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Abstract

We prove χ′
s(G) ≤ 1.93∆(G)2 for graphs of sufficiently large maximum

degree where χ′
s(G) is the strong chromatic index of G. This improves an

old bound of Molloy and Reed. As a by-product, we present a Talagrand-
type inequality where it is allowed to exclude unlikely bad outcomes that
would otherwise render the inequality unusable.

1 Introduction

Edge colorings are well understood, for strong edge colorings this is much less
the case. An edge coloring can be viewed as a partition of the edge set of a graph
G into matchings; the smallest such number of partition classes is the chromatic
index of G. If we consider the natural stronger notion of a partition into induced
(or strong) matchings, we arrive at the strong chromatic index χ′s(G) of G, the
minimal number of induced matchings needed.

The classic result of Vizing, and independently Gupta, constrains the chro-
matic index of a (simple) graph G to a narrow range: it is either equal to the
trivial lower bound of the maximum degree ∆(G), or one more than that. The
strong chromatic index, in contrast, can vary much more. The trivial lower
bound and a straightforward greedy argument give a range of ∆(G) ≤ χ′s(G) ≤
2∆(G)2−2∆(G)+1 for all graphs G. Erdős and Nešetřil [7] conjectured a much
stricter upper bound:

Strong edge coloring conjecture. χ′s(G) ≤ 5
4∆(G)2 for all graphs G.

If true, the conjecture would be optimal, because any blow-up of the 5-cycle
as in Figure 1 attains equality. For odd maximum degree, Erdős and Nešetřil
conjectured that χ′s(G) ≤ 5

4∆(G)2 − 1
2∆(G) + 1, which again would be tight.

In a breakthrough article of 1997, Molloy and Reed [20] demonstrated how
probabilistic coloring methods could be used to beat the trivial greedy bound:

χ′s(G) ≤ 1.998∆(G)2

for graphs G with ∆(G) sufficiently large.
We improve this bound:

Theorem 1. If G is a graph of sufficiently large maximum degree ∆, then

χ′s(G) ≤ 1.93∆2.

A strong edge coloring of a graph G may be viewed as an ordinary vertex
coloring in the square L2(G) of the linegraph of G. (The square of any graph is
obtained by adding edges between any vertices of distance of most 2.) Working
in L2(G) permitted Molloy and Reed to split the strong edge coloring problem
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Figure 1: Two blow-ups of the 5-cycle

into two weaker sub-problems. First, they showed that the neighborhood of any
vertex in L2(G) is somewhat sparse. Second, based on a probabilistic coloring
method, they proved a coloring result for graphs with sparse neighborhoods,
that holds for general graphs, not only for squares of linegraphs.

We follow these same steps but make a marked improvement in each sub-
problem: our sparsity result is asymptotically best-possible; and our coloring
lemma needs fewer colors. We discuss the differences between our approach and
that of Molloy and Reed in detail in Sections 2 and 5.

As a tool for our coloring lemma we develop in Section 7 a version of Tala-
grand’s inequality that excludes exceptional outcomes. Talagrand’s inequality is
used to verify that random variables on product spaces are tightly concentrated
around their expected value. It is particularly suited for random variables that
only change little when a single coordinate is modified. This will not be the
case in our application: in some very rare events a single change might result
in a very large effect. To cope with this, we formulate a version of Talagrand’s
inequality in which such large effects of tiny probability can be ignored. We
take some effort to make the application of the inequality as simple as possible
as we have some hopes that it might be useful elsewhere.

A weakening of the strong edge coloring conjecture yields a statement on
strong cliques, the cliques of the square of the linegraph.

Conjecture 2. Any strong clique of a graph G has size at most ω(L2(G)) ≤
5
4∆2(G).

Note that the edge set of any blow-up of the 5-cycle is a strong clique, so
that the conjecture would be tight. Not much is known about this seemingly
easier conjecture. Chung, Gyárfás, Tuza and Trotter [4] showed that any graph
G that is 2K2-free has at most 5

4∆2(G) edges. In such a graph, the whole
edge set forms a strong clique. Faudree, Schelp, Gyárfás and Tuza [8] found an
upper bound of (2− ε)∆2(G) for the size of any strong clique, for some small ε.
Bipartite graphs are easier to handle in this respect: the same authors proved
that the strong clique can never have size larger than ∆(G)2. Again, this is
tight, as balanced complete bipartite graphs attain that bound.

We prove:

Theorem 3. If G is a graph with maximum degree ∆ ≥ 400, then its strong
clique has size at most ω(L2(G)) ≤ 1.74∆2.

Coming back to strong edge colorings, let us note that there are a number
of results for special graph classes. The conjecture was verified for maximum
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degree 3 by Andersen [2], and independently by Horek, Qing and Trotter [10].
For ∆(G) = 4, Cranston [5] achieves a bound of χ′s(G) ≤ 22, which is off

by 2. Mahdian [17] proved that χ′s(G) ≤ 2∆(G)2

log ∆(G) if G does not contain 4-cycles

by quite involved probabilistic methods. Finally, a number of works concern
degenerated graphs, the earliest of which is by Faudree, Schelp, Gyárfás and
Tuza [8] who established the bound χ′s(G) ≤ 4∆(G) + 4 for planar graphs G.
Kaiser and Kang [13] consider a generalization of strong edge colorings, where
alike colored edges have to be even farther apart.

The use of probabilistic methods to color graphs is explored in depth in the
book of Molloy and Reed [22], where also many more references can be found.
We only mention additionally the article of Alon, Krivelevich and Sudakov [1] on
coloring graphs with sparse neighborhoods. However, their result only implies
something nontrivial if the neighborhoods are much sparser than we can expect
in squares of linegraphs.

Strong edge colorings seem much more difficult than edge colorings. This
is because already induced matchings are much harder to handle than ordinary
matchings. While the size of a largest matching can be quite precisely be de-
termined, it is even hard to obtain good bounds for induced matchings; see for
instance [11,12].

All our graphs are simple and finite. We use standard graph-theoretic nota-
tion and concepts that can be found, for instance, in the book of Diestel [6].

2 Outline and proof of Theorem 1

A strong edge coloring of a graph G is nothing else than an ordinary vertex
coloring in L2(G), the square of the linegraph of G. (The square of a graph is
obtained by adding an edge between any two vertices of distance 2.) Molloy
and Reed [20] use this simple observation to prove their bound on the strong
chromatic index in two steps.

First, they show that neighborhoods in L2(G) cannot be too dense. To
formulate this more precisely denote by N s

e for any edge e of G the set of
edges of distance at most 1 to e, which is equivalent to saying that N s

e is the
neighborhod of e in L2(G). We will often call N s

e the strong neighborhood of e.
Molloy and Reed show that for every edge e

N s
e induces in L2(G) at most

(
1− 1

36

) (
2∆2

2

)
edges, (1)

where ∆ is the maximum degree of G.
In the second step, Molloy and Reed show that any graph with sparse neigh-

borhoods, such as L2(G), can by colored with a probabilistic procedure.
Following this strategy, we also prove a sparsity result and a coloring lemma.

