − v1v6, and pick a weight w ∈ Z
V (G) so that G has no

w-cover of cost αw(G) of minimal total weight w(V (G)). Since G is supposed
to be minimally strongly t-imperfect it follows that w > 0, i.e. that every entry
of w is positive. Then for w′ := w − 1v1v2v3

there exists a w′-cover K′ of cost
αw′(G). However, every stable set of S of weight w(S) = αw(G) meets the
triangle v1v2v3, which implies that K′ ∪ {v1v2v3} is a w-cover of cost αw(G), a
contradiction.

2The lemma is the direct consequence of Lemma 9 in [2].
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So assume that G is a line graph, of a graph H say. First of all, note that
H has maximal degree ≤ 3 since G, as a minimally strongly t-imperfect graph,
cannot contain K4 as a proper subgraph. Now, if the only 2-connected factor-
critical subgraph F of H are odd cycles, then system (1) becomes (4) – which is
TDI by Theorem 8, a contradiction to the strong t-perfection of G. So, assume
H to contain a 2-connected factor-critical subgraph F that is not an odd cycle.
By a result of Lovász [10], F then has a proper odd ear-decomposition, that
is, there is a sequence of subgraphs F0 ⊆ . . . ⊆ Fk = F , so that F0 is an odd
cycle and so that Fi+1 is obtained from Fi by adding an odd Fi-path. Then,
F1 ⊆ F consists of three internally disjoint paths with common endvertices,
so that exactly two of the paths have odd length. Viewed in G, the induced
subgraph on the vertex set E(F1) can be t-contracted to K4. Thus, K4 is a
t-minor of G, which shows that G is t-imperfect.

The only missing link in our proof of Theorem 2 is Lemma 6, i.e. the fact
that every claw-free minimally strongly t-imperfect graph G is 3-connected.
We will show this in two steps. In the first step, accomplished in Lemmas 9–
13, we ensure that G is 2-connected and that every 2-separation (see the next
paragraph) has a side that is a path. In the second step, for which we need
Lemmas 14 and 15, we will prove that the minimum degree of G is at least
three.

For the first step we make use of the notion of k-separations. We say that
(G1, G2) is a separation of order k of a graph G, or a k-separation of G, if G1, G2

are proper induced subgraphs of G with G = G1 ∪ G2 and |V (G1 ∩ G2)| = k.
We use the following notation due to Gerards [7]. Let (G1, G2) be a 2-

separation of an arbitrary graph G, and denote by u and v the two vertices
contained in both G1 and G2. Given w ∈ Z

V (G), define si
w(X) to be the

maximum w(S) among all stable sets S in Gi with S ∩ {u, v} = X. If no
confusion is possible we omit the subscript w. Moreover, we denote by Gi + P2

the graph Gi with an u–v path of length 2 added, and by Gi + P3 the graph
Gi plus an u–v path of length 3. (Following Diestel [5] we denote the path on
k edges by Pk.)

The next two lemmas exclude already a good number of types of 2-separations
in a minimally strongly t-imperfect graph. We mention that the lemmas do not
appear explicitly in [7] but may, without effort, be extracted from the proof of
Theorem 1.8.

Lemma 9 (Gerards [7]). Let G be a graph, and let (G1, G2) be a separation of
order ≤ 2. If G1∩G2 forms a complete subgraph, and if G1 and G2 are strongly
t-perfect, then G is strongly t-perfect.

Lemma 10 (Gerards [7]). Let G be a graph, and let (G1, G2) be a 2-separation
so that V (G1)∩ V (G2) consists of two non-adjacent vertices u and v. Then for
every non-negative weight w ∈ Z

V (G) it holds thats:

(i) If s2(u, v) + s2(∅) ≥ s2(u) + s2(v) and if G1 + P2 as well as G2 + P3 are
strongly t-perfect then G has a w-cover of cost αw(G).

(ii) If s2(u, v) + s2(∅) ≤ s2(u) + s2(v) and if G1 + P3 as well as G2 + P2 are
strongly t-perfect then G has a w-cover of cost αw(G).
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Next, we relate the inequalities in (i) and (ii) in the previous lemma with
the existence of odd or even induced u–v paths.

Lemma 11. Let (G1, G2) be a 2-separation of a graph G, and denote the two
vertices common to both G1 and G2 by u, v. For every w ∈ Z

V (G) it holds that:

(i) If every induced u–v path in G2 has even length then s2(u, v) + s2(∅) ≥
s2(u) + s2(v).

