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Abstract

Dynamics play an important role in physics. From classical mechanics, astro-
physics, hydrodynamics to quantum physics, the dynamics of physical systems
have crucial impact on our understanding of nature. For simple configurations such
as in the two-body problem the dynamics can be calculated analytically. However,
things get more complicated once the number of contributors in a system increases
such as in few- or many-body systems. One way to study such an ensemble is to
use a model system where decisive parameters can be controlled. In this thesis I
make use of an ultracold cloud of fermionic 6Li atoms close to zero temperature to
study dynamics of few- and many-body systems. Two experimental studies to this
topic are presented.
In the first study, I produced a gas of di-atomic molecules (dimers), consisting of
two 6Li atoms in different states, to study the reaction kinetics of the four-body
process of a dimer-dimer collision. At temperatures close to absolute zero the in-
ternal and external degrees of freedom of the dimers can be well controlled. This
allowed us to investigate the kinetics of a single-channel reaction. To resolve the
dynamics of the process we heated a gas of molecules and tracked the state of the
system as a function of time. We determined the reaction-rate constant of the pro-
cess for various thermal energies which allowed us to verify the Arrhenius law for
molecule-molecule reactions in the ultracold regime. Additionally, we provided
first insight into the dependence of this four-body process on the particle interac-
tion.
In the second experimental work, I focused on the thermodynamical properties of
the ultracold gas. Cooling the gas of 6Li atoms close to zero temperature the gas
undergoes a phase transition and superfluidity is established. To study the dynamics
in such a gas, we used a local perturbation to produce sound waves. Depending on
the excitation scheme we either excited first sound, i.e. a pressure wave, known
from classical mechanics, or second sound, i.e. an entropy wave. In the study we
focused on second sound and determined the second sound speed as a function of
the particle interaction. We found agreement of our results with both - a numerical
and an analytical description of the interaction strength dependence of the second
sound speed.
Besides the experimental work, a theoretical proposal for a novel imaging tech-
nique for a 2D ultracold gas in an optical lattice is presented. The scheme is based
on a holographic approach and enables the detection of individual particles with
only a few hundred scattered photons per atom.
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Zusammenfassung

Dynamiken spielen eine wichtige Rolle in der Physik. Von der klassischen Mecha-
nik, über die Astrophysik, der Hydrodynamik bis zur Quantenphysik, die Dynamik
in physikalischen Systemen hat einen entscheidenden Einfluss auf unser Verständ-
nis von der Natur. Für einfache Anordnungen, wie im Zweikörperproblem, kann
die Dynamik analytisch beschrieben werden. Erhöht man jedoch die Anzahl der
Körper im System bis hin zu Vielteilchensystemen, so wird die Beschreibung kom-
pliziert. Eine Möglichkeit sich einem solchen Ensemble zu nähern besteht darin,
Modellsysteme, in denen entscheidenden Parameter kontrolliert werden können, zu
studieren. In dieser Arbeit verwende ich ein ultrakaltes Gas von 6Li Atomen nahe
dem absoluten Nullpunkt um die Dynamik in Prozessen zwischen einigen weni-
gen Teilchen als auch in Vielteilchensystemen zu untersuchen. In diesem Rahmen
werden zwei experimentelle Studien vorgestellt.
In der ersten Studie wird ein Gas aus zweiatomigen Lithiummolekülen, wobei
sich die einzelnen Atome in unterschiedlichen Zuständen befinden, genutzt um die
Reaktionskinetik des Vierkörperprozesses einer Molekül-Molekül-Kollision zu un-
tersuchen. Bei Temperaturen nahe dem absoluten Nullpunkt können sowohl interne
als auch externe Freiheitsgrade der Moleküle kontrolliert werden. Dies ermöglichte
es uns die Reaktionskinetik eines einzelnen Reaktionskanals zu untersuchen. Um
die Dynamik des Prozesses zu studieren heizten wir das ultrakalte Gas auf und
beobachteten die Zustandsänderung des Systems. Wir ermittelten den Reaktion-
sratenkoeffizient für verschiedene thermische Energien. Dies ermöglichte es uns
das Arrhenius Gesetz für Molekül-Molekül-Kollisionen im ultrakalten Regime zu
verifizieren. Darüber hinaus konnten wir erste Einblicke zur Wechselwirkungsab-
hängigkeit dieses Vierkörperprozesses liefern.
In der zweiten experimentellen Studie befasse ich mich mit den thermodynamis-
chen Eigenschaften der verwendeten ultrakalten Atome. Wird ein Gas von 6Li
Atomen auf Temperaturen nahe dem absoluten Nullpunkt gekühlt, so durchläuft
das Gas einen Phasenübergang in einen suprafluiden Zustand. Um die Dynamik
in einem solchen Gas zu untersuchen nutzten wir eine lokale Störung um Schall-
wellen zu erzeugen. Abhängig vom Anregungsschema konnte hauptsächlich erster
Schall, eine Druckwelle wie sie aus der klassischem Mechanik bekannt ist, oder
zweiter Schall, eine Entropiewelle, angeregt werden. Im Speziellen ermittelten
wir die Geschwindigkeit des zweiten Schalls als Funktion der Teilchenwechsel-
wirkung. Dabei fanden wir eine Übereinstimmung unserer Resultate sowohl mit
einer numerischen als auch einer analytischen Beschreibung.



Neben den experimentellen Studien wird in dieser Arbeit eine neuartige Abbildung-
stechnik für ein 2D Gas ultrakaler Atome in einem optischen Gitter auf theoretis-
cher Ebene beschrieben. Das Schema basiert auf einem holografischen Ansatz und
ermöglicht die Detektion einzelner Atome, wobei nur wenigen hundert Photonen
pro Atom gestreut werden müssen.
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1 Introduction

The dynamics of physical systems have been studied over many centuries. This
includes classical phenomena as the movement of planets. In the simplest case a
system consists of two objects, where the dynamics are well understood and can
be discussed analytically in the framework of the two-body problem. However,
adding more complexity to the system, e.g. adding additional bodies, the analytic
calculations start to fail and the description of the system gets more and more
complicated. This is even increased when we consider more complex bodies with
additional internal structure. For instance, this is of relevance for small objects as
atoms, especially when we are looking at collision processes. Particularly, when
atoms form larger complexes as molecules, the complexity of collisions can quickly
become complicated when it comes to dynamics.

Ultracold chemistry
A collision of two objects, involving at least one molecule, can either be elastic or
inelastic/reactive. While an elastic collision is simply described by kinematics, a
reactive collision is more complex and leads to a change in the composition of the
system. Reactive collisions can have a multitude of reaction channels even when
the molecule consist of only two atoms. The number of possible reaction channels
is highly depending on the available collision energy. Therefore, it can be very
difficult to study fundamental collisions with control over the available reaction
channels at room temperature.
In the past decades experiments with molecular beams emerged, providing a con-
trollable setting to study and isolate basic reactions (see [1, 2]). In these experi-
ments molecular beams, at temperatures of only a few Kelvin, are brought to colli-
sion inside a vacuum chamber. This way, the investigated process can be isolated
from background collisions and the possible reaction channels can be restricted by
controlling the collision energy. The latter is typically done in two ways. First, the
gases are produced at low temperatures, setting the scale of the collision energies.
Second, the collision angle of the beams is tuned to adjust the relative momentum
of the colliding particles. Although the work on molecular beams is a remarkable
step in the control of reactive collisions, individual channels and especially indi-
vidual quantum states cannot be fully isolated at the collision energies of these
experiments.
One way to reduce the number of possible reaction channels is to cool the atoms to
even lower temperatures, where the number of reaction paths are further reduced.
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This has been achieved with the realization of ultracold quantum gas experiments
in the past decades. In the experiments, atomic gases are cooled close to absolute
zero temperature and are confined in magnetic or optical traps inside a vacuum
chamber. In recent years a multitude of experimental tools have been developed to
allow an unprecedented control over both, the external and internal parameters of
the trapped atoms. This makes ultracold atoms highly suited to study all kinds of
fundamental collisions [3, 4].
One crucial parameter in this context is the scattering length a which describes the
particle interaction at ultracold temperatures. In experiments with cold atoms the
scattering length a can be tuned by means of a magnetic Feshbach resonance [5].
This way a can be set to positive values (effectively repulsive interaction), infinity
on the resonance, and negative values (effectively attractive interaction).
Tuning the particle interaction by means of the Feshbach resonance di-atomic
molecules, called dimers in the following, can be produced in the ultracold regime
[6–15]. However, this is only one way to produce ultracold molecules. In the
field of ultracold quantum gases other options for the production of molecules and
studies to chemical reactions emerged. For instance ultracold molecules can be
produced by means of photoassociation, where a photon transfers two unbound
atoms to an excited molecular state [16–18]. Tuning the photon energy the pro-
duced excited state can be controlled. Another way to study molecular physics in
the ultracold regime is to investigate three-body recombination processes. A reac-
tive collision of three atoms leads to a bound state, where the products carry away
the release energy. Studies to the process enable to investigate the product state
of the produced molecule [5, 8, 19–21]. A similar direction of research addresses
three-body collisions in the framework of Efimov physics. The Efimov effect is
characterized by an infinite number of trimer states that can be found for three
identical bosons or three distinguishable fermions in the close vicinity of a two-
body resonance [22]. The exceptional control over the atoms in ultracold quantum
gas experiments enabled a first experimental realization of such a trimer state more
than one decade ago [23–28]. An alternative approach to study cold molecules uses
the direct cooling of molecules via Stark or magnetic decelerators. In this field of
research, a bunch of molecules is slowed in an inhomogenoeus electric or magnetic
field [29, 30]. Such experiments allow studies on even more complex molecules
with decent control over the contributors.
The variety of the different approaches to study cold molecules shows that the
topic has drawn broad interest in the community. However, although major steps
have been made to study chemical reactions on the most fundamental level, not all
processes could be studied in detail. Even in collisions at temperatures of a few
µK not all reaction channels can be isolated easily making it hard to investigate
chemical reactions on a state-to-state level. In the collision of ultracold dimers
relaxation processes are possible which can lead to losses of the trapped reaction
products. This makes especially the analysis of the reaction dynamics complicated
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[31–39].
One system suitable to study a single isolated reaction channel is an ultracold cloud
of fermionic 6Li atoms close to a magnetic Feshbach resonance. In this work, we
make use of such a gas. We produced weakly bound dimers to study reactive
molecule-molecule collisions and its dynamics [40]. For the weakly bound dimers,
consisting of two fermionic atoms, a relaxation process and accompanying losses
are absent. Due to the low binding energy the fermionic character of the contribut-
ing atoms is still present. Therefore, in our case the Pauli exclusion principle,
which states that two Fermions cannot occupy the same quantum state inside the
same quantum system [41], leads to a suppression of relaxation processes in the
collisions of the dimers.
With this, we were able to study the isolated process of a dimer dissociation for a
single quantum state. We determined the rate coefficient for various collision en-
ergies to verify the well known Arrhenius law which connects the dissociation rate
constant with the binding energy of the dimers and the thermal energy of the gas.
Besides this, we performed experiments for various interaction strengths in which
we found agreement with an a4 scaling of the reaction rate constant. As predicted in
few-body theory, the reaction rate constant is connected to the scattering length via
an universal constant. However, with our measurements we found that the value is
by a factor of ten larger as in the theoretical prediction [42–44]. This indicates two
things. First, additional effort is needed to get a deeper understanding of this type
of four-body process on the theoretical side. Second, this discrepancy shows how
complex a few-body collision can be, even with a small number of contributors.