Lemma 4. Let G be a graph of maximum degree ∆ ≥ 1, and let e be an edge
of G. Then the neighborhood N s

e of e induces in L2(G) a graph of at most
3
2∆4 + 5∆3 edges.

Lemma 5. Let γ, δ ∈ (0, 1) be so that

γ <
δ

2(1− γ)
e−

1
1−γ − δ3/2

6(1− γ)2
e−

7
8(1−γ) . (2)
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Then, there is an integer R so that for all r ≥ R it follows χ(G) ≤ (1− γ)r for
every graph G with maximum degree at most r in which, for every vertex v, the
neighborhoods N(v) induce graphs of at most (1− δ)

(
r
2

)
edges.

Condition (2) might be slightly hard to parse. Therefore, let us remark that
in a range of δ ∈ (0, 0.9]

γ = 0.1827 · δ − 0.0778 · δ3/2

satisfies the condition and is not too far away from the best-possible γ.
Our main theorem is a direct consequence of the two lemmas.

Proof of Theorem 1. Let G be a graph with maximum degree ∆ sufficiently
large. With Lemma 4 we conclude that for every vertex v of L2(G) the neigh-

borhood induces a graph of at most (3
4 + o(1))

(
2∆2

2

)
edges. Therefore, we can

apply Lemma 2 with r = 2∆2, δ = 0.24, and γ = 0.035.

While Molloy and Reed developed this very neat proof technique, our con-
tribution consists in improving its two constituent steps. In particular, in the
sparsity lemma we improve Molloy and Reed’s 1

36 in (1) to roughly 1
4 . This is

almost as good as possible: in Section 4 we construct graphs that asymptotically
reach the upper density bound of Lemma 4. Our coloring lemma also yields a
γ that is somewhat smaller than the corresponding γ of Molloy and Reed. We
discuss the differences between their coloring lemma and ours in more detail in
Section 5.

Let us have a look at some concrete numbers. There is a small oversight
in the proof of Molloy and Reed (a lost 2) that results in the actual bound of
χ′s(G) ≤ 1.9987∆(G)2 instead of the claimed χ′s(G) ≤ 1.998∆(G)2.

To what improvements lead our lemmas? With our sparsity lemma and the
coloring lemma of Molloy and Reed it is possible to obtain χ′s(G) ≤ 1.99∆(G)2.
Our coloring lemma then leads to the factor 1.93 in our main theorem. Viewing
all statements as bounds of the form χ′s(G) ≤ (2− ε)∆(G)2, we improve ε by a
factor of 53.

Finally, even assuming that the coloring lemma could be vastly improved
(doubtful), this method can never go beyond 1.73∆(G)2. The sparsity bound
in Lemma 4, which, again, is asymptotically best-possible, does not exclude
a clique of size 1.73∆(G)2 in the neighborhood N s

e in L2(G). That means,
just considering edge densities will never yield a factor smaller than 1.73 (and
probably not even close to that number).

3 Density of the strong neighborhood

In this section we prove the sparsity lemma, Lemma 4. For any edge e in a
graph G, we write ds(e) for the degree in L2(G). Then ds(e) = |N s

e|.

Lemma 6. Let G be a graph of maximum degree ∆, and let e be an edge of G.
Then

ds(e) ≤ (2− α− β)∆2 − 2∆,

where α∆ is the number of triangles in G containing e, and where β∆2 is
the number of 4-cycles containing e plus the number of triangles incident with
exactly one endvertex of e.
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Figure 2: Some of the parameters used in the proof of Lemma 4

Proof. Let e = uv. Then |N(u) ∪N(v) \ {u, v}| ≤ 2(∆− 1)− |N(u) ∩N(v)| =
(2−α)∆−2. Every edge in N s

e has at least one of its endvertices in N(u)∪N(v).
Edges with both endvertices in N(u) ∪N(v) lie in a common 4-cycle with e or
form a triangle with either u or v, and thus count towards β∆2. In total we
obtain

ds(e) ≤ |N(u) ∪N(v) \ {u, v}| ·∆− β∆2 ≤ ((2− α)∆− 2)∆− β∆2,

which gives the affirmed bound.

We remark that the inequality given in Lemma 6 is even an equality if G is
∆-regular. We will frequently use the observation that the containment of an
edge f in k 4-cycles implies ds(f) ≤ 2∆2 − k.

We will occasionally need to measure how many neighbors a vertex has in
some subset of the vertex set. So, for a vertex v in a graph G and some set
X ⊆ V (G), we write dX(v) for |NG(v) ∩X|. We will similarly use the notation
dsF (e) for the degree of an edge e in L2(G) restricted to some edge set F .

Proof of Lemma 4. Without loss of generality, we may assume G to be ∆-
regular. Indeed, if G is not then it may be embedded into a ∆-regular graph, in
which the number of edges induced by N s

e will only be larger. (The embedding
is a standard technique: iteratively make a second copy of G and connect copies
of vertices of too low degree by an edge.)

Let e = uv and set X = NG(u) ∪NG(v) \ {u, v}, while Y = NG(X) \ (X ∪
{u, v}). Then, using the notation of Lemma 6, we set α∆ = |NG(u) ∩ NG(v)|
to be the number of triangles containing e, and let β∆2 be the number of edges
with both endvertices in X. Observe that |X| = (2−α)∆− 2. We furthermore
note that 0 ≤ α, β ≤ 1; for β this follows from 2β∆2 ≤ |X|·∆. We denote by me,
the number of edges induced by N s

e in L2(G). Our objective is to upper-bound
me.

Let us start with the estimation of me. Writing N s
e for E(G) \N s

e we obtain

2me =
∑
f∈N s

e

dsN s
e
(f) =

∑
f∈N s

e

(
ds(f)− ds

N s
e
(f)
)

To get an upper bound on
∑
f∈N s

e
ds(f) we use Lemma 6, where we omit the

triangles and only count those 4-cycles that consist entirely of edges between X
and Y . Let CX,Y4 be the number of those 4-cycles, that is, the number of those
4-cycles that consist only of edges with one endvertex in X and the other in Y .
Observe that each cycle counted by CX,Y4 reduces the degree of four edges in N s

e.
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Thus,
∑
f∈N s

e
ds(f) ≤

(∑
f∈N s

e
2∆2

)
− 4CX,Y4 , by Lemma 6. Using the lemma

again, this time to upper-bound |N s
e|, and substituting in our above estimation

of me, we get

2me ≤ 2∆2|N s
e| − 4CX,Y4 −

∑
f∈N s

e

ds
N s
e
(f)

≤ 2∆2
(
(2− α− β)∆2 − 2∆

)
− 4CX,Y4 −

∑
f∈N s

e

ds
N s
e
(f)

= 2(2− α− β)∆4 − 4∆3 − 4CX,Y4 −
∑
f∈N s

e

ds
N s
e
(f)

In order to obtain a lower bound on
∑
f∈N s

e
ds
N s
e

(f), we consider paths of the

form pxyq in G, where x ∈ X, y ∈ Y and q /∈ X. The first edge px then is in
N s
e, while the last edge yq is outside. So, each such path pxyq contributes 1 to∑
f∈N s

e
ds
N s
e

(f). Since G is ∆-regular, there are ∆− 1 such paths for each fixed

xyq. Counting the number of such xyq we arrive at
∑
y∈Y dX(y)(∆ − dX(y)).