(ii) If every induced u–v path in G2 has odd length then s2(u, v) + s2(∅) ≤
s2(u) + s2(v).

Proof. (i) Pick a stable set Su in G2 with u ∈ Su but v /∈ Su so that w(Su) =
s2(u), and choose a stable set Sv in G2 with v ∈ Sv, u /∈ Sv and w(Sv) = s2(v).
Denote by K the vertex set of the component of G2[Su∪Sv] containing u. Then,
as every induced u–v path in G2 has even length, it follows that v /∈ K. The
symmetric difference Su△K is a stable set, and hence misses {u, v}, while the
stable set Sv△K contains {u, v}. Since no vertex from K lies in both of Su and
Sv, we get

s2(u) + s2(v) = w(Su) + w(Sv) = w(Su△K) + w(Sv△K) ≤ s2(∅) + s2(u, v).

(ii) We proceed in a similar way as in (i), only starting with stable sets S∅

and Su,v that miss, respectively contain, {u, v}.

For a 2-separation (G1, G2) of a graph G, there is one case that is not
addressed by Lemma 10, namely the case that every induced u–v path in G1

and in G2 is even, or that every such path is odd.

Lemma 12. Let (G1, G2) be a 2-separation of a graph G so that V (G1 ∩G2) =
{u, v}, and let G1 and G2 be strongly t-perfect. If every induced u–v path in G
is even, or if every such path is odd, then also G is strongly t-perfect.

Proof. Given a non-negative weight function w : V (G) → Z we shall show for
i = 1, 2 that there are non-negative weights wi : V (G) → Z with wi|V (G3−i −
Gi) = 0 so that

(i) w1 + w2 = w, and

(ii) αw1(G1) + αw2(G2) ≤ αw(G).

This then establishes the lemma, as we can combine the wi-covers of G that are
given by the strong t-perfection of the Gi to a w-cover of G of cost αw(G).

In order to prove that such wi exist, we proceed by induction on the sum
wu + wv. Clearly, if wu + wv = 0, then the restrictions of w to Gi satisfy (i)
and (ii). So assume w.l.o.g. that wu > 0, and set w̃ := w−1u, where 1u denotes
the characteristic vector of {u}. By induction, we know that there exist w̃1 and
w̃2 satisfying (i) and (ii).

In particular, there is a set X ⊆ {u, v} such that αw̃1
(G1) = s1

w̃1(X) and
αw̃2

(G2) = s2
w̃2(X). Now, if αw̃1+1u

(G1) = s1
w̃1+1u

(X) then we may set w1 :=

w̃1 +1u and w2 := w̃2 and are done. Hence we may assume that αw̃1+1u
(G1) 6=

s1
w̃1+1u

(X). This can only happen if u /∈ X, and if, moreover, there is a set

Y1 ⊆ {u, v} which contains u, such that αw̃1(G1) = s1
w̃1(Y1). (Then, we have

that αw̃1+1u
(G1) = s1

w̃1+1u
(Y1).) Arguing in the same way for w̃2, we find that
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there is a set Y2 ⊆ {u, v} which contains u, such that αw̃2(G2) = s2
w̃2(Y2). By

symmetry of G1 and G2, we may suppose that Y1 = {u} and Y2 = {u, v}, since
we are done if Y1 = Y2.

So, depending on whether X = ∅ or X = {v}, we arrive at one of the
following two cases:

(a) αw̃1(G1) = s1
w̃1(∅) = s1

w̃1(u) and αw̃2(G2) = s2
w̃2(∅) = s2

w̃2(u, v), or

(b) αw̃1(G1) = s1
w̃1(v) = s1

w̃1(u) and αw̃2(G2) = s2
w̃2(v) = s2

w̃2(u, v).

First, assume that case (a) holds. Now, if every induced u–v path in G is
odd, then Lemma 11 (ii) implies that αw̃2(G2) = s2

w̃2(u) = s2
w̃2(v) = s2

w̃2(∅) =
s2

w̃2(u, v). Thus, setting w1 := w̃1 + 1u and w2 := w̃2 will ensure (i) and (ii), as
s1

w1(u) = αw1(G1) and s2
w2(u) = αw2(G2). So, in case (a), we may restrict our

attention to the situation that every induced u–v path in G is even.
Then, by Lemma 11 (i), we have

s1
w̃1(v) ≤ s1

w̃1(u, v). (5)

Furthermore, as we may otherwise set w1 := w̃1 and w2 := w̃2 +1u, we see that

s2
w̃2(u) < αw̃2(G2). (6)

Set
w1 := w̃1 + 1v and w2 := w̃2 + 1u − 1v.