Second sound
Leaving the field of few-body collisions and adding additional contributors to the
system, the dynamics, as mentioned above, gets complicated in its full microscopic
description. To discuss the behavior of such a systems, many-body theory is used
with which the collective behavior of the system, including interactions and quan-
tum effects, can be described. Close to absolute zero we find remarkable features
for many-body systems. For instance, in gases or liquids superfluidity has to be
mentioned.
Superfluidity was discovered first by P. Kapitza, J. F. Allen and D. Misener in liquid
Helium II [45, 46] in the late 1930s. The superfluid Helium showed the remarkable
feature of friction less flow, characteristic for a liquid or gas in the superfluid state.
Shortly after the first experiments L. Landau and L. Tisza presented a two-fluid
model to describe the system [47–51]. In the model the fluid consists of a normal
and a superfluid part within a hydrodynamic description. It successfully explained
phenomena detected in experiments with the Helium II and predicted that two types
of wave phenomena should be observable in such a system. The first sound, which
is a pressure wave known from classical fluid mechanics, and second sound, an
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entropy wave describing how thermal energy propagates in the superfluid. A few
years after its prediction second sound was detected in superfluid Helium II by
V. Peshkov [52]. In the following decades second sound could only be studied
in liquids. However, recently second sound was measured in a different type of
superfluid system, namely an ultracold quantum gas [53].
Besides repeating the measurements done in Helium before, ultracold gases can
be used to extend the studies on second sound to improve our basic understand-
ing of superfluidity. This includes second sound experiments in two-dimensional
systems, which could not be investigated in liquid Helium [54–56]. Additionally,
in cold quantum gases the particle interaction is tunable and second sound can be
studied for different types of many-body systems easily.
However, so far the experimental work on second sound in three dimensional ultra-
cold gases is limited to one study in which second sound was measured for resonant
particle interaction [53]. In my thesis, we extended the work to the regimes of re-
pulsive and attractive interactions using the ultracold Fermi gas of 6Li atoms. In the
regime of repulsive interaction (BEC regime) bosonic dimers can form, which can
undergo a phase transition to a molecular Bose Einstein condensate (mBEC) [9,
57, 58]. For attractive interaction (BCS regime) and below the critical temperature
Cooper pairing sets in and superfluidity is established [59, 60].
Analogue to the work in ref. [53] we applied a local perturbation on a confined
ultracold gas to determine the speed of second sound. Performing experiments for
various magnetic fields, i.e. particle interactions, allowed us to determine the speed
of second sound in the crossover between the BEC and the BCS regime [61].
The speed of second sound is a valuable quantity since it gives access to the su-
perfluid density of the cloud. For the weak attractive, weak repulsive, and resonant
interaction the connection between sound speed and superfluid density is known
[53, 62]. In the crossover the link between the two quantities is missing. Therefore,
our results, presented in this thesis, can be used as benchmark data to develop this
connection theoretically. This knowledge is required for a complete understanding
of the thermodynamical state of the gas in the crossover.

Detection of ultracold atoms in an optical lattice
In the past decades the work on ultracold atoms in optical lattice led to a multitude
of experimental studies in the framework of many-body physics with remarkable
success. Besides experiments related to quantum optics and quantum information
processing, optical lattices are ideally suited to study aspects of condensed-matter
physics on a fundamental level (see e.g. [63–65]). Especially, for the studies on
solid-state like systems major achievements have been made. One prominent ex-
ample is the production of a Mott insulating state with both, bosonic and fermionic
atoms [63, 66–68]. An ensemble of cold atoms in this state is characterized by a
fixed number of atoms per lattice site which is an ideal starting point to address
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fundamental questions of condensed matter physics. For such studies it is benefi-
cial if the atomic distribution can be directly accessed on a single-site single-atom
level. Many efforts have been made to achieve such a detection technique [69–
75]. However, on the way to its realization it has turned out that this type of de-
tection is technically challenging, particularly for the detection of light elements
as lithium. To detect individual particles via fluorescence imaging a few thousand
photons have to be scattered by a single atom typically. The photon scattering
heats the atoms which can lead to a de-localization of the atoms in the lattice or to
atom losses. To suppress this effect in most experiments a deep optical lattice and
a simultaneous cooling of the atoms has to be used during fluorescence detection
which complicates the process from a technical point of view [72, 75]. Therefore,
it is convenient to study alternative approaches for the detection of particles in an
optical lattice.
One alternative to a direct detection of cold atoms is phase-contrast imaging. Sev-
eral groups used the phase modulation a weak off-resonant beam experiences when
it is propagating through an atomic cloud to measure the particle distribution [76–
79]. The information on the atomic distribution is imprinted on the phase of the
detection beam and can be reconstructed.
In the work presented here, we proposed a similar approach based on off-axis
holography. In off-axes holography, a beam illuminates the imaged object and
is scattered [80]. The scattered light is superimposed with a reference wave in the
image plane/ hologram plane under an angle. Using a readout wave an observer
can obtain the information stored in the hologram. Here, we essentially propose
a similar scheme for cold atoms in the lattice [81]. A laser beam illuminating the
atoms in a lattice is scattered coherently and carries the information on the lattice
occupancy. The beam is collimated by a high resolution lens and guided to a de-
tector where the scattered light is superimposed with a reference beam under an
angle. The produced interferogram can be used to reconstruct the information on
the lattice occupancy. We show that even under the influence of noise the scheme
is robust and reliable and requires only a few hundred scattered photons per atom.

Outline
This thesis is organized as follows.
In the second chapter, I give a brief introduction to the most relevant theoretical
concepts used in this thesis. First, I introduce the statistical properties of Fermi
gases in harmonic traps. Then, I concentrate on a few principles of scattering
theory and introduce the properties of 6Li in high magnetic fields. Thereafter, I
give an overview of a few fundamentals of magnetic Feshbach resonances and
molecule formation close to such a resonance. This is followed by the theoretical
description of sound propagation in a partially superfluid Fermi gas in terms of a
hydrodynamic approach.
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In the third chapter the technical realization of the experimental apparatus, which
has been set up in the course of this thesis, is presented. This includes the vacuum
system, the control unit, coil systems, laser sources, imaging and projection optics.
In this context technical limitations and challenges are addressed.
In the fourth chapter, I introduce the experimental steps required to produce a
degenerate quantum gas. This includes standard cooling methods as laser cooling,
molasses cooling as well as evaporative cooling. An extended description of parti-
cle trapping in terms of a magneto optical trap, optical dipole traps, and an optical
lattice is given. Additionally, first steps towards ultracold atoms in optical lattices
and two-dimensional gases are shown.
In the fifth chapter our experimental work on the chemical reaction dynamics in
ultracold molecule-molecule collisions is reported. A sample of ultracold Feshbach
molecules in a single quantum state is produced and is shifted out of thermal equi-
librium. The dissociation of the dimers is observed and its dependence on particle
interaction and thermal energy is discussed.
In the sixth chapter, I present our study on sound excitation in a superfluid Fermi
gas. Starting from the BEC side of the broad Feshbach resonance I describe a
systematic study of second-sound propagation in a strongly interacting Fermi gas
across the BEC-BCS crossover. Furthermore, an extensive study of the coupling
of a local perturbation to first and second sound modes is given. The experimental
work is strongly supported by the theoretical work done in the group of Ludwig
Mathey [82].
In the seventh chapter, the holographic imaging approach is introduced. Besides
the numerical simulation of the detection scheme, we discuss an analytic descrip-
tion of the method. We are able to demonstrate that the scheme provides a high
detection fidelity although only a few hundred photons are scattered per atom dur-
ing imaging.
In the eighth chapter, an outlook on possible future experiments and suggestions
for the extension of ongoing work is presented.
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2 Ultracold gases - theory overview

The work presented in this thesis is based on the production and manipulation of
interacting fermionic atoms in the ultracold regime. The thermodynamical proper-
ties of ultracold atoms and gases are determined by particle statistics, phase space
densities, trapping geometries and the particle interaction. Therefore, the following
chapter is devoted to give a brief overview of significant properties of interacting
Fermi gases including the fundamentals of particle statistics and scattering theory.
In this context, I will introduce theoretical aspects relevant for this thesis. The
information is taken from several textbooks, reviews, and research articles.

2.1 Particle statistics and distribution functions

All experiments presented in this thesis start with an atomic beam of 6Li atoms
at a temperature of 673K. Subsequently, the atoms are cooled to temperatures on
the order of one millikelvin in a first stage using laser cooling and are confined
in a trap as a cold atomic cloud. This is still far away from the ultracold regime
and the gas can be treated in a classical approach. The ensemble has a low phase
space density, obeys the Maxwell-Boltzmann statistics, and follows the distribution
function fMB

1 which reads

fMB = e−(Ekin+V−µ)/kBT . (2.1)

Here, Ekin is the kinetic energy, V the external trapping potential, and µ the chem-
ical potential, kB is the Boltzmann constant, and T is the temperature.
The phase space density is given by nλ 3

dB, where λdB = h̄
√

(2π)/(mkBT ) is the
thermal de Broglie wavelength, and n is the atomic density.
In our experiments we use harmonic traps typically. Therefore, the external poten-
tial is expressed by

V (r) =
3

∑
i=1

1
2

mω
2
i x2

i . (2.2)

Here ωi are the trapping frequencies and xi are the displacements from the trap cen-
ter. The index i denotes the spatial coordinate in the Cartesian coordinate system.

1See ref. [83] and textbooks like [84, 85]
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To calculate the spatial density distribution of a thermal cloud in such a trap, we
have to integrate the phase-space distribution of eq. (2.1) in the momentum space
(for more details see [86])

n(r) =
∫ ∫ ∫ fMB

h3 d3p = n0

3

∑
i=1

e
−mω2

i r2
i β

2 . (2.3)

Here n0 is the peak density and β = (kBT )−1. The factor (2π h̄)3 is the phase space
cell.
If we cool the gas further down, i.e. close to absolute zero temperature, the phase
space density of the gas approaches λ 3

dBn≈ 1 and quantum statistics starts to domi-
nate the thermodynamical properties of the gas. Depending on external parameters
we find fermionic lithium and/or diatomic bosonic molecules of two 6Li atoms in
the trapped gas (see also sec. 2.5). These two particle classes are distinguished by
the symmetry of their wave function and the spin. Fermions have an anti-symmetric
wave function, half integer spin and obey the Pauli principle [41]. Bosons have a
symmetric wave function (see eq. (2.4)), full integer spin, and have no restric-
tions concerning state occupation. The properties of the two classes can be easily
visualized looking at the two particle wave function

|ΨF,Ψ
′
F〉=−|Ψ

′
F,ΨF〉 |ΨB,Ψ

′
B〉= |Ψ

′
B,ΨB〉 . (2.4)

Here Ψ
(′)
i are the wave functions and their complex conjugates for two indistin-

guishable particles and the index F (B) marks fermions (bosons), respectively. The
wave function symmetry of fermions leads to a sign change for a particle exchange
in a two particle wave function, while it does not for bosons. This difference leads
to a diversity in the particle statistics. Fermions follow the Fermi-Dirac distribution
fFD, while bosons obey Bose-Einstein statistics fBE.

fFD =
1

e(Ekin+V−µ)/kBT +1
fBE =

1
e(Ekin+V−µ)/kBT −1

(2.5)

Analog to the thermal gas, we can compute valuable quantities for a non-interacting
Bose and Fermi gas from the distribution functions. This includes the spatial den-
sity distribution and the total particle number. Especially the density distribution is
a central quantity, since all experimental results gained within this thesis are exclu-
sively derived from the density distribution. To obtain the density distribution we
again integrate the phase space distribution in the momentum space [60, 86] which
gives

nF(r) =−λ
−3
dB Li3/2

(
−e(µ−V (r))/kBT

)
nB(r) = λ

−3
dB Li3/2

(
e(µ−V (r))/kBT

)
.