For later use, we give this parameter a name

γ∆3 :=
∑
y∈Y

dX(y)(∆− dX(y)),

and observe that 0 ≤ γ ≤ 1
2 . Indeed, for any y ∈ Y , we have dX(y)(∆−dX(y)) ≤

dX(y)2/4 ≤ ∆
4 dX(y) and consequently, γ∆3 ≤

∑
y∈Y

∆
4 · dX(y) ≤ ∆

4 · 2∆2, as

there can be at most 2∆2 edges between X and Y .
Summing up our discussion:∑

f∈N s
e

ds
N s
e
(f) ≥ (∆− 1)γ∆3,

which leads to

me ≤
(

2− α− β − γ

2

)
∆4 − 2CX,Y4 +

(γ
2
− 2
)

∆3. (3)

It remains to estimate CX,Y4 . For this, let us first compute mX,Y , the number
of edges with one endvertex in X and the other in Y . On the one hand, we have∑

x∈X
dG(x) = mX,Y + 2β∆2 + |X|,

while ∆-regularity, on the other hand, gives us
∑
x∈X dG(x) = ∆ · |X|. Together

with |X| = (2− α)∆− 2, this implies

mX,Y = (2− α− 2β)∆2 − (4− α)∆ + 2. (4)

For x1, x2 ∈ X define c(x1, x2) to be the number of common neighbors of x1

and x2 in Y , where we put c(x1, x2) = 0 if x1 = x2. Then

CX,Y4 =
∑

x1,x2∈X

(
c(x1, x2)

2

)
.
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We compute∑
x1,x2∈X

c(x1, x2) =
∑
y∈Y

(
dX(y)

2

)
=

1

2

∑
y∈Y

(dX(y))2 − 1

2
mX,Y .

Using the definition of γ, this gives

∑
x1,x2∈X

c(x1, x2) =
1

2

∆
∑
y∈Y

dX(y)− γ∆3

− 1

2
mX,Y

=
1

2

(
(∆− 1)mX,Y − γ∆3

)
.

Using mX,Y ≤ 2∆2 as well as (4), we get a lower and an upper bound:

1

2

(
(2− α− 2β − γ) ∆3 − 6∆2

)
≤

∑
x1,x2∈X

c(x1, x2) ≤
(

1− γ

2

)
∆3 (5)

We come back to the calculation of CX,Y4 :

CX,Y4 =
∑

x1,x2∈X

(
c(x1, x2)

2

)
=

1

2

∑
x1,x2∈X

(
c(x1, x2)2 − c(x1, x2)

)
≥ 1

2

∑
x1,x2∈X

c(x1, x2)2 − 1

2

(
1− γ

2

)
∆3, (6)

where we used (5). We use the Cauchy-Schwarz inequality:

∑
x1,x2∈X

c(x1, x2)2 ≥
(
|X|
2

)(∑
x1,x2∈X c(x1, x2)(|X|

2

) )2

≥ 2 ·

(∑
x1,x2∈X c(x1, x2)

)2

|X|2

≥ 2 ·
(

1
2

(
(2− α− 2β − γ)∆3 − 6∆2

) )2
(2− α)2∆2

,

where the last inequality is because of |X| = (2−α)∆− 2 and (5). We continue∑
x1,x2∈X

c(x1, x2)2 ≥ 1

2

(
(2− α− 2β − γ)2∆4

(2− α)2
− 12 · (2− α)∆3

(2− α)2

)

≥ (2− α− 2β − γ)2

2(2− α)2
∆4 − 6∆3.

We substitute this in our estimation (6) of CX,Y4 :

CX,Y4 ≥ 1

2

(
(2− α− 2β − γ)2∆4

2(2− α)2
− 6∆3

)
− 1

2

(
1− γ

2

)
∆3

=
1

2

(
(2− α− 2β − γ)2∆4

2(2− α)2
−
(

7− γ

2

)
∆3

)
.
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We can finally complete our estimation (3) of me to:

me ≤
(

2− α− β − γ

2

)
∆4 − (2− α− 2β − γ)

2

2(2− α)2
∆4 + 5∆3.

To see that this gives

me ≤
3

2
∆4 + 5∆3,

observe first that we may assume that 0 ≤ α ≤ 1
2 or we are already done. Setting

x = β + γ
2 , we may also assume x ≤ 1

2 . Let f(α, x) = 2 − α − x − (2−α−2x)2

2(2−α)2 .

Note that ∂f(α,x)
∂α = −1 + 2x(2−α−2x)

(2−α)3 < 0 for 0 ≤ x ≤ 1
2 . Thus we may assume

that α = 0. Consequently, it remains to verify that 2− x− (2−2x)2

8 ≤ 3
2 , which

is an elementary task.

We note that a good number of elements used in the proof appear already
in the article of Molloy and Reed [20]: triangles through e, edges in X, paths
xyq and 4-cycles between X and Y . Our contribution consists in parameterising
these elements and then combining the parameters in the right way to give a
nearly tight bound.

Lemma 4 naturally gives an upper bound on the size of the largest clique in
L2(G). Although cliques have a very simple structure we were not able to push
the bound given in Theorem 3 significantly further.

Proof of Theorem 3. Let K be a largest strong clique, that is, a largest clique in
L2(G), and let κ∆2 be its size. If e ∈ K is an edge of G, then its neighborhood
induces by Lemma 4 a graph of at most 3

2∆4 + 5∆3 edges. Thus(
κ∆2 − 1

2

)
≤ 3

2
∆4 + 5∆3,

which implies κ ≤ 3
2∆2 +

√
3 + 10

∆ + 9
4∆4 < 1.74 for ∆ ≥ 400.