Note that w̃2
v > 0 since s2

w̃2(u) < αw̃2(G2) = s2
w̃2(u, v). By (6), it is clear that

αw2(G2) = s2
w2(∅) = s2

w2(u, v). On the other hand, (5) together with the fact
that s1

w̃1(u) = s1
w̃1(∅) implies that αw1(G1) ∈ {s1

w1(∅), s1
w1(u, v)}. Hence, our

choice of w1 and w2 ensures (i) and (ii), as desired.
Now assume that case (b) above holds. If every induced u–v path in G is

even, then Lemma 11 (i) implies that αw̃1(G1) = s1
w̃1(∅) = s1

w̃1(u, v). Thus,
setting w1 := w̃1 and w2 := w̃2 +1u will ensure (i) and (ii). So, we will suppose
from now on that every induced u–v path in G is odd.

By Lemma 11 (ii), we have

s2
w̃2(∅) ≤ s2

w̃2(u), (7)

and (as we may otherwise set w1 := w̃1 + 1u and w2 := w̃2) we see that

s1
w̃1(u, v) < αw̃1(G1) and s2

w̃2(u) < αw̃2(G2). (8)

Observe that w̃2
v > 0 by (8) and (b). Hence, setting

w1 := w̃1 + 1u + 1v and w2 := w̃2 − 1v.

resolves our problem, as (8) implies that αw1(G1) = s1
w1(u) = s1

w1(v), and (7)
implies that αw2(G2) ∈ {s2

w2(u), s2
w2(v)}.

We summarise the results obtained so far in the following lemma.

Lemma 13. Let G be a minimally strongly t-imperfect graph. Then G is 2-
connected, and if (G1, G2) is a 2-separation of G then one of G1 and G2 is a
path.
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Proof. It follows from Lemma 9 that G is 2-connected. Suppose that G has a
2-separation (H1,H2) with V (H1)∩ V (H2) = {u, v}. By Lemma 9, u and v are
not adjacent.

If every induced u–v path in G is even or if every such path is odd then
Lemma 12 implies that one of H1 or H2 is strongly t-imperfect, a contradiction,
since G is minimally strongly t-imperfect.

So we may assume that H1 contains an even induced u–v path, and H2

contains an odd induced u–v path. By minimality of G, this implies that H1+P3

and H2 +P2 are strongly t-perfect. Now, pick a non-negative weight w ∈ Z
V (G)

so that G has no w-cover of cost αw(G).
Applied to (G1, G2) := (H1,H2), Lemma 11 (ii) together with Lemma 10 (ii)

imply that H2 also contains an even induced u–v path. Moreover, Lemma 11 (i)
and Lemma 10 (i) applied to (G1, G2) := (H2,H1) yield that H1 contains an odd
induced u–v path. Hence, for all i = 1, 2 and j = 2, 3 the graph Hi + Pj is a t-
minor of G. For contradiction, assume that the Hi+Pj are proper t-minors of G,
and thus strongly t-perfect. Now, whichever value s2(u, v) + s2(∅) takes, either
Lemma 10 (i) or (ii) is applicable in order to obtain the final contradiction.

We now turn to the second step in our proof of Lemma 6, that is, to proving
that claw-free minimally strongly t-imperfect graphs have minimum degree at
least three.

Lemma 14. Let G = (V,E) be a graph, let w ∈ Z
V , and assume v to be a

vertex with exactly two neighbours, p and q. Let p and q be non-adjacent, and
assume that wp = wv = wq. Set G̃ = G/E(v), denote the new vertex by ṽ and

define w̃ ∈ Z
V (G̃) by setting w̃u := wu for u ∈ V (G̃ − ṽ) and w̃ṽ := wv. If G̃

has a w̃-cover of cost αw̃(G̃) then G has a w-cover of cost αw(G).

Proof. Consider a stable set S̃ in G̃ with w̃(S̃) = αw̃(G̃). If ṽ ∈ S̃ then S :=
(S̃ \ {ṽ})∪ {p, q} is a stable set in G with w(S) = αw̃(G̃) + wv. If, on the other
hand, ṽ /∈ S̃ then S := S̃ ∪ {v} is stable in G, and w(S) = αw̃(G̃) + wv. Thus,
we get

αw̃(G̃) + wv ≤ αw(G). (9)

By assumption, there is a w̃-cover K̃ of G̃, which we may choose to cover ṽ
exactly w̃ṽ = wv times. Observe that we may view E(G̃) as a subset of E(G);
for an edge xṽ so that x is a neighbour of p as well as of q we arbitrarily pick
one of xp and xq and identify it with xṽ. Thus, viewed in G, the subfamily of
K̃ consisting of edges and odd cycles becomes a family of edges, odd cycles and
odd p–q paths; denote the latter subfamily of K̃ by P̃. By completing every
P ∈ P̃ to an odd cycle through v, and by replacing every occurrence of {ṽ} in
K̃ by one of {p} and {q} we obtain from K̃ a family K′ of vertices, edges and
odd cycles in G.