(2.6)
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Here, Lil is the l-th order polylogarithm2 and nF(B) is the fermionic (bosonic) den-
sity distribution.
From the density distribution useful expressions for both particle classes in a har-
monic confinement will be derived in the following (see also ref. [86]).

Fermions

The first quantity to be derived for a non-interacting Fermi gas is the total particle
number in a harmonic confinement. To do so, we integrate the density distribution
of eq. (2.6) in the position space

N =
∫

nFdV =−
(

kBT
h̄ω̄

)3

Li3
(
−eβ µ

)
. (2.7)

Here, ω̄ = (ωxωyωz)
1/3 is the geometrical mean value of the trapping frequencies,

and N is the atom number. The relation between the chemical potential and the
particle number holds for T > 0.
In our experiments the gas is cooled from temperatures of a few hundred Kelvin to
close to zero3. Therefore, it is convenient to discuss a few limiting cases for a gas
of fermions in a harmonic confinement.
Initially, the pre-cooled gas4 follows the Maxwell Boltzmann distribution and the
particle density is given by eq. (2.3). Reducing the temperature the Fermi gas
enters the regime of quantum degeneracy, where the density distribution smoothly
changes from the classical to the T → 0 distribution. To quantify the degree of
quantum degeneracy the ratio of the absolute temperature and the Fermi tempera-
ture T/TF is essential. The smaller the ratio the larger the degree of quantum de-
generacy and the larger the influence of Fermi statistics in the system. The Fermi
temperature TF for a harmonic confinement is given by

TF =
EF

kB
=

h̄
kB

(ωxωyωz)
1/3 (6N)1/3 , (2.8)

where EF is the Fermi energy. EF is a central quantity since it sets the energy scale
of the system. It is given by the energy to which the particles fill up the three-
dimensional harmonic trap at T = 0. Another important quantity related to the
Fermi energy is the peak angular Fermi wavenumber kF (trap center) which sets
the scale of the momentum in the gas.

2Lil(z) = Γ(l)−1 ∫ ∞

0 dy yl−1/(ey/z− 1) is the l-th order polylogarithm for l 6= 0 and Γ(l) is the
Gamma function.

3In our case the typical temperatures range from about one microkelvin to a few tens of
nanokelvin.

4Typical temperatures at this stage range from about a millikelvin to a few microkelvin.
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kF =

√
2mEF

h̄
(2.9)

Since the thermodynamical properties of the gas are strongly depending on the
degree of degeneracy, we will discuss a few notable cases:

• T/TF� 1: classical gas, nF(r) follows a Gaussian density distribution, the
chemical potential5 µ < 0

• T/TF ≈ 0.6: crossover from thermal to degenerate quantum gas, nF(r) starts
to deviate from a Gaussian distribution and approaches the T = 0 distribu-
tion, the chemical potential µ ≈ 0 (see fig.2.1 d))

• T/TF� 1: degenerate Fermi gas, nF(r) is close to the T = 0 density distri-
bution, the chemical potential µ ≈ EF

• T/TF = 0: degenerate Fermi gas, nF(r) is given by eq. (2.10), the chemical
potential µ = EF

As described above, the density distribution of the cloud smoothly transforms from
a thermal to the T = 0 density distribution. At zero temperature the density distri-
bution is given by

nF(r) =
8N

π2RFxRFyRFz

[
max

(
1−

3

∑
i=1

x2
i

R2
Fi
,0

)]3/2

(2.10)

with the Thomas-Fermi radius RFi =
√

2EF
mω2

i
. The transition from high to zero tem-

perature regime is visualized by the density distributions in fig. 2.1 a)-c).
A widely used description of the trapped Fermi sgas is done in the framework of
the so called local density approximation (LDA). Within the LDA a trapped gas
is seen as a cluster of individual 3D homogeneous gas segments. Therefore, it is
useful to have a look on relevant quantities for such a uniform Fermi gas. In this
case kF,u reads

kF,u =
(
6π

2n
)1/3

. (2.11)

The local Fermi temperature is given by

TF,u =
h̄2

2mkB

(
6π

2n
)2/3

. (2.12)

5Please note, that the energy scale is set by EF . The chemical potential has to be compared to the
Fermi energy.
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Figure 2.1: Three dimensional density distribution of a Fermi gas (red solid line)
at a) T = 1.5TF, b) T = 0.4TF and c) T = 0. In each case the density
distribution for y = z = 0 is shown. For comparison in a) and b) a cor-
responding thermal distribution with width σx is drawn (dashed black
lines). For c) the density distribution is compared to a thermal distribu-
tion at T = 0.1TF (dashed black line). For temperatures below TF the
density distribution deviates from a Gaussian distribution. d) Shows
the chemical potential µ as a function of T/TF. The chemical potential
has a sign change at about T/TF ≈ 0.6 and approaches EF for T → 0.

Within the LDA the local density of the gas n(r), in combination with the global
temperature, gives the thermodynamical state of the cloud including quantities like
the local degree of degeneracy of the gas T/TF.

Bosons
With the two component interacting Fermi gas we are able to produce Feshbach
molecules/dimers of two fermions with opposite spin state in the vicinity of a mag-
netic Feshbach resonance (see sec. 2.3). The dimers show Bose-statistics in the so
called deep BEC regime. There, the dimer-dimer interaction is small and therefore
will be neglected in the following (weakly interacting case). In the next section I
will summarize a few properties of such a gas in a harmonic trap6.
For high temperatures, the bosonic gas follows eq. (2.3) and the total particle
number is given by

Nth =

(
kBT
h̄ω̄

)3

Li3
(

eβ µ

)
. (2.13)

Reducing the temperature T → 0, the bosonic nature of the dimers becomes visible.
Considering weak repulsive interaction, as in some of our experiments (see sec.
2.3), the gas can Bose condense for temperatures below the critical temperature
TC, where

6For a more detailed description of trapped bosonic gases see textbooks like [85] or the review
article [86].
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TC = 0.94 h̄ω̄ N1/3. (2.14)

Below this critical temperature the ground state of a harmonically trapped molec-
ular gas is occupied macroscopically. As for standard BECs the number of con-
densed molecules NC in a gas of N bosons is given by

NC = N
(

1− (T/TC)
3
)
. (2.15)

The transition to this state causes significant changes in the density distribution. A
BEC of repulsively interacting particles in the deep BEC regime can be described
with the time-independent Gross-Pitaevskii equation

µψ(r) =
(
− h̄2

2m
∇

2 +V (r)+g |ψ(r)|2
)

ψ(r). (2.16)

g = 4π h̄2add/m is the coupling constant, add is the scattering length (see sec. 2.3
for details) and the density is given by n = |ψ|2. Here, the particle interaction
is included in the framework of mean field theory, where particle interaction is
mediated by the contact potential gδ (r−r′). In this case r and r′ are the coordinates
of two colliding particles.
Considering expectation values, it can be shown that the kinetic term can be ne-
glected in the Gross-Pitaevskii equation. This is known as the Thomas Fermi ap-
proximation (for further details see [43, 84, 86]).
For interacting particles the density distribution of the condensed part nC is given
by

nC =
15NC

8πRBxRByRBz
max

(
1−

3

∑
i=1

x2
i

R2
Bi
,0

)
. (2.17)

Here, RBi =
√

2µB
Mω2

i
are the Thomas Fermi radii for the spatial directions i = x,y,z,

M = 2m is the mass of the bosonic dimers and µ is the chemical potential. Within
this approximation the chemical potential is given by

µ =
1
2

h̄ω̄

(
15NCadd

d̄

)2/5

. (2.18)

Here d̄ = (dxdydz)
1/3 =

√
h̄/(Mω̄) is the geometric mean of the harmonic oscil-

lator lengths, which are given by di =
√

h̄/(Mωi) with i = {x,y,z}. Using the
chemical potential we can compute the Thomas Fermi radii

RBi = di

√
ω̄

ωi

(
15NCadd

d̄

)1/5

. (2.19)
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For a cloud at 0 < T < TC we find a bimodal distribution with a condensed core
following eq. (2.17) and a thermal wing at the edges which follows eq. (2.3).
For comparison, a non-interacting condensate in a harmonic trap would follow
a Gaussian distribution, where the variance is given by the harmonic oscillator
length. This directly shows how crucial particle interaction is in such a gas is.
In the following section I will briefly discuss the impact of particle interaction on
ultracold gases.

2.2 Elastic particle scattering

Particle interaction plays a crucial role for the thermodynamical state of an ultra-
cold gas. In an interacting gas, the particles undergo a variety of collisional events.
As a starting point for a further description I will shortly summarize a few aspects
of scattering theory following refs. [85, 87, 88].
I start the discussion considering the elastic collision of two distinguishable parti-
cles in relative coordinates. The center-of-mass motion of the two objects is given
by a plane wave ψin ∝ eikr. The center-of-mass and the relative motion both obey
the Schrödinger equation. For colliding particles the wave function ψ is a superpo-
sition of an incoming plane wave, in the case of large interatomic separation, and
an outgoing spherical wave

ψ ∝ eikz + f (θ ,k)
eikr

r
. (2.20)

Here, we consider a collision along the z-direction. f is the scattering amplitude, k
is the angular wave number and θ is the collision angle. For spherical symmetric
interaction, we can obtain the scattering amplitude via partial wave expansion

f (θ ,k) =
1

2ik

∞

∑
l=0

(2l +1)
(

e2iδl(k)−1
)

Pl(cosθ). (2.21)

Here, l is the partial wave index equivalent to the quantum number of the orbital
angular momentum, δl(k) are the phase shifts of the outgoing waves and Pl are
Legendre polynomials.
The scattering amplitude can now be connected to the scattering cross section σ

via

dσ(k)
dΩ

= | f (θ ,k)|2 , (2.22)

with the solid angle Ω. With this, the scattering cross section can be computed in
the partial wave expansion, which yields
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σ(k) =
4π

k2

∞

∑
l=0

(2l +1)sin2
δl(k). (2.23)

In the case of small collision energies, which are given for ultracold collisions,
centrifugal barriers cannot be overcome. Therefore, for k→ 0 s-wave collisions
with l = 0 are contributing to the scattering amplitude solely and we get

f (k) =− a
1+ ika

. (2.24)

using eq. (2.21). Here, a is the s-wave scattering length

a = lim
k�1/r0

− tan(δ0)

k
(2.25)

and r0 is the range of the interaction potential. Inserting eq. (2.24) in eq. (2.22) we
obtain a cross section of