4 The sparsity lemma is best-possible

In this section we describe a family of graphs with strong neighborhoods that
almost reach the upper density bound of Lemma 4. To show this, we turn to
Hadamard codes. For every k ≥ 2, the corresponding Hadamard code consists
of 2 · 2k 0, 1-strings of length 2k each with certain properties. For instance, for
k = 2, the Hadamard code is

{1111,0000,1100,0011,0110,1001,1010,0101}

Notably, the code always contains the all-0-string and the all-1-string. We drop
these and interpret the remaining code words as subsets of some fixed ground
set of n = 2k elements {x1, . . . , xn}. Then we can see the Hadamard code as a
set Hk of subsets of {x1, . . . , xn} with the following properties:

(i) Hk contains 2(n− 1) member-sets, each of which has cardinality n
2
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Figure 3: The graph G for k = 2

(ii) every element xi lies in precisely n− 1 member-sets of Hk

(iii) if S, S′ ∈ Hk are two distinct member-sets of Hk then |S ∩ S′| ∈ {0, n4 }.

For a proof and more details, see for example van Lint [25].
Based on Hk = {S1, . . . , S2n−2} we construct a graph G. Make a copy

x′i for each xi, and put X = {x1, . . . , xn, x
′
1, . . . , x

′
n}. Let, furthermore, Y =

{y1, . . . , y2n−2} be a set of 2n − 2 vertices, that is disjoint from X. We define
a graph G on X ∪ Y ∪ {u, v}, where u, v are two vertices outside X ∪ Y . First
off, make u complete to x1, . . . , xn and v complete to x′1, . . . , x

′
n, and make u

adjacent to v. Now, let us add a bipartite graph on X ∪ Y . For this, we make
each yj adjacent to every vertex in Sj and to the set S′j of their copies. See
Figure 3 for an illustration. With this, each vertex in X has (n−1)+1 neighbors,
by property (ii) of Hk, and each yj has degree 2n2 = n, by property (i). Each
of u and v has degree n+ 1. Thus the maximum degree is ∆ = n+ 1. We note,
furthermore, that there are (2n− 2)n = 2∆2 −O(∆) edges between X and Y .

We calculate the number of 4-cycles in G− u− v. Observe that for all i < j
the number c(yi, yj) of common neighbors of yi and yj is at most 2 · n4 (by
property (iii)). Thus, the number of 4-cycles in G− u− v is∑

i<j

(
c(yi, yj)

2

)
≤
(

2n− 2

2

)
·
(
n/2

2

)
=
n4

4
+O(n3) =

∆4

4
+O(∆3).

Since there are only 2∆− 1 edges incident with u or v, deleting all these edges
will only result in a loss of O(∆3) edges in L2(G). In the square of the linegraph
of G− u− v, however, only the 4-cycles counted above reduce the degree ds(e)
away from the maximal possible value 2∆2 (recall the argumentation in the
proof of Lemma 6). Thus, recalling that there are 2∆2 − O(∆) edges between
X and Y , we obtain that the number muv of edges induced by N s

uv in L2(G)
satisfies

2muv ≥ 2∆2 · (2∆2 −O(∆))− 4

(
∆4

4
+O(∆3)

)
−O(∆3)

(Note that each 4-cycle reduces the degree of four edges in L2(G).) Therefore

muv ≥
3

2
∆4 −O(∆3),

which asymptotically coincides with the bound of Lemma 4.
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5 The coloring procedure

Molloy and Reed [20] described a probabilistic method, called naive coloring
procedure in [22], to partially color a sparse graph. In the procedure, every
vertex first receives a color independently and uniformly at random. Then
follows a conflict resolution step: whenever two adjacent vertices received the
same color, both become uncolored. The brilliant insight here is that, with
a non-negligible probability, in every neighborhood a good number of colors
appear at least twice at the end of this procedure. In this way, the partial
coloring saves colors in comparison to a (∆(G) + 1)-coloring. This, then makes
it possible to complete the partial coloring greedily to a full coloring.

In the easiest manifestation of the procedure, whenever there is a conflict,
that is, whenever two adjacent vertices receive the same color, both vertices
lose their color. Molloy and Reed hint at a possible a improvement that is less
wasteful: if additionally random weights on vertices are chosen, only the vertex
of lower weight need to be uncolored. However, the analysis becomes much more
tedious. We propose a different conflict resolution mechanism that allows for
a simpler analysis. In addition, we not only count colors that are used exactly
twice in the neighborhood of a fixed vertex but also take into account multiple
occurrences. Molloy and Reed mentioned such a modification, too, but did not
discuss it in detail.

Why do we use naive coloring instead of a more sophisticated technique
such as the semi-random coloring method? Introduced in a seminal article by
Kim [14], the semi-random coloring method is an iterative procedure, in which
in every round only a small fraction of the vertices are additionally colored. For
the method to work several parameters have to be tightly controlled so that
every round is essentially the same.

We have tried, unsuccessfully, to employ semi-random coloring. Normally,
the method is applied in graphs, such as triangle-free or otherwise sparse graphs,
in which all neighborhoods are fairly similar (for instance, stable sets).1 We,
on the other hand, have to cope with heterogenous neighborhoods and, conse-
quently, found it very hard to control the necessary parameters. This is partic-
ularly the case for the number of non-edges between pairs of uncolored vertices
(within neighborhoods); a parameter that is essential as such vertices may re-
ceive the same color.

We now describe the modified Molloy and Reed coloring procedure. For this,
assume G to be an r-regular graph, which we will color with C = d(1 − γ)re
colors, where γ ∈ (0, 1) is a constant. The following random experiment is
performed.

1. Color every vertex uniformly and independently at random from the set
{1, . . . , C}.

2. Choose for every edge uv independently and uniformly at random an ori-
entation duv.

3. If uv is an edge and u and v received the same color, then uncolor u if duv
points towards u and uncolor v otherwise.

1While this is not the case in Molloy and Reed’s [21] breakthrough result on the total
chromatic number, the setting there is arguably quite different due to the nature of total
coloring.
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The key parameter is the number of colors that are saved in the neighborhood
of an arbitrary vertex u, that is, the number of vertices that are assigned a color
that is already used by some other vertex in the neighborhood. To estimate
this quantity, we introduce the random variable Pu that counts the number of
pairs of non-adjacent vertices in N(u) that have, after the uncoloring step, the
same color. To control overcounting, we also define Tu, the number of triples
of distinct non-adjacent vertices v, w, x in N(u) that have the same color at the
end of the coloring procedure.

Most of the effort in the proof of Theorem 5 will be spent on estimating the
expected values of Pu and Tu. Later, in Section 8, we will show that the random
variables are strongly concentrated around their expectation:

Lemma 7. Let γ ∈ (0, 1). There is an R so that for every r-regular graph G
with r ≥ R it holds that

P
[
|Pu − E[Pu]| ≥

√
r log3 r

]
≤ r− 1

2 log log r and

P
[
|Tu − E[Tu]| ≥

√
r log4 r

]
≤ r− 1

2 log log r

when the coloring procedure is performed with C = d(1− γ)re colors.