Set γ̃ := |P̃| and observe that as K̃ covers ṽ exactly wv times, we get that
γ̃ ≤ wv. Moreover, it follows that each of p and q is covered by K′ at most wv

times, while together they are covered wv + γ̃ times since every P ∈ P̃ leads to
a cycle in K′ that meets p as well as q. Since v is contained in these cycles as
well, it is covered γ̃ times. Hence, by adding wv − γ̃ edges, vp or vq, we can
complete K′ to a w-cover K.
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The cost of K is the cost of K̃ plus the cost of extending the P ∈ P̃ to cycles
plus the cost of the additional edges incident with v. In other words, K costs

αw̃(G̃) + γ̃ + wv − γ̃ = αw̃(G̃) + wv ≤ αw(G),

where the last inequality follows from (9).

The following lemma, which is quite similar to Lemma 20 in [2], uses an idea
of Mahjoub [11]. For two vectors w,w′ ∈ Z

V (G) we write w ≤ w′ if wv ≤ w′
v for

all v ∈ V (G).

Lemma 15. Let G be a graph, and let w ∈ Z
V (G), w > 0, so that there is no

w-cover of cost αw(G) but for every w′ ≤ w with one strictly smaller entry there
is a w′-cover with cost αw′(G).

(i) If G contains a path pvq so that d(v) = 2 then wv ≤ wq.

(ii) If G contains a triangle prs and a neighbour v /∈ {r, s} of p so that d(p) = 3
then wp ≤ wv.

Proof. Suppose there is an edge or triangle X that is hit by every stable set S of
weight w(S) = αw(G). Set w′ := w−1X , and observe that αw′(G) = αw(G)−1.
Hence, by assumption there is a w′-cover K′ of cost αw(G) − 1, which together
with X yields a w-cover of cost αw(G), a contradiction. This proves that for
every edge or triangle X there is a stable set SX of weight αw(G) that misses X.

(i) Consider the stable set Spv of weight αw(G) that misses the edge pv.
Since wv > 0, it follows that q ∈ Spv. Then S := Spv \ {q} ∪ {v} is a stable
set with weight w(S) = αw(G) − wq + wv ≤ αw(G), which implies wv ≤ wq, as
desired.

(ii) Consider the stable set Sprs of maximal weight that misses the triangle
prs, and note that v ∈ Sprs. Then the stable set Sprs \ {v} ∪ {p} has weight
αw(G) − wv + wp ≤ αw(G), which implies wp ≤ wv, as desired.

We are finally prepared to prove Lemma 6.

Proof of Lemma 6. By Lemma 13, we only need to convince ourselves that a
minimally strongly t-imperfect graph G = (V,E) does not contain any vertices
of degree 2. So suppose otherwise, i.e. suppose that G has vertices of degree 2.
As every cycle is strongly t-perfect, not all vertices may have degree 2, and we
may hence suppose that there is a path P = u . . . v in G with all interior vertices
of degree 2 in G but with endvertices u, v of higher degree. Furthermore, we
may suppose that P does indeed contain an interior vertex.

By Lemma 9 and the minimality of G, u and v cannot be adjacent. Since
K4 is strongly t-imperfect and G minimal, G cannot contain K4 as a proper
subgraph. Thus, it follows from the fact that G is claw-free that both u and v
have degree 3 and are incident with a triangle.

Among all non-negative w ∈ Z
V for which there is no w-cover of cost αw(G)

choose one, w say, so that w(V ) is minimal. Since G is strongly t-imperfect there
is such a w and, moreover, it holds that w > 0 by the minimality of G. We may
now apply Lemma 15 to the vertices in P plus the two triangles incident with u
and v. This yields that w is constant on P . Let r be an interior vertex of P and
set G̃ := G/E(r). Define w̃ as in Lemma 14 with r in the role of v. Then, G̃
is a proper t-minor of G and has thus a w̃-cover of cost αw̃(G̃). Now, however,
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Lemma 14 asserts that G has a w-cover of cost αw(G), a contradiction to the
choice of w.
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