σ(k) =
4πa2

1+ k2a2 . (2.26)

For ka� 1, which is the case in the BEC regime (see sec. 2.5) of the Feshbach
resonance and low temperatures of a few microkelvin, we get

σ(k) = 4πa2 (2.27)

for two distinguishable particles. For a collision of two identical bosons, the scat-
tering amplitudes of the particles add up and the scattering cross section reads

σ(k)id,B = 8πa2. (2.28)

For identical fermions the s-wave scattering cross section cancels, i.e. σ(k)id,F = 0,
in agreement with the Pauli principle. The collision of two identical fermions is
limited to partial waves with odd numbers exclusively. However, close to quantum
degeneracy collisions with l > 0 are absent and a gas of fermions in a single state
is essentially non-interacting due to the centrifugal barrier. This limitation can be
overcome in collisions between atoms in different internal states, which is the case
in a mixture of fermions in two different spin states. In such a gas s-wave collisions
are possible.
Therefore, in our experiments we use a balanced gas of 6Li-atoms, i.e. an incoher-
ent 50:50 mixture of lithium atoms in the lowest two hyperfine states. The particle
interaction for fermions in opposite spin states can be tuned by means of a mag-
netic Feshbach resonance. A few basic concepts of such resonances in two particle
collisions will be introduced in the next section.
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2.3 Feshbach resonances and the special case of 6Li

In recent years magnetic Feshbach resonances have turned out to be an ideal tool to
tune the particle interaction in two-body collisions in the ultracold regime. In the
experiments presented in this thesis we make use of this tool as well. Therefore, I
will give a brief summary on the magnetic Feshbach resonances using a few basic
concepts. The description used here is based on [5, 85, 89].
At a Feshbach resonance the collision of two particles with a collision energy E
can be described in the framework of a two-channel model. To do so, we consider
two molecular potential curves (see fig. 2.2). The first one describes the collision
of free particles for large internuclear distances R which is denoted by Vbg and ref-
ereed to as the open or entrance channel. The second channel is the so called closed
channel, which describes a state addressed within the Feshbach association. Here,
the potential curve Vc for two neutral atoms is given by the van der Waals poten-
tial with Vc ∝ R−6. For a finite coupling between these two channels a resonance
of continuum and bound states can be found. There, the asymptote of the open
channel (for small E) approaches a bound state Ec in the closed channel.
In the case of a magnetic Feshbach resonance the energy offset between the two
channels is tuned by an offset magnetic field. This is possible since the magnetic
moments of the particles in the two channels typically differ by a value δ µ .
From a collisional point of view the magnetic field influences an appearing phase
shift (see previous section) of the atomic wave function at the s-wave collision.
This effect is quantified by the s-wave scattering length a. According to ref. [90]
the magnetic field B and the s-wave scattering length a are connected via

a = abg

(
1− ∆

B−B0

)
. (2.29)

Here, abg is the background scattering length, ∆ is the width and B0 the position
of the resonance. The width is given by the zero crossing of the scattering length
with respect to the magnetic field. The sign of the scattering length indicates if an
interaction is attractive (a < 0) or repulsive (a > 0). Additionally, the statistical
properties of the gas change with the sign of the scattering length. The regime with
a > 0 is called the BEC side of the resonance, where, in the case of 6Li, bosonic
dimers of two atoms in opposite spin states can be produced. This is in contrast to
a < 0, the so called BCS7 side, where Cooper pairs8 can be produced.
We use this feature in the experiments to produce bosonic molecules of two atoms
in the most weakly bound state of the relevant molecular potential (Feshbach mol-

7BCS: Bardeen-Cooper-Schrieffer
8This is only fully true in the deep BCS regime of a→ 0−. Close to resonance the pairing mech-

anism is more complicated (see sec. 2.5).
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a)

b)

Figure 2.2: Two channel description of a magnetic Feshbach resonance. a) En-
trance/open and closed channel Vbg and Vc respectively, as a function
of the internuclear distance R. The collision energy of two particles
is close to the asymptote of the open channel in the case of ultracold
collisions (E ≈ 0). If the asymptote and a bound state with energy Ec
approach each other, the colliding particles can be transferred into a
bound state within the closed channel, in case of non-vanishing cou-
pling of the channels. b) The relative energy of the two channels and
the scattering length can be tuned via an offset magnetic field (see [90]).
The upper curve shows the s-wave scattering length a as a function of
B in the vicinity of the resonance at B0 (see eq. (2.29)). The lower
graph shows the universal connection of the binding energy Eb with the
B-field (see eq. (2.30)). Picture taken from [5].
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Figure 2.3: Feshbach resonance of 6Li. At high magnetic field the two lowest hy-
perfine states split into six states marked by the indices 1 to 6 as given
in fig. 2.4 (see also sec. 2.4). a) Scattering length as a function of the
B-field for the s-wave collision of particles in the |1〉 and |2〉 (index
12), the |2〉 and |3〉 (index 23), and the |1〉 and |3〉 (index 13) states
(data taken from ref. [91]). b) Scattering length to the |12〉 collision
in the vicinity of the broad Feshbach resonance (data taken from ref.
[91]). For comparison the universal relation of eq. (2.29) is shown. It
deviates from the measured values for |B−B0|& ∆B.

ecule). The binding energy of a Feshbach dimer shows a strong magnetic field
dependence and can be approximated by the universal relation

Eb =−
h̄2

2µa2 (2.30)

in the vicinity of the resonance. Here, the reduced mass µ = m1m2/(m1 +m2),
with mi being the masses of the colliding particles, is introduced. In our case it
reads µ = m2, since m1 = m2 = m.
Specifically, we use the broad magnetic Feshbach resonance of 6Li (see fig. 2.3)
located at B0 = 832.2G, with ∆ = −262.3G and abg = −1582a0 for particles in
the states |1〉 and |2〉 [91]. Here, a0 is the Bohr radius.
On the deeper BEC side of the resonance, where a→+ 0, the binding energy starts
to deviate from eq. (2.30). Introducing corrections for the potential of the closed
channel the binding energy can be computed using [92, 93]

Eb =−
h̄2

m(a− ā)2

(
1+2.92

ā
a− ā

−0.95
ā2

(a− ā)2

)
. (2.31)

Here ā = 29.9a0 is the characteristic length scale of the van der Waals potential.
It is important to note that the binding energy is only related to the bound states
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in the two-body picture. This implies that the binding energy of two atoms drops
to zero at the resonance and particles are in continuum states (neglecting trapping
potentials) for a < 0. This is true for the association of diatomic molecules, e.g.
produced using a magnetic field ramp across the resonance (see e.g. [5]).
However, in the case of fermionic atoms and for T � TF a Fermi gas shows a
non-vanishing binding energy for a < 0 (see [94]). The appearance of bound states
close and above the Feshbach resonance (B≈ B0 and B > B0) is a consequence of
many-body effects. This includes preformed pairs close to resonance for T > TC,
as well as Cooper pairing which occurs below TC in the BCS regime.

2.4 Lithium at high magnetic field

Most of the experiments reported in this thesis are performed using strongly inter-
acting 6Li atoms. The lithium atoms are prepared in the two lowest hyperfine states
of the electronic ground state. This state is doubly degenerate (with F = 1/2) and
splits to the |1〉= |22S,mF =−1/2〉 and |2〉= |22S,mF = 1/2〉 in the presence of
an external magnetic field.
To achieve strong particle interaction the external B-field is tuned to the broad mag-
netic Feshbach resonance at 832.2G. For 6Li, which has a small nuclear charge,
magnetic fields B & 100G have notable influence on the coupling of electronic and
nuclear spins. At such fields pure hyperfine coupling does not describe the behav-
ior of the lithium atoms properly anymore, such that F is no longer a good quantum
number and the states are defined by the total electronic angular momentum quan-
tum number J and the nuclear spin quantum number I. This regime is called the
Back-Goudsmit regime or the Paschen-Back regime of the hyperfine states. The
term scheme of the electronic ground state sublevels in this regime can be com-
puted using the Breit-Rabi formula [95, 96], valid for J = 1/2

EF=I±1/2 =−
∆E0

4(I +1/2)
+mFgIµIB±∆E0/2

(
1+

4mF

2I +1
x+ x2

)1/2

. (2.32)

Here ∆E0 = 228.2MHz× h is the hyperfine splitting (HFS) at B = 0, mF is the
projection on the quantization axis, gI (gJ) is the g-factor of the nucleus (spin-orbit
coupling), µB is the Bohr magneton and x = (gJµB−gIµI)/∆E0. 6Li has I = 1
which leads to a sixfold splitting of the 22S1/2 state (see fig. 2.4).
For small B� 100G the atoms are in the Zeeman regime, and the energy splitting
of the hyperfine states increases almost linearly with the magnetic field. At larger
B-field, the Back-Goudsmit regime is entered, where the nucleus and the atomic
shell decouple. At fields close to the Feshbach resonance |2〉 becomes a high field
and |4〉 a low field seeking state, respectively. In our case, the particles are loaded
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Figure 2.4: Term scheme of the 22S1/2 states from zero to high magnetic field.
We find a sixfold splitting of the electronic ground state labelled from
bottom to top by |1〉− |6〉.

to the |1〉 , |2〉 states, which means that all particles are high field seekers. This
simplifies the particle trapping especially when offset magnetic fields are present.
Experimentally, we use this property to produce a trapping potential in two spatial
directions for the particles using a bias magnetic field9.

2.5 Phase diagram in the vicinity of the Feshbach
resonance

In our experiments we prepare a gas of lithium atoms in the two lowest hyperfine
states. By tuning the particle interaction by means of the broad magnetic Feshbach
resonance we find different phases. For strong repulsive interaction and low tem-
peratures Feshbach molecules form, while for strong attractive interaction below a
critical temperature Cooper pairs are produced.
The phase diagram of such a gas is illustrated in fig. 2.5. The temperature axis
in the diagram is given in units of the Fermi temperature T/TF, which scales the
thermal energy to the natural energy scale of the Fermi gas EF = kBTF . On the
horizontal axis the particle interaction is drawn. It is given by (kFa)−1, where the
scattering length is scaled by the particle density or interparticle distance10. For

9According to Wing’s theorem a local field maximum in free space is not possible [97].
10According to eq. (2.11) k f ∝ n1/3 and therefore linearly depending on the interparticle distance
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simplicity, I will discuss the different regions of the phase diagram separately in
the following.