In order to prove the existence of a global partial coloring with certain nice
properties, we use the Lovász Local Lemma to deduce this from our local struc-
ture.

Lovász Local Lemma. Let p ∈ [0, 1), and A be a finite set of events so that
for every A ∈ A

(i) P[A] ≤ p; and

(ii) A is independent of all but at most d of the other events in A.

If 4pd ≤ 1, then the probability that none of the events in A occur is strictly
positive.

Proof of Lemma 5. How large R has to be will become clear at the end of the
proof. Consider some graph G with maximum degree at most r satisfying the
density condition on the neighborhoods. We may assume that G is r-regular,
otherwise we embed G, as in Lemma 4, in an r-regular graph while keeping the
local density condition.

We will color G with C = d(1−γ)re colors, which may be slightly more that
the claimed bound of χ(G) ≤ (1−γ)r. However, by choosing R and thus r large
enough we can find a γ′ that still satisfies (2) and for which d(1−γ′)re ≤ (1−γ)r
for every r ≥ R. Thus, if necessary, we may replace γ by γ′ in what follows.

Pick some vertex u of G. We start with the estimation of Pu, the number of
non-adjacent neighbors of u with the same (final) color. To this end, consider
two non-adjacent neighbors v and w of u. Note first that the probability that
v and w receive the same color in step 1 is equal to 1

C . Assuming that this is
the case, we observe that in order for v and w to keep their color in step 3, all
the edges between {v, w} and the neighbors of the same color as v, w have to
be chosen in step 2 so that they point away from {v, w}. Thus, if v and w have
k common neighbors, the probability that they both keep their (common) color
is (

1− 1

2C

)2r−2k (
1− 3

4
· 1

C

)k
,

11



where the factor 3
4 stems from the fact that, out of four orientations of the two

edges between v, w and a common neighbor, only one of these allows both v, w
to keep their color.

In total, we get

P[v, w received the same color and both stay colored]

=
1

C

(
1− 1

2C

)2r−2k (
1− 3

4
· 1

C

)k
=

1

C

(
1− 1

2C

)2r ( 1− 3
4C

1− 1
C + 1

4C2

)k
.

Note that, for any C ≥ 1, we have

1− 3
4C

1− 1
C + 1

4C2

≥ 1.

Thus, if r is large enough, then

P[v, w received the same color and both stay colored]

≥ 1

C

(
1− 1

2C

)2r

=
1

d(1− γ)re

(
1− 1

2d(1− γ)re

)2r

≥ (1 + o(1))
1

(1− γ)r
e−

1
1−γ

As there are at least δ
(
r
2

)
many pairs of non-adjacent vertices in N(u), the

calculation above implies

E[Pu] ≥ (1 + o(1))δ

(
r

2

)
1

(1− γ)r
e−

1
1−γ

= (1 + o(1))
δr

2(1− γ)
e−

1
1−γ .

We will need a similar estimation for triples of non-adjacent neighbors of u.
So, assume v, w, x to be three vertices in N(u) that are pairwise non-adjacent.
For 1 ≤ i ≤ 3, let ki be the number of vertices with i neighbors in {v, w, x}.
Since G is r-regular, k1 + 2k2 + 3k3 = 3r.

The probability that all three of v, w, x receive the same color is 1
C2 . The

probability that all three retain their color is computed in a similar way as
above, where it should be noted that there are now eight possibilities for the
orientations of the three edges between v, w, x and a neighbor common to all of
them.

Using the binomial series (1+z)α =
∑∞
k=0

(
α
k

)
zk and 1

Cα = o(1/r) for α > 1,
we get

P[v, w, x received the same color and stay colored]

=
1

C2

(
1− 1

2C

)k1 (
1− 3

4C

)k2 (
1− 7

8C

)k3
=

1

C2

(
1− 3

2C
+ o(1/r)

)k1/3(
1− 9

8C
+ o(1/r)

)2k2/3(
1− 7

8C

)k3
≤ (1 + o(1))

1

(1− γ)2r2

(
1− 7

8(1− γ)r

)k1/3+2k2/3+k3

= (1 + o(1))
1

(1− γ)2r2
e−

7
8(1−γ) .
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By using that every graph with δ
(
r
2

)
edges contains at most δ3/2r3

6 many
distinct triangles (see, for instance, Rivin [23]), we obtain

E[Tu] ≤ (1 + o(1))
δ3/2r3

6

1

(1− γ)2r2
e−

7
8(1−γ)

= (1 + o(1))
δ3/2r

6(1− γ)2
e−

7
8(1−γ) .

By the inclusion–exclusion principle, we save at least Pu−Tu many colors in
N(u), that is, the number of colored vertices minus the number of colors actually
used in N(u) is at least Pu − Tu. Now, if Pu − Tu ≥ γr, then the number of
uncolored vertices is smaller than the number of unused colors in N(u). Thus,
if we can show that, with positive probability, it holds that Pu − Tu ≥ γr, then
we can color all remaining uncolored vertices greedily, which then concludes the
proof.

To show this, let Au be the event that

Pu − Tu ≤
(

1− 1

log r

)(
δ

2(1− γ)
e−

1
1−γ − δ3/2

6(1− γ)2
e−

7
8(1−γ)

)
r.

Since both random variables Pu and Tu are highly concentrated (see Lemma 7),
it follows for large r that

P [Au] ≤ O(r−
1
2 log log r).

Note that the event Au only depends on Au′ if there is some vertex z of distance
at most 2 to both u and u′. Thus, Au is independent of all other Au′ except
for a number of these that is polynomial in r. We deduce, therefore, from the
Lovász Local Lemma that there is a coloring of the vertices of G such that no
Au holds. This, however, implies together with (2) that Pu−Tu ≥ γr, provided
that r is large enough.

6 How to possibly save more colors

The factor of 1.93∆2 of Theorem 1 is still very far from the conjectured factor
of 1.25∆2. While it seems doubtful that probabilistic coloring can ever get very
close to 1.25∆2, there is still some hope that with more sophisticated arguments
the factor can be improved. For us, two observations fuel this hope.

First, the two steps, the sparsity lemma and the coloring lemma, are com-
pletely dissociated. That is, the coloring lemma only exploits the sparsity of
strong neighborhoods but uses no structural information whatsoever. Surely,
not forgetting that the task consists in coloring edges should help!

Second, while the sparsity lemma, Lemma 4 is asymptotically tight, the
conjectured extreme example for the strong coloring conjecture, the blow-up of
the 5-cycle, has much sparser strong neighborhoods.

To be more concrete, consider the blow-up in which every vertex of the 5-
cycle is replaced by a stable set of size k, so that the maximum degree becomes
∆ = 2k. Then every edge e has as strong neighborhood all of the rest of the
graph, and consequently, the strong neighborhood induces about 25

32∆4 edges
in the square of the linegraph, which is much less than the 3

2∆4 of Lemma 4.
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In some sense, this is not surprising because already the degree ds(e) of e in
the square of the linegraph is much smaller than the 2∆2 we are working with,
namely it is only about 5

4∆2. In conclusion, the blow-up of the 5-cycle is quite
different from what we assume in the sparsity lemma.

What kind of effects could be at work that explain this difference? In
Lemma 4 we assume that the edge e has degree ds(e) close to 2∆2 and at
the same time a very dense neighborhood. While it is possible to have such
edges, this cannot be the case for all edges. Indeed, for the strong neighbor-
hood N s

e to induce many edges, there have to be many 4-cycles in N s
e. (This is

simply because X and Y , the first and second neighborhoods of the endvertices
of e, cannot be very large so that the bipartite graph between X and Y is very
dense.) However, every 4-cycle reduces in L2(G) the degree of any of its edges
by 1, and consequently, there should be many edges f in N s

e of lower degree
ds(f) than 2∆2.

Obviously, an edge f of low degree ds(f) is to our advantage, as we can
always color f at the very end when all high degree edges are already colored.
But if we defer coloring of low degree edges then any high degree edge e with
many low degree edges in its strong neighborhood has, morally, low degree as
well. Unfortunately, we did not manage to exploit these observations in such a
way that they result in a substantial improvement.

7 Talagrand’s inequality and exceptional out-
comes

To finish the proof of Lemma 5, we still need to show that the probability of Pu
or Tu deviating significantly from their expected values is very small. To prove
that a random variable on a product probability space is strongly concentrated
around its expectation is a very common task, and consequently, a number of
powerful tools have been developed for this, among them McDiarmid’s, Azuma’s
or Talagrand’s inequality [3,18,24]. All of these tools have in common that they
require the random variable to be somewhat smooth.

Consider a family of probability spaces ((Ωi,Σi,Pi))ni=1, and let (Ω,Σ,P)
be their product. One common smoothness assumption for a random variable
X : Ω → R is that each coordinate has effect at most c: whenever any two
ω, ω′ ∈ Ω differ in exactly one coordinate then |X(ω)−X(ω′)| ≤ c.

For McDiarmid’s or Azuma’s inequality to give strong concentration in this
situation, the effect c has to be small compared to n. If that is not the case,
then Talagrand’s inequality might still be useful. We describe a weaker version
that is easier to apply than the full inequality.

We say that X has certificates of size s for exceeding value k if for any ω ∈ Ω
with X(ω) ≥ k, there is a set I of at most s coordinates such that also X(ω′) ≥ k
for any ω′ ∈ Ω with ω|I = ω′|I . The following version of Talagrand’s inequality
appears in Molloy and Reed [22, p. 234]:

Theorem 8 (Talagrand). Let ((Ωi,Σi,Pi))ni=1 be probability spaces, and let
(Ω,Σ,P) be their product space. Let X : Ω → R be a non-negative random
variable with X 6= 0 so that each coordinate has effect at most c, and assume X
to have, for any k, certificates of size at most k` for exceeding k. Then for any

14



0 ≤ t ≤ E[X]:

P
[
|X − E[X]| > t+ 60c

√
`E[X]

]
≤ 4e

− t2

8c2`E[X] .

Unfortunately, for the random variables Pu and Tu that are of interest for
us, the effect c is too large, so that Talagrand’s inequality becomes useless.
Indeed, in an extreme case changing the color of a single vertex v ∈ N(u) to
new color λ might result in all other vertices in N(u) of color λ to lose their
color. This happens when all these vertices have an edge pointing away from
v. Then, all pairs of color λ counted in Pu are lost, and these might be up to
r2. (Recall that our graph G is r-regular.) Consequently, the effect c has to be
at least r2 – however, already an effect of c ≈ r would necessitate a deviation
of t ≈ r ≈ E[Pu] for the probability to become small. But for Talagrand’s
inequality to be useful for us, we need a vanishing probability for deviations t
that are small compared to E[Pu].

Changing a single color might have a very large effect but this is a rare
exception. Normally, only few vertices in N(u) have the same color, so that
also only few are affected by any color change. That is, very large effects only
occur with a very tiny probability. It seems unreasonable that exceedingly
unlikely events should have a serious impact on whether a random variable is
concentrated or not.

What we need, therefore, is a version of Talagrand’s inequality that excludes
a very unlikely set Ω∗ of exceptional outcomes that nevertheless spoils smooth-
ness. Warnke [26] (but see also Kutin [16]) extended McDiarmid’s inequality
in a similar direction by considering a sort of typical effect. However, Warnke’s
inequality is still too weak for us. Grable [9] as well presents a concentration
inequality that excludes exceptional outcomes, which would be suitable for our
purposes, were it not for the fact that there is a serious error in its proof. McDi-
armid [19], too, describes a Talagrand-type inequality that excludes an excep-
tional set. (Its main feature, though, is to allow permutations as coordinates.)
The inequality, however, does not seem to be of much use to us either.

We mention that the powerful, but technical, method of Kim and Vu [15]
can also handle large but unlikely effects.

To deal with exceptional outcomes, we modify the definition of certificates.
Given an exceptional set Ω∗ ⊆ Ω and s, c > 0, we say that X has upward (s, c)-
certificates if for every t > 0 and for every ω ∈ Ω \ Ω∗ there is an index set I
of size at most s so that X(ω′) > X(ω) − t for any ω′ ∈ Ω \ Ω∗ for which the
restrictions ω|I and ω′|I differ in less than t/c coordinates.

Directly, Talagrand’s inequality does not give concentration around the ex-
pectation but around the median med(X) of X, that is, around

med(X) = sup

{
t ∈ R : P[X ≤ t] ≤ 1

2

}
.

However, in typical applications the median is very close to the expected value.
We will deal with this technicality later.

Lemma 9. Let ((Ωi,Σi,Pi))ni=1 be probability spaces, and let (Ω,Σ,P) be their
product space. Let Ω∗ ⊆ Ω be a set exceptional events. Let X : Ω → R be a
random variable and let t ≥ 0.
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If X has upward (s, c)-certificates then

P[|X −med(X)| ≥ t] ≤ 4e−
t2

4c2s + 4P[Ω∗]. (7)

We prove Lemma 9 with the original, full version of Talagrand’s inequality.
Recall that the Hamming distance of two points ω, ω′ ∈ Ω is defined by the
number of non-common coordinates or equally

∑
i:ωi 6=ω′i

1. For a weighted ver-

sion (together with a normalization), let α ∈ Rn be a unit vector with αi ≥ 0.
We define the α-Hamming distance between ω and ω′ by

∑
i:ωi 6=ω′i

αi.