From the BEC limit to the crossover (1 . (kFa)−1 < ∞)

The description starts on the deep BEC side or BEC limit, where (kFa)−1� 1. In
this regime diatomic molecules form by exothermic three-body collisions. In the
three-body process two of the colliding particles (in opposite spin states) form a
molecule, while the third particle assures energy and momentum conservation. In
our case, either most weakly [100] |X1Σ+

g ,v = 38〉 or more deeply bound dimers
(here: |X1Σ+

g ,v < 38〉) can be produced. Here, v is the vibrational quantum num-
ber of the molecular potential. However, only for the most weakly bound molecules
the released energy is small enough that the associated molecules remain trapped.
The molecule fraction in the gas is highly temperature dependent (see refs. [98,
99]). The range where dimers can be found is sketched in fig. 2.5. For this, the
temperature for a molecule contribution of 50% is drawn (see e.g. [86, 101]).
The Feshbach dimers can interact via elastic scattering with both, unbound atoms
and other dimers. The collision is characterized by the atom-dimer aad and the
dimer-dimer scattering length add for a large internuclear distance, respectively
[42, 43, 102, 103]

aad = 1.18a add = 0.6a. (2.33)

Besides elastic scattering, a gas of Feshbach dimers can undergo inelastic colli-
sions. Since the dimers are produced in the most weakly bound state, a collision
of a dimer with a free atom or another dimer can cause a decay to a deeper bound
state. In the case of 6Li, such a relaxation features release energies on the order
of a few Kelvin. This energy is orders of magnitude larger than the typical trap
depth in our (or typical atomic) experiments and therefore inelastic collisions lead
to particle losses. The rate constants of such a relaxation are given by [42, 43, 104]

Γad =C
h̄re

m

(
a
re

)−3.33

Γdd =C
h̄re

m

(
a
re

)−2.55

(2.34)

with a non-universal constant C which specifically depends on the properties of
the species, and the characteristic range of the potential re. For 6Li the constant
is C ≈ 10−15 [88]. Equation (2.34) shows that a gas of dimers in the BEC regime
has only limited stability. This complicates the production of long-lived dimers
especially at high phase space densities. At low temperatures, such as T � TF ,
the molecule contribution in the gas approaches unity11 and the molecule density

11Molecule contribution: 2M/N, where M is the number of molecules and N is the total number of
atoms in both spin states. The factor 2 accounts for the two particles forming the dimer.
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Figure 2.5: Sketch of the phase diagram of a two component gas of 6Li atoms
in the vicinity of a Feshbach resonance. The temperature is given in
units of the Fermi temperature. The horizontal axis is the reciprocal
value of the dimensionless quantity kFa, defining the particle interac-
tion. (kFa)−1 > 0 corresponds to the BEC side of the resonance. T ∗

(blue curve) marks the temperature where 50% of all possible dimers
are formed on the BEC side (see also refs. [98, 99]), while T ∗ ap-
proaches the critical temperature TC (green curve) on the BCS side.
Close to resonance T ∗ interpolates between the regimes. Close to uni-
tarity ((kFa)−1 = 0) the thermodynamics of the gas change and pairs
are no longer pure two-body objects. The gas is strongly influenced by
the fermionic nature of the particles and many body effects contribute
to the pairing mechanism. (kFa)−1 < 0 represents the BCS side. There,
pairing is mainly a many body phenomenon. In the limiting case of
(kFa)−1�−1 the pairs are Cooper pairs.
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increases. The loss rate scales with the molecule density squared such that the
particle losses in a harmonically confined gas above TC scale as

Ṁ =−(4π)−3/2
Γdd

M2

σxσyσz
. (2.35)

Here, σi are the widths (standard deviations) of the thermal cloud in the three spa-
tial directions.
However, approaching the crossover regime (kFa)−1≈ 1 the dimers are more weakly
bound such that the fermionic nature of the particle plays a role. With this, the Pauli
exclusion principle leads to a suppression of relaxation collisions [40]. Close to the
crossover the lifetime of the gas is on the order of 10s or more, which allows us to
cool the gas to temperatures T < TC and to produce a molecular BEC (mBEC).

The crossover and unitarity (−1 < (kFa)−1 < 1)

Approaching the crossover regime from the BEC side, the character of the gas
changes. The gas smoothly converts from an ensemble of bosonic dimers for tem-
peratures below TC to a Fermi liquid on the BCS side. In the crossover, properties
of both regimes can be found in the gas. Specifically, on the BCS side the singlet
contribution of a pair is non-vanishing [105] which is typically the case for di-
atomic molecules on the BEC side. Equally, the Tan’s contact, which is a measure
for short range correlations, does not drop to zero at resonance as well [106]. This
is in contrast to the BCS type of pairing where particles with opposite momentum
are correlated.
On the other side, a Fermi liquid behavior of the gas can be found on the BEC side
as well. This has been investigated with photoemission spectroscopy (PES) from
which the dispersion relation of the ensemble can be obtained [106]. A Fermi liq-
uid typically shows a sharp quadratic dispersion (quasiparticle dispersion), while a
Bose gas shows an incoherent spectrum. Using PES measurements indications for
a quasiparticle dispersion can be found on the BEC side of the resonance showing
the Fermi character of the gas even for a > 0.
This implies how non-trivial the state of the gas in the intermediate regime is. To
describe the properties several studies have been performed to describe the phases
of the gas. A special focus lies on the resonance where the scattering length di-
verges and the gas shows universal behavior. To characterize the thermodynamical
state of the gas on the resonance the equation of state has been measured [107,
108].
However, so far a full description of the gas in the crossover is absent. To add
valuable information to the phase diagram, we have performed pair fraction mea-
surements in the crossover regime to map out the thermal/chemical equilibrium of
the gas in this intermediate regime (for more details see appendix A.2 or [99]). In
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this framework we were able to show that a classical statistics description of the
atom-molecule equilibrium holds for the BEC regime and describes our data even
in the vicinity of the resonance (BEC side) with reasonable accuracy.

From the crossover to the BCS regime (−∞ < (kFa)−1 .−1)
In the BCS regime Fermi statistics dominate and the normal state of the gas can
be well described within the Fermi liquid theory [106]. Additionally, the Fermi
gas character has crucial consequences for the pairing mechanism. In this regime
pairing appears only below the critical temperature T < TC, where Cooper pairs
establish [85, 86, 103] and the gas can be described within BCS theory. The pairs
consist of two fermions in the |1〉 and |2〉 state and have opposite momentum. In
this state the gas shows an excitation gap ∆ (see e.g. ref. [86]) which reads

∆≈ 8
e2 e−π/2kF|a|. (2.36)

The superfluid transition temperature can be computed using upper gap equation
and the number equation as in BCS theory12. With this the superfluid transition
temperature reads,

TC ≈
1.93
kBπ

EF exp
(

π

2kF|a|

)
. (2.37)

However, the pairs do not exclusively show the attributes of many-body pairing.
As mentioned in previous subsection even for 1/(kFa)<−1 the pairs show a non-
vanishing closed channel contribution [105, 109] similar as for diatomic molecules
in the BEC regime.

2.6 Sound excitation in a partially superfluid gas in
the vicinity of a Feshbach resonance

In the previous section I have introduced the phase diagram of a two component
Fermi gas in the vicinity of a broad magnetic Feshbach resonance. Within the
description, it has been mentioned that a superfluid phase can be found throughout
the resonance for T < TC.
The superfluid phase in the vicinity of the broad Feshbach resonance is exceptional
since two different types of superfluids can be found across the resonance. We find
a BEC of molecules for non-resonant repulsive interaction on one side and a BCS
type superfluid in the BCS regime on the other side. Especially, the intermediate
regime is of interest since the gas undergoes a crossover from one type to the other.

12For more information on BCS type pairing in ultracold Fermi gases see e.g. [86, 94].
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To shed additional light on this regime, we study the superfluidity in this regime
within this work.
One way to do this is to perform excitation experiments. The response of the gas
on the perturbation gives deeper insight into the thermodynamics of the system.
In the past years a multitude of studies on the excitation of superfluid gases have
been performed using different types of excitation protocols. This includes studies
on vortex excitation [60], laser stirring [110], Bragg spectroscopy [111–114], and
experiments on second sound [53].
Especially, sound experiments are also in the focus of this work (see also sec.
2.5). One reason for this is the fact that second sound, an entropy wave, gives
access to the local superfluid density of the gas. Within this thesis a study on sound
propagation has been carried out in order to investigate the superfluid phase of a
Fermi gas across the Feshbach resonance.
In our experiment we use a local perturbation to excite first and second sound
modes. First sound is the well known pressure wave, which propagates at constant
entropy, while second sound is an entropy wave propagating at constant pressure.
Measuring the two sound modes enables us in principle to reconstruct the local
superfluid density of a partially superfluid gas in a harmonic trap.
In the following lines I will summarize a few basic thermodynamic equations rele-
vant to calculate the sound velocities. The full description can be found e.g. in ref.
[85]. The theoretical description to the second sound can be done using Landau’s
two-fluid model (the following summary is based on refs. [82, 85, 115]). In the
two fluid model we assume that the gas consists of a super- and normal-fluid part.
Under this assumption classical thermodynamical relations for the two components
can be derived. For this, I will consider a frictionless flow and the absence of an
external potential.
In this context, the first relevant equation is the continuity relation

∂ρ

∂ t
+∇j = 0, (2.38)

where ρ = ρs +ρn is the mass density, j = nsvs +nnvn the particle current density,
and ni and vi with i = {s,n} are the densities and velocities in the superfluid and
normal fluid part, respectively. The second relevant quantity is the particle current
density which is connected to the pressure p via

∂ j
∂ t

=−∇p. (2.39)

From equations (2.38) and (2.39) a wave equation can be obtained

∂ 2ρ

∂ 2t
−∇

2 p = 0. (2.40)

Another important eq. is the equation of motion for the superfluid part. For an
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absent external potential, and neglecting non-linear contributions the superfluid
velocity is given by the chemical potential µ via

m∂vs
∂ t

=−∇µ (2.41)

with the particle mass m.
This very generic description of the gas (including Maxwell relations) is sufficient
to calculate the sound velocity in the two component gas for small perturbations.
There, the variations in the density δρ , pressure δ p, temperature δT , and entropy
δ s are small and resulting modulations propagate as plane waves ei(kr−ωt). Using

c2
T =

(
∂ p
∂ρ

)
T
, c2

2 =
ρs

ρn

s2T
cV

, cV = T
(

∂ s
∂T

)
ρ

, c2
3 =

(
∂ s
∂ρ

)2

T

ρ2T
cV

(2.42)

the sound speeds is calculated. Here, cV is the heat capacity per unit mass, s =
S/(Nm) is the entropy per particle, where the total entropy is S, and N is the particle
number. The sound speeds reads,

u2
1/2 =

1
2
(
c2

T + c2
2 + c2

3
)
±
[

1
4
(
c2

T + c2
2 + c2

3
)2− c2

T c2
2

]1/2

. (2.43)

Here u1 is the speed of the first and u2 the speed of the second sound, respectively.
However, this description uses rather abstract thermodynamical relations. Since
we focus on the crossover from the BEC to the BCS regime in the experiments,
it is convenient to evaluate eq. 2.43 in the limiting cases. In the following, I will
summarize the results of corresponding calculations. A detailed description of the
sound speeds in the BEC, BCS, and unitary regimes are presented in sec. 6 (see
also ref. [82]).
For a BEC close to zero temperature and with kBT � gn, the sound speeds are
given by13

u1 =

√
gρ

m2 , u2 =

√
gρs

3m2 . (2.44)

Equation (2.44) shows that both sound modes are only depending on the local den-
sities (ρs and ρn), which makes sound excitation measurements ideal to investigate
the state of the gas and its thermodynamical properties. For a better handling equa-
tion (2.44) can be written in Fermi gas related quantities

13Please note that the description presented in the following lines is only valid for a homogeneous
gas.
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u1 = vF

√
kFa
10π

, u2 = vF

√
kFa
30π

. (2.45)

Here, the Fermi velocity vF = h̄kF/m is used.
In the BCS regime, we combine hydrodynamics and the BCS theory, which gives

u1 =
vF√

3

√
1+

2kFa
π

+
88−16ln(2)

15π2 (kFa)2. u2 =

√
3

2
kBT
EF

vF (2.46)

Especially the result for the second sound velocity is remarkable, since it scales
with the temperature of the gas and drops to zero for T → 0. This is in contrast to
the BEC limit, where the speed of second sound (for fixed particle numbers) has
its maximum for T → 0.
At unitarity the speeds of sound can be estimated using quantum Monte Carlo
calculations for the first sound and considering BCS theory for the second sound.
Using such an approach the second sound is given by the result of (2.46) and the
first sound reads [82]

u1 ≈ 0.37vF . (2.47)
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3 Experimental setup

In order to investigate degenerate fermionic quantum gases and many-body physics
in optical lattices we started to set up a new experiment in the course of my thesis.
We decided to build an apparatus with 6Li [116, 117]. The chosen species provides
a broad magnetic Feshbach resonance [91, 118] which makes the particle interac-
tion easy to control. Moreover, the chosen species facilitates extensive studies on
both, long-lived bosonic Feshbach dimers [8, 13, 14] and degenerate Fermi gases
[94, 119–121]. Our assembly follows the setups in Innsbruck and Heidelberg (see
refs. [116, 117]) which have proven to be reliable, robust, and simple in the basic
conception [88]. In the following chapter I will introduce the setup in Ulm and will
describe the main components of our experiment.
More and detailed information on implemented devices can also be found in sev-
eral master’s theses [122–126] and in the PhD thesis of Thomas Paintner (under
preparation).