For a set A ∈ Ω and a point ω ∈ Ω, let

d(ω,A) = sup
α

τ :
∑

i:ωi 6=ω′i

αi ≥ τ for all ω′ ∈ A

 ,

which is equivalent to the largest value τ such that all points in A have α-
Hamming distance at least τ to ω (for a best possible choice of α).

Theorem 10 (Talagrand [24]). Let ((Ωi,Σi,Pi))ni=1 be probability spaces, and
let (Ω,Σ,P) be their product space. If A,B ⊆ Ω are two (measurable) sets such
that d(ω,A) ≥ τ for all ω ∈ B, then

P[A]P[B] ≤ e−τ
2/4.

Proof of Lemma 9. The two-sided estimation (7) follows from the two one-sided
estimations

P[X ≤ med(X)− t] ≤ 2e−
t2

4c2s + 2P[Ω∗]

P[X ≥ med(X) + t] ≤ 2e−
t2

4c2s + 2P[Ω∗],

of which we only show the first; the argumentation for the second is analogous.
Let

A = {ω ∈ Ω \ Ω∗ : X(ω) ≤ med(X)− t} and

B = {ω ∈ Ω \ Ω∗ : X(ω) ≥ med(X)}.

Pick an arbitrary ω ∈ B. By assumption, X has upward (s, c)-certificates, which
means, in particular, that there is an index set I of at most s indices such that
ω|I and ω′|I differ in at least t/c coordinates for every ω′ ∈ A. Consequently, if
we set α = 1/

√
|I| · 1I , where 1I is the characteristic vector of I, then ω and

ω′ have α-Hamming distance at least t
c
√
s
. Hence d(ω,A) ≥ t

c
√
s
.

Using Theorem 10, we obtain P[A]P[B] ≤ e−t2/4c2s. We conclude:

P[X ≤ med(X)− t] · 1

2
≤ P[X ≤ med(X)− t]P[X ≥ med(X)]

≤ P[A]P[B] + P[Ω∗]

≤ e−t
2/4c2s + P[Ω∗].

This completes the proof.

Next, we prove that usually the median is close to the expected value:
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Lemma 11. Let ((Ωi,Σi,Pi))ni=1 be probability spaces, and let (Ω,Σ,P) be their
product space. Let Ω∗ ⊆ Ω. Let X : Ω → R be a random variable, let M =
max{sup |X|, 1}, and let c ≥ 1. If X has upward (s, c)-certificates, then

|E[X]−med(X)| ≤ 20c
√
s+ 20M2P[Ω∗].

We note that the proof technique is not new. A similar proof appears, for
instance, in Molloy and Reed [22, Ch. 20].

Proof. Clearly,

|E[X]−med(X)| ≤ E[|X −med(X)|].

Put K = b2M/c
√
sc, and observe that |X − med(X)| < (K + 1)c

√
s. By

splitting the possible values of |X − med(X)| into intervals of length c
√
s, we

can upper-bound

E[|X −med(X)|] ≤
K∑
k=0

c
√
s(k + 1)P[|X −med(X)| ≥ kc

√
s}].

We apply Lemma 9 for each summand with t = kc
√
s:

E[|X −med(X)|] ≤ c
√
s

K∑
k=0

4(k + 1)(e−k
2/4 + P[Ω∗])

≤ 20c
√
s+ 20M2P[Ω∗],

as
∑∞
k=0(k + 1)e−k

2/4 ≈ 4.1869 < 5.

We conclude under the assumptions as in Lemma 11 by combining Lemma 9
and 11:

P[|X − E[X]| ≥ t+ 20c
√
s+ 20M2P[Ω∗]] ≤ 4e−

t2

4c2s + 4P[Ω∗]. (8)

Let us come back to the certificates. As defined, they are witnesses for large
values of X. Sometimes, it is easier to certify smaller values. To capture such
situations we say that X has downward (s, c)-certificates if for every t > 0,
and for every ω ∈ Ω \ Ω∗ there is an index set I of size at most s so that
X(ω′) < X(ω) + t for every ω′ ∈ Ω \ Ω∗ for which the restrictions ω|I and ω′|I
differ in less than t/c coordinates. By replacing X with −X we observe that
Lemmas 9 and 11, and thus (8), remain valid for downward certificates.

We simplify (8) a bit more. If t ≥ 50c
√
s and P[Ω∗] ≤ M−2 then t ≥

t/2 + (20c
√
s+ 20M2P[Ω∗]). Thus:

Theorem 12. Let ((Ωi,Σi,Pi))ni=1 be probability spaces, (Ω,Σ,P) be their prod-
uct, and let Ω∗ ⊂ Ω be a set of exceptional outcomes. Let X : Ω→ R be a ran-
dom variable, let M = max{sup |X|, 1}, and let c ≥ 1. Suppose P[Ω∗] ≤ M−2

and X has upward (s, c)-certificates or downward (s, c)-certificates, then for
t > 50c

√
s

P[|X − E[X]| ≥ t] ≤ 4e−
t2

16c2s + 4P[Ω∗].
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8 Concentration for coloring procedure

We finally complete the proof of Lemma 5 by proving that for every vertex u
the random variables Pu and Tu are tightly concentrated around their expected
values. Recall that Pu counts the number of vertex pairs in N(u) that at the
end of the coloring procedure have the same color, and recall that Tu counts the
number of such vertex triples.

Proof of Lemma 7. We show the statement for Pu, the proof for Tu is almost
the same.

Recall that the coloring procedure that defines Pu (and Tu) is based on a
random experiment on a product space Ω =

∏
Ωi, where the product ranges

over the vertices (that receive a color) and the edges (that receive a direction) of
the graph. Thus, every event ω ∈ Ω is a vector that is indexed by V (G)∪E(G).

To apply Theorem 12, we define the set Ω∗ of exceptional events as the space
of events that assign some color to more than log r vertices in N(u) (before
uncoloring). Recall that we work with C = d(1−γ)re colors. To estimate P[Ω∗]
observe first that the probability that a particular color appears more than log r
times in N(u) is at most

r∑
i=blog rc+1

(
r

i

)
1

Ci
≤

∑
i=blog rc+1

(er
i

)i 1

(1− γ)iri
≤ r ·

(
e

(1− γ) log r

)log r

Thus, we get

P[Ω∗] ≤ r2 ·
(

e

(1− γ) log r

)log r

≤ r− 2
3 log log r,

for large enough r.
Setting s = 3r and c = log2 r, let us check that Pu has downward (s, c)-

certificates. So, let t > 0 be given and consider an event ω /∈ Ω∗. We have to
define an index set I of size at most s. We start by including all vertices of N(u)
in I. Next, consider any vertex v ∈ N(u) that becomes uncolored in step 3 of
the coloring procedure. This is only the case, if there is a neighbor v′ of v that
receives the same color under ω and if, again subject to ω, the edge vv′ points
towards v. We add v′ and vv′ to I for each such vertex v. In total, we have
|I| ≤ 3r = s as for every vertex v ∈ N(u) we add at most two additional indices
to I.

Let now ω′ /∈ Ω∗ be an event with Pu(ω′) ≥ Pu(ω) + t. As ω′ /∈ Ω∗, every
color may contribute at most

(
log r

2

)
≤ 1

2 log2 r pairs to Pu.
For every color λ for which there are more pairs of vertices colored with λ

contributing to Pu(ω′) than to Pu(ω), there is a vertex v in N(u) of color λ
under ω′ but that, under ω, is either uncolored or colored with a different color
than λ.

In the latter case, ω and ω′ differ in the coordinate v ∈ I (as v receives
different colors under ω and ω′). For the former case, observe that we had
added a vertex v′ and the edge vv′ to I to witness v being uncolored under ω.
Either the color of v′ or the direction of vv′ must be different in ω′, that is, ω
and ω′ differ again in at least one coordinate of I. In both cases, call such a
coordinate a λ-difference.
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Can a coordinate in I be a λ-difference and a µ-difference for two different
colors λ and µ? Yes, but only if it is a vertex v′ ∈ I in N(u) that satisfies two
conditions: first, under ω it serves as a witness for one of its neighbors v ∈ N(u)
losing its color λ, say, in the conflict resolution step of the coloring procedure;
and second, by flipping from color λ under ω to color µ in ω′ the vertex v′

contributes new pairs of color µ in Pu. This then immediately shows that no
coordinate can be a λ-difference for three (or more) colors.

As a consequence, ω′ and ω must differ in at least t/ log2 r = t/c coordinates
in I as Pu(ω′) ≥ Pu(ω) + t. (Recall that under ω′ no color can contribute more
than 1

2 log2 r pairs to Pu.) This proves that Pu has downward (s, c)-certificates.

For Theorem 12, we set M = supPu ≤ r2. With t = log3 r
√
r, Theorem 12

implies for large r that

P
[
|Pu − E[Pu]| ≥

√
r log3 r

]
≤ 4 exp

(
− r log6 r

16 log4 r · 3r

)
+ 4r−

2
3 log log r

≤ r− 1
2 log log r

The only difference of the proof for Tu lies in the fact that, outside Ω∗, every
color can contribute up to log3 r/6 triples to Tu; for Pu this was at most log2 r/2
pairs. The resulting higher value log3 r for c can easily be compensated for by
increasing t to log4 r

√
r in the application of Theorem 12.

9 Exceptional outcomes spoil triangle counting

We close this article by arguing that Theorem 12 has potential applications
beyond our coloring lemma. To make this case, we discuss the number of trian-
gles in a random graph. We note that this problem also serves as a motivating
example for Kim and Vu [15], and for Warnke [26].

Consider the random graphs G(n, p) that are obtained from Kn by deleting
uniformly and independently at random an edge with probability 1− p, where
p = p(n) may be a function in n. The threshold probability for the triangles is
p = 1

n : below that threshold there is with high probability no triangle, above it
there is with high probability at least one. Let us now examine the number T of
triangles in G(n, p), or rather the expected number of triangles E[T ] =

(
n
3

)
p3 ≈

1
6n

3p3.
Is T concentrated around its expected value, whenever np → ∞? We con-

sider here a relatively mild notion of concentration, where we allow deviations
from the expected value of up to t = εn3p3 for small but fixed ε > 0. For simpler
notation, set N =

(
n
2

)
.

For p relatively large, that is, for p ≥ n−1/3+γ for any γ > 0, McDiarmid’s
inequality [18] is strong enough to show concentration. Indeed, changing any
coordinate, that is, any edge, may result in at most n new triangles (or at
most n triangles less), so that the effect c of each coordinate is bounded by n.
Consequently, for McDiarmid’s inequality to show that |T − E[T ]| ≤ t for t =

εn3p3 it is necessary that t2

N ·n2 tends to infinity. This is the case if p ≥ n−1/3+γ .
A version of McDiarmid’s inequality for binary random variables, see [18] again,
allows to drop this threshold to p ≥ n−2/5+γ .

To go below this threshold, Warnke [26] (but also others) observed that,
while changing a single edge may create up to n − 2 new triangles (or destroy
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that many), this is exceedingly unlikely. Indeed, we only expect a particular
edge to be in roughly np2 many triangles. Thus, by the standard Chernoff
bound, it is, for any δ > 0, extremely unlikely that an edge is contained in more
than max{2np2, nδ} triangles.

Exploiting the fact that, typically, the effect of changing a single edge is much

smaller, Warnke could verify concentration as long as t2

pN ·max{2np2,nδ} tends to

infinity, which is the case when p ≥ n−4/5+γ .
To go even below such p, Kim and Vu [15] developed a powerful method that

evidently has a very wide scope of application. Usually, great power does not
come for free, and this is also the case here: Kim and Vu’s inequality is rather
technical and not easy to use.

Let us now apply Theorem 12 and show the strong concentration of T also
for values of p smaller than n−4/5+γ . We exclude all outcomes where at least
one edge is contained in more than nδ many triangles. As seen above, this is
an event of very small probability. Moreover, we may use Warnke’s result (or
a previous application of Theorem 12) to observe that it is extremely unlikely
that T ≥ 2

6n
3 · n3(−4/5+γ) = 1

3n
3/5+3γ . (We have used here that T is monotone

in p.) We add all these outcomes to our exceptional set.
Next, let us check that T has upward (s, c)-certificates, where s = n3/5+3γ

and c = nδ. For a non-exceptional event ω, we use as index set I the set of all
edges lying in any triangle. As there are at most 1

3n
3/5+3γ triangles, it follows

that |I| ≤ s. Now, consider some non-exceptional event ω′ such that ω and ω′

differ in less than t′/c coordinates of I. Then, any edge in I that is present
in ω but lost in ω′ may only result in ω′ having at most nδ less triangles than
ω. Moreover, edges outside I obviously cannot result in the loss of triangles.
Therefore, T (ω′) > T (ω)− t′, and we see that T has upward (s, c)-certificates.

With these values of s and c, we deduce from Theorem 12 that T is strongly
concentrated if p ≥ n−9/10+γ .

For even smaller values of p, we may apply Theorem 12 once again, and
set s ≈ n−9/10+γ , which then will yield concentration for p ≥ n−19/20+γ . Of
course, this can iterated several times, so that we get strong concentration for
p ≥ n−1+β for every β > 0.

Let us finally point out that we even have fairly tight concentration around
the expected value: namely, T is very likely within the range E[T ]± nδ

√
E[T ].
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