3.1 Vacuum system
In general, experiments with degenerate quantum gases are performed in ultra high
vacuum (UHV). This is needed to enable cooling and trapping of atoms which are
prerequisites to reach the ultracold regime. Without the isolation from ambient
environmental conditions a pre-cooled trapped gas would be unstable due to colli-
sions with room temperature ambient gas. At UHV the lifetime of an ultracold gas
can be easily extended to minutes, which is enough to perform experiments in the
regime of quantum degeneracy. In fig. 3.1 our realization of such an UHV system
is illustrated.
The setup has two main parts: the oven-chamber and the experimental chamber.
The oven-chamber (marked by the red text) consists of the oven loaded with en-
riched1 6Li, a titanium sublimation pump (TiSub) inside a cylindrical chamber and
an ion getter pump (IGP) with a pump volume of 40 l/s (Agilent VacIon Plus 40).
In the oven-chamber we reach a background pressure of poven = 7.0×10−10 mbar
(measured via the current at the IGP) which is too high for sufficient lifetimes of
cooled and trapped atoms. Therefore, the initial trapping of the pre-cooled particles
is done in the experimental chamber where the background pressure is roughly two
to three orders of magnitude lower as in the oven-chamber (blue text in fig. 3.1).

1Here, the enriched lithium consists of 95 atomic percent 6Li and about 5 atomic percent 7Li.
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Figure 3.1: Experimental setup. a) Drawing of the setup. The system consists
of two parts, the oven-chamber (red text color) and the experimental
chamber (blue text color). The two parts are connected by a differential
pumping tube (enclosed by the Zeeman slower). Detailed descriptions
of the sub-parts can be found in the text. b) Photography of the real
system. The perspective matches the perspective of the drawing in a).
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glass cell

coil system
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Figure 3.2: Glass cell and coil system. Three quarter section view of the coil sys-
tem around the glass cell (for details see sec. 3.4). A high resolution
objective is placed about 1mm below the glass cell.

The experimental chamber is connected via a gate valve and a differential pumping
tube (enclosed by the Zeeman slower in fig. 3.1) to the oven-chamber. This type
of connection has two advantages. First, the valve enables us to open the oven-
chamber without venting the experimental chamber, e.g. in order to refill the oven
with lithium. Second, the differential pumping tube provides a pressure gradient
of up to three orders of magnitude between experimental and oven-chamber. This
way the experimental chamber can be pumped to pexp ≈ 10−12 mbar using a con-
tinuously activated IGP with a pump volume of 150 l/s (Agilent VacIon Plus 150).
This configuration facilitates lifetimes on the order of minutes for trapped atoms.

The experimental chamber consists of the MOT chamber, which is a spherical oc-
tagon from Kimball physics (MCF600-SphOct-F2C8) with view ports from Torr
Scientific (VPZ38QWAR-LN), a glass cell of Hellma Analytics attached to the oc-
tagon (see fig. 3.2), a TiSub pump in a cylindrical chamber, and an IGP. In the
running experiment the atoms are pre-cooled in the Zeeman slower and are trapped
in the MOT chamber. For experiments, the atoms are transported to the glass cell
subsequently (see fig. 3.2). The glass cell is used as a science chamber and provides
excellent optical access. With this, we were able to implement a high-resolution
imaging system outside the vacuum (see sec. 3.7). For the control of the scatter-
ing length a (particle interaction) and to produce field gradients, the glass cell is
surrounded by a set of magnetic field coils, such as the Feshbach coils and several
offset coils (coil parameters can be found in section 3.4).
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3.2 Control system
Our experiment is designed to provide continuous operation and a centralized con-
trol of all experimental devices. To do so, we implemented an ADwin-Pro-II of
Jäger Messtechnik (ADwin) as the main control unit of the setup. It consists
of a 19′′ rack with a 300MHz TigerSharc ADSP-TS101S (T11) main processor
and multiple slide-modules. Alongside, storing and managing of experimental se-
quences the control unit allows us to send digital and analog signals to external
devices (see fig. 3.3) using the additional modules. The latter include four analog
output cards (Pro II-AOut-8/16-B), two digital output cards (DIO-32), an exter-
nal co-processor card (Pro II-DIO-32-TiCo) with a 32-Bit digital output and two
multi-input-output cards2 (MIO, Pro II-MIO-4).
To control the experiment remotely, sequences are programmed on an external PC
using a NI LabVIEW based User-Interface. Once an experimental sequence is pro-
grammed as an array of commands and execution times, the input is transferred to
the ADwin unit. Within an experimental cycle (run) the main processor of the con-
trol unit distributes the commands to the slide-modules which send the demanded
signals at the demanded time. This includes analog set values (e.g. current con-
trol of power supplies), trigger signals (e.g. camera triggers) and the control of
external devices via a bus system (e.g. direct-digital-synthesizers). The time res-
olution in the sequence lists is limited to 10µs and is mainly given by the main
processor-clock.
The additional MIO cards include a co-processor and are implemented to act as
digital PID (proportional-integral-differential) controllers for the intensity stabi-
lization of laser sources and the current control of coils. These cards convert the
analog process values via ADC3, calculates the controller output on the MIO pro-
cessor and sends the signals to the device using a DAC. One MIO card includes
four individual channels (here: four PID controllers) evaluated serially using mul-
tiplexing. The latter limits the control speed to 40kHz.
Due to the large number of connections of the control system to external devices,
the implementation of a centralized control unit can lead to ground loops disturbing
the system. To avoid this, we make use of opto-couplers or inductive coupling.

3.3 Laser systems for cooling and MOT
The laser sources providing the light for laser cooling and magnetooptical trapping
have to fulfill a few requirements. The emitted light has to be single longitudinal
mode, has to be stabilized close to the cooling transition of 6Li (here: D2-Line)
and has to provide enough laser power for a homogeneous restoring force for the

2Multi-input-output cards provide both - digital or analog signals.
3DAC: digital-to-analog converter, ADC: analog-to-digital converter
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Figure 3.3: Control system of the lithium experiment. The heart of the control unit
is the ADwin-Pro II and its slide modules. Experimental sequences
are programmed on an external PC and sent to the ADwin. The com-
mands are distributed to the modules which send the signals to external
devices. The isolation of the ADwin and the external devices avoids
ground loops. The starting point of individual experimental runs is
synchronized to the mains supply via a line trigger.

particles within the cooling and trapping schemes. In this context, the laser power
is limiting the efficiency of the laser cooling. During laser cooling a single atom
has to scatter a few ten thousand photons during propagation from the oven to the
steel chamber to be captured in a MOT. For sufficient MOT trapping/cooling the
cooling beam intensity has to be large compared to the saturation intensity Isat of
the cooling transition4.
To fulfill upper requirements we have chosen grating stabilized diode lasers of
Toptica Photonics (DL pro) amplified by tapered amplifiers (TA pro, BoosTA) as
light sources. The grating stabilized lasers provide single mode operation, narrow
short-term linewidths < 200kHz and can be tuned by means of the grating angle,
diode current and diode temperature. To stabilize the light sources with respect to
optical transitions we use a master laser system as a frequency reference.
The master laser is a grating stabilized diode laser which is frequency locked to the
crossover peak (see fig. 3.4) of the |22S1/2,F = 1/2〉 → |22P3/2〉 and
|22S1/2,F = 3/2〉→ |22P3/2〉 transitions using frequency modulation (FM) satura-
tion spectroscopy (see fig. 3.5 (red path) or [122, 124]). All other laser sources are
stabilized with respect to the master laser frequency using beat note stabilization
of the mode-locked lasers (BNL) (see [122]). This includes the MOT light source

4In our case we use the D2 line of 6Li with a saturation intensity of Isat = 2.54mW/cm2.
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Figure 3.4: 6Li term scheme (relative distances are not to scale). The transition
frequencies are taken from [127]. All other values are taken from [95].
Please note that the hyperfine splitting of the 22P3/2 state is not resolved
in the laser cooling since it is smaller than the natural linewidth of γ =
2π×5.87MHz. The ai denote hyperfine constants.

and an additional grating stabilized diode laser used for particle imaging.
To produce the required laser power for the laser cooling and the magnetooptical
trapping (green path in fig. 3.5), the diode laser beam in the TApro (≈ 35mW) is
guided to a tapered amplifier leading to an output power of 500mW. For laser and
MOT cooling, the light of the TApro is split into two paths to produce light resonant
with the |22S1/2,F = 1/2〉 → |22P3/2〉 (cooler) and |22S1/2,F = 3/2〉 → |22P3/2〉
(repumper) transitions. This is needed to avoid de-pumping of one of the two
ground states and is therefore essential to assure a closed cooling cycle. Since
the branching ratio of the two transitions is unity, the beam power is distributed
equally.
The two beams are overlaid and guided to three single mode polarization main-
taining (PM) fibers to transport the light to the vacuum system and to a second
TA used to post-amplify the light for laser cooling. The laser cooling light is fre-
quency shifted by an acousto-optical-modulator (AOM) and coupled to a PM fiber,
subsequently.
The separate imaging laser is used for absorption and fluorescence detection5. The
BNL provides an offset stabilization of up to ≈ 1.5GHz, limited by the built-in

5The light is again transported to the vauum setup by a PM fiber.
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Figure 3.5: Laser cooling setup (adapted from [122, 124] and used with permission
from the authors). The master laser (red path) is stabilized via FM sat-
uration spectroscopy (see text). For laser cooling and MOT we use two
tapered amplifiers (green path). The seed laser is frequency stabilized
with respect to the master laser using the beat note stabilization of the
mode-locked lasers (BNL) (see [122]). For imaging of ultracold clouds
a separate laser source is set up (blue path), which is stabilized via BNL
to the atomic transitions.
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locking electronics. This way, frequency shifts of the optical transitions of a few
hundred MHz can be compensated. This is necessary for particle detection at high
magnetic field where the optical transitions are shifted.

3.4 Coil systems
Our setup includes a multitude of individual coils and coil systems. These are used
to produce magnetic fields for the MOT or to tune the scattering length/particle
interaction by means of a magnetic Feshbach resonance. This section is devoted to
give an overview over all implemented coil systems. Detailed information about
the coil properties can be found in several Master’s theses [123–126].
Following the timeline of a typical experimental run, we start this overview with
the Zeeman slower coils (ZSC) relevant for the initial laser cooling [84, 128]. The
Zeeman slower coil system consists of nine individual coils (see fig. 3.6) with de-
creasing winding number [123, 124]. In operation the coil configuration produces
a magnetic field of

BZS ≈ B0

√
1− y

LZS
. (3.1)

Here, the atomic beam propagates along the y axis, y = 0 is the position of the
first coil where the magnetic field is B0 ≈ 850G and LZS = 47cm is the length of
the coil system. In combination with a counterpropagating laser cooling beam, the
Zeeman slower provides an almost constant deceleration of ade ≈ 8.4× 105 m/s2

for atoms travelling through the ZSC. The pre-cooled particles are trapped in the
MOT (see e.g. [84] for more information) subsequently, where σ− polarized light
is combined with a magnetic quadrupole field produced by a pair of coils (MOTC)
in Anti-Helmholtz (AH) configuration. There, the beams and the magnetic field
produce a restoring force in both, the position and momentum space. The force is
given by

FMOT =−αv − αβ

k
xi. (3.2)

Here, α = 4h̄k2 I
Isat

2∆/Γ

(1+(2∆/Γ)2)
2 , β = gµB

h̄
dB
dxi

is the damping coefficient, k is the an-

gular wavenumber of the light, I is the beam intensity, Isat is the saturation intensity
of the cooling transition, ∆ is the detuning from the cooling transition, Γ is the nat-
ural linewidth of the transition, g = gJ ' 1 is the g-factor, µB is the Bohr magneton,
and v is the velocity [84].
For further cooling the atoms are loaded from the MOT into an optical dipole trap
(see sec. 3.5). To do so, the trap centers are overlaid by moving the MOT with
respect to the dipole trap by using the offset coils (MOTG) (see fig. 3.6).
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Figure 3.6: Top view presentation of the vacuum system to display all coil systems.
The Zeeman slower coil system consists of nine individual coils. Coil
one to eight are driven by one power supply and coil nine is driven
independently. The MOT coil system includes additional offset coils,
used to shift the zero crossing of the magnetic field. The Feshbach
coils produce bias magnetic fields used to tune the particle interaction.
The coordinate system defined in the figure is used throughout this
thesis.
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In the dipole trap evaporative cooling is applied6. The efficiency of evaporative
cooling is highly depending on the particle interaction. A strong particle interaction
leads to a fast thermalization in the residual gas after an evaporation step and yields
a favorable particle loss to cooling-rate-ratio. To tune the particle interaction we
use a broad magnetic Feshbach resonance [91] at about 832G. This requires a
stabilized offset magnetic field, which we produce with water cooled hollow wire
coils (FBC=Feshbach coils) in Helmholtz configuration (HH) both, at the steel
chamber and at the glass cell [125, 126]. The hollow wires at the steel chamber,
with an inner (core) cross section of 2.4×2.4mm2, enable high power operation at
constant currents of up to 200A and a low steady state temperature of < 70◦C.
However, most of our experiments are performed in the glass cell and therefore
evaporative cooling is done there. Therefore, we use a similar coil system placed
around the glass cell. Here, we use hollow wire coils with an inner (core) cross
section of 4× 4mm2. Due to the increased inner diameter the cooling capacity
is higher as for the coils at the steel chamber. With this we reach a steady state
temperature of about ≈ 30◦C for a current of 200A.
In addition to the FBC we placed another two pairs of coils around the glass cell.
The vertical and the horizontal gradient coils VGC and HGC, respectively (see fig.
3.6).
These coils serve several purposes. First, in the experiment we superimpose the
fields of the FBC and the VGC, both driven in HH configuration, to control the
field curvature of the produced magnetic field. A finite field curvature leads to a
magnetic confinement for the high field seeking particles7. For particles inside the
dipole trap, the field curvature dominates the trapping in the axial direction and
defines the corresponding frequency (see sec. 4.5).
Second, driving the two VGCs with different currents allows us to shift the field
maximum in the glass cell along the gravitational direction (here: z-direction). This
way, the field gradient in z-direction can be adjusted to levitate the particles.
Third, the VGC and HGC coils can be used to produce non-static field gradients
in the setup, using a step function switching of the coils. With this, well defined
momenta for the high field seeking particles can be generated.
In table 3.1 I summarize the properties of all available coil systems. This includes
coil resistances, operation currents, and the produced fields or field gradients. To
control the coil currents in our setup we use the main control unit of our experiment,
the ADwin. Figure 3.7 shows the control schemes used here. Except for the FBC,
the coil currents are controlled by an analog control signal from the ADwin unit
sent to the power supply. The FBC current is actively stabilized by means of an
external digital PID controller. The control loop consists of a current transducer

6For an overview on optical dipole traps see [129]. More information on evaporative cooling of
gases in the cold/ultracold regime can be found in [130].

7In our experiments the particles are prepared in high field seeking states.
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Figure 3.7: Control scheme for coils. a) To set the coil currents of the Zeeman
slower, MOT, MOT gradient, vertical gradient and horizontal gradient
coils, the power supplies are controlled via analog signals from the
ADwin. To switch off the current flow in the coils an additional switch
box is placed between power supply and coils. b) The current of the
FBC is actively controlled (PID-controller) using the MIO card and an
external current transducer of the company LEM.
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Table 3.1: Coil systems. Resistances R at room temperature (22◦C), operation cur-
rents Iop, and produced magnetic fields B (field gradients B/I).

Coils Ref. Configuration R(Ω) Iop (A) HH & single coils: B/I (G/A)
AH: ∆B/I∆xi (G/(Acm))

ZS (coils 1-8) [123, 124] stack of coils 11.65±0.05 6 ≈ 50 to 92
ZS (coil 9) [123, 124] single coil 0.74±0.02 5.55 ≈ 41.4
MOTC [126] AH 2.20±0.02 (both) 15 (2.47±0.02) (z-axis)

(1.27±0.02) (y-axis)
MOTG [126] single coil 0.55±0.02 (both) 3 ≈ 1.1
FBC (steal chamber) [125] HH 0.04±0.02 (both) 100 to 200 ≈ 5.15
FBC (glass cell) [126] HH 0.03±0.02 (both) 80 to 120 5.79
VGC (upper & lower) [126] HH 0.004±0.001 252 & 154 1.13
HGC (glass cell) [126] HH 1.00±0.02 4 6.04

(LEM8), the ADwin (MIO card) and the power supply. With the LEM the coil
current is measured, a process value (voltage) generated and sent to the MIO card
of the ADwin. On the ADwin a digital controller is realized which calculates
a controller output transferred to the power supply subsequently. This way the
magnetic field can be stabilized to fields . 1G. This value was determined by
performing radiofrequency (RF) spectroscopy on the |1〉 → |2〉 transition at high
magnetic field. Since the natural linewidth of the transition is ∆νRF � 1kHz any
broadening of the line can be attributed to a field jitter.

3.5 Optical dipole trap and transport to glass cell

As mentioned in the previous section after pre-cooling of the atoms in the MOT
the particles are transported to a single beam optical dipole trap for further cooling.
The trap is given by a focused laser beam, far red detuned from the D1, D2 transi-
tions of 6Li. The electric field of the beam produces a position dependent ac Stark
shift for the ground state atoms. For large and negative detuning ∆ this leads to an
attractive potential [129] given by

Ud(r) =−
πc2Γ

2ω3
0

(
2

∆2
+

1
∆1

)
I(r). (3.3)

Here, ∆1,2 = ω −ω1,2 < 0 where ω is the frequency of the trap laser, ω1,2 are

the transition frequencies, I(r) = I0 exp(−2r2/w(x)2)
w2

0
w(x)2 is the intensity of the

laser beam along the propagation direction (x-axis), r is the radial coordinate (here:
r =

√
z2 + y2), w(x) is the beam waist, I0 = 2P/πw2

0 is the peak intensity, and P
is the beam power. Using a Taylor expansion at the intensity maximum the optical
trap can be approximated by a harmonic confinement with cylindrical symmetry

8Current transducer from the company Liaisons Electroniques-Mécaniques.
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Ud ≈
1
2

mω
2
r r2 +

1
2

mω
2
axx2. (3.4)

The radial and axial trapping frequencies are given by ωr =
√

4Ud(0)/(mw2
0) and

ωax =
√

2Ud,0/(mx2
R), respectively. Here xR = w2

0π/λ is the Rayleigh length and
λ is the wavelength of the light.
In our case, the optical trap is generated by a 1064nm laser beam obtained from
a ytterbium fiber laser (IPG YLR-200-LP-AC). The laser has a maximum output
power of 220W, a M2-factor of about 1.04, a beam divergence of 0.29mrad, and
an output beam diameter (doubled waist 2w0) of 5.2mm.
As depicted in the sketch shown in fig. 3.8 the free space beam is guided through
beam shaping optics and a pair of orthogonally aligned acousto-optical modulators
(Crystal Technologiy AOM 3080-199) with an active aperture diameter of 2.5mm.
The intensity of the first diffraction order of both AOMs (marked by (1,1) in fig.
3.8) is stabilized and used for the trap. For intensity stabilization we combine an
intensity measurement using an amplified photo diode (Thorlabs PDA 100A-EC)
and a digital controller realized on the MIO card of the ADwin. The controller
produces an output signal that regulates the diffraction efficiencies of the AOMs
tuning the RF powers of the driving signals for the AOMs (see fig. 3.9). The
stabilized beam is guided to a beam expander and alignment optics, subsequently
(see upper part in fig. 3.8). The beam expander allows us to tune the beam size of
the collimated beam. Adjusting the beam sizes enables us to tune the beam waist at
the position of the atoms which defines the volume of the optical trap. We increase
the beam diameter by a factor of eight such that the waist at the focus is set to
w0 ≈ 38µm.
In an experimental run the trap center is initially located at the center of the steel
chamber to load the particles from the MOT to the dipole trap. However, for further
cooling we transport the gas to the glass cell. This is done by an optical/mechanical
transport of the particles. For this we shift the focus of the dipole beam from the
steel to the science chamber (glass cell). To do so, we use a configuration of three
f = 300mm lenses and an air bearing translation stage as illustrated in fig. 3.8.
For the transport one lens, placed on the stage (Nelson Air Corp. ATLAS-101-
400-HD), is moved over a distance of 27cm with sub-micron precision (see ref.
[126]). Shifting the lens from position one to position two moves the focus of the
dipole beam from the MOT chamber to the glass cell. We use a simple trajectory
for the transport which includes an acceleration period (almost linear increase in
the velocity), followed by a passage with no acceleration. Finally, a deceleration
step to zero velocity terminates the transport. The forces acting on the particles
during the acceleration/deceleration phase are smaller than the restoring force of
the dipole trap. With this, the trap provides a loss-free transport of the atoms (see
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Figure 3.8: Dipole trap beam path. Lower box: The light of the ytterbium fiber
laser is outcoupled and shaped before it is guided to two AOMs. The
first order diffraction of both AOMs (here marked as (1,1)) is used as
the trap beam and is intensity stabilized (see text). Middle box: The
(1,1) order is transferred to a beam expander and a translation stage.
Upper box: The beam is guided via a periscope to the steel chamber
where the beam is focused to the center of the MOT. This way, both
traps are overlapped which allows a transfer of the particles from MOT
to dipole trap. In the optical/mechanical transport the focus of the beam
is moved from position 1 to 2 by shifting a lens on the translation stage.



3.6 RF/MW antennas 41

MIO In

ADwin
1MIO card, PID MIO Out

DDS

80.5 MHz

DDS

79.6 MHz

amplified
photo diode

control power
amplification

clock
freq.
from
bus

clock

freq.
from
bus

vert.
AOM

horz.
AOM

dipole
laser in

11,1,
diffraction
out

mirror
1sampling,

process value

trap beam

PC
set value
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controller output sets the diffraction efficiencies via the power of the
RF signals driving the AOMs.

also [126]). The overall transport duration is 750ms.

3.6 RF/MW antennas
Our experimental setup includes two RF and one microwave (MW) antenna which
we use to transfer particles to desired states at high magnetic field. The three an-
tennas have different tasks within an experimental cycle. In the following I will
introduce the different emitters and assign the experimental purposes of the anten-
nas.

Balanced distribution of particles in the states |1〉 and |2〉
Most of our experiments are performed with a balanced distribution (50/50 distri-
bution) of particles in the states |1〉 and |2〉. To assure a balanced incoherent dis-
tribution of the particles in the two states, we make use of a strong radiofrequency
pulse within our experimental sequence.
For this purpose a magnetic loop antenna has been built and placed in the close
vicinity of the glass cell (for more information see ref. [126]). It consists of a
single hollow copper loop with an inductance of L = 0.238µH and a resistance of
R = 25mΩ. It is terminated by a copper plate capacitor with C = 20pF (see fig.
3.10 a) and b)). The antenna has a bandwidth of 740kHz and a resonance frequency
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Figure 3.10: RF antenna. a) Inductive coupling of the inner loop and the antenna.
b) Coupling loop. The signal is coupled via the BNC connector to the
coaxial cable. a) and b) are taken from [126] (used with permission
from the author). c) Sketch of coupling loop and antenna. d) Position
of the antenna near the glass cell (top view). The polarization of the
RF signal is oriented along the x-axis, perpendicular to the quantiza-
tion axis given by the offset magnetic field.

of νRF = 76.2MHz which matches the transition of the hyperfine states at B =
780G, where evaporative cooling is performed typically. To drive the antenna
we use a DDS and an amplifier to produce a radiofrequency signal at the desired
frequency with a power of P ≈ 1W. This signal is transferred to a BNC loop (see
fig. 3.10 c)) which couples inductively to the antenna. The antenna is aligned to
the glass cell, such that its linearly polarized RF signal is oriented perpendicular to
the quantization axis (z-axis) defined by the offset magnetic field (see fig. 3.10 d)).
By this, the emission is σ polarized with respect to the quantization axis, to match
the selection rules for a |1〉= |mI = 1〉 to |2〉= |mI = 0〉 transition.
Please note that an identical loop antenna is also placed at the steel chamber in close
vicinity of the MOT coils. Since all of our experiments, including spin preparation,
are performed in the glass cell the antenna is not operated in the experiments in-
troduced in the following. However, if future studies are performed in the steel
chamber this antenna might be used.

Pairing measurements

In our experiments a gas of Feshbach molecules of particles in the states |1〉 and
|2〉 can be produced. The binding energy and number of dimers can be measured
by RF spectroscopy [91, 118, 131]. RF spectroscopy is performed by counting
the number of atoms in state |2〉 (see also energy level diagram in sec. 2.4) as a
function of the frequency of a previous RF pulse. For this, the frequency of the
pulse is tuned close to the |2〉 → |3〉 transition of 6Li at high magnetic field9.

9Most experiments are performed in the field range of 700 to 900G.
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Figure 3.11: RF molecule spectroscopy. RF spectroscopy on the |2〉 → |3〉 tran-
sition on a mixed gas of dimers and free atoms at B = 755G. For
ν ≈ 82.198MHz the unbound atoms are transferred to the |3〉 state
such that the number of particles in |2〉 N reduces (blue circles). The
transition for atoms in |2〉 which are bound to dimers (red circles)
is shifted from the RF transition of unbound atoms by the binding
energy.

However, since the |2〉 → |3〉 transition is about 6MHz blue detuned from the
|1〉 → |2〉 transition and since the bandwidth of the loop antenna is small, the pre-
viously introduced antenna cannot be used here. Therefore, our setup includes
an additional antenna adjusted to match the |2〉 → |3〉 transition in the given field
range. This antenna is identical to the one for the |1〉 → |2〉 transition except for a
different resonance frequency.

Performing RF spectroscopy with this additional antenna, we are able to identify
two distinct features (see fig. 3.11). First, we find the resonance of the |2〉 → |3〉
transition. Second, we find an additional dip corresponding to atoms in state |2〉
which are bound to dimers additionally. This dip is blue detuned from the |2〉 to
|3〉 transition where the offset is the binding energy. Using the full spectrum we get
information on the molecule number in principle. However, to extract the molecule
number from the spectroscopic data is quite challenging, since initial and final state
effects have to be included in advanced calculations [131]. Therefore, this type of
methodology has not been used in the studies presented in this work. An alternative
approach for the molecule number measurement is presented in sec. 3.10.
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lines) are folded to match the desired frequency. The direction of the
E-field emission is given by the red arrow. b) Side view of the antenna.
The MW signal is coupled to the antenna via a BNC connector (not
shown).
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In future experiments spin-selective measurements of individual particles in a flat
2D optical lattice will be performed. To do so, the particles in one spin state will
be removed prior to the particle detection. For this, we have constructed a bi-quad
antenna (see fig. 3.12) which allows us to transfer particles to un-confined states
before the atoms are imaged.
The antenna provides a linearly polarized MW signal aligned perpendicularly to
the quantization axis (see e.g. [132]). This way, atoms prepared in a high field
seeking state, such as state |2〉, can be transferred to a low field seeking state,
such as state |5〉. Atoms in the latter state experience a repulsive potential at high
magnetic field10. With this repelling force the atoms are removed from the trap,
enabling a selective detection of the remaining atoms in |1〉. For an experiment at
780G the required frequency for the transition lies at 2.2GHz.

3.7 Imaging systems
To obtain information about the processed atomic gases we use fluorescence or
absorption imaging11. Therefore, we have prepared a multitude of imaging systems
in our setup.
At the steel chamber I have implemented a low resolution absorption (SC AI) and
a low resolution fluorescence imaging system [124] (SC FI) to observe atoms in a
MOT. Both detection systems consist of an objective lens, a tube lens and a CCD

10Similar as in runaway evaporative cooling in magnetic traps, see textbooks like [84].
11see textbooks like [84, 85].
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Table 3.2: Overview of imaging systems. Upper: Lens systems. To specify the
imaging systems the working distance (WD) and the numerical aperture
(NA) are given. In the case of a single lens as an objective or as a tube
lens, the focal length is given instead of the WD. The resolution is given
for the imaging wavelength of 671nm. Lower: Cameras of the imaging
configurations.

SC AI SC FI GC LR GC HR

Objective

Lens EO 2X M Plan APO Plano-convex lens Achromat custom objective (ASE)
NA 0.055 0.025 0.084 0.61

WD/ focal length (mm) 34 450 150 8.2

Tube lens

Lens Achromat Plano-convex lens Achromat custom tube lens (ASE)
WD/ focal length (mm) 200 500 500 250

Camera

(EM)CCD camera AVT: Stingray F-145B AVT: Guppy F-038B NIR AVT: Stingray F-145B Andor iXon 897
Pixelsize 6.45×6.45µm2 8.4×9.8µm2 6.45×6.45µm2 16×16µm2

Pixels 1388×1038 768×492 1388×1038 512×512

System

Magnification 2 1.1 3.33 43

camera. The absorption imaging is aligned along the z-axis of the setup and is
placed on the upper view port of the MOT chamber (imaging system properties are
summarized in table 3.2) as depicted in fig. 3.13. The fluorescence imaging system
is aligned along the x-axis and is placed at the end facet of the glass cell.
At the glass cell two imaging systems are available. A low and a high resolution
detection setup. The low resolution system (GC LR) is oriented along the y-axis
of the setup, consists of a two-lens imaging system and a CCD camera. It is used
for absorption imaging at high magnetic field, where we drive the |1〉 ant the |2〉
to |22P3/2,mJ =−3/2〉 transition, respectively. According to the selection rules σ

polarized light is required to drive the imaging transition. We use a beam with a lin-
ear polarization aligned along the x-axis, which is perpendicular to the quantization
axis (the configuration is also shown in fig. 3.14 c)).
The high resolution system uses a customized objective and a customized tube lens
of ASE Optics as well as an electron multiplying CCD camera (EMCCD) from
Andor. It is aligned along the z-axis of the setup and located below the glass cell
(see fig. 3.14 a) and d))
The high NA objective has two applications. First, it is used to project optical
lattices or an excitation beam on the atoms. Second, the particles, especially at
experiments in the lattice, can be detected (see sec. 3.9).
Our experiment is designed such that the projected optical lattice has a lattice con-
stant of about 1.2µm. This sets the requirements for the imaging resolution. To
provide single-atom single-site imaging the resolution of our objective at the de-
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Figure 3.13: Positions of the imaging systems. In this figure the glass cell low reso-
lution imaging system (GC LR), the glass cell high resolution imaging
system (GC HR), the steel chamber absorption imaging system (SC
AI) and the steel chamber fluorescence imaging system (SC FI) are
shown. The working directions of the individual setups are given by
the black arrows. The red cloud illustrates the position of the atoms.
a) Positions of the imaging systems around the glass cell. A more de-
tailed picture can be found in fig. 3.14 c). b) Positions of the imaging
systems around the steel chamber.

tection wavelength has to be smaller or at least comparable to the lattice constant.
The resolution of an imaging setup can be characterized by the response of the
system to a point emitter, the so called point spread function (PSF) (see e.g. [133,
134]). Imaging a point emitter with a lens-based imaging system leads to an Airy
pattern in the detection plane which reads

I(r) = I(0)
(

2J1(πr)
πr

)2

. (3.5)

Here, I is the intensity of the light, J1 is the Bessel function of first kind, and
r =

√
x2 + y2 is the radial coordinate in the image plane centered at the intensity

maximum of the pattern.
According to the Rayleigh criterion the resolution of an imaging system is given
by the minimal distance of two point emitters in the object plane that can be re-
solved. By definition, this is given when the maximum of the Airy pattern from the
first emitter coincides with the first minimum of the Airy pattern from the second
emitter in the image plane. Under this assumption the resolution can be calculated
from eq. (3.5) and reads

D = 0.61
λ

NA
. (3.6)

In our case we find D = 0.67µm, which is sufficient for the detection of particles
inside a lattice with a 1.2µm spacing. To test the performance of our imaging sys-
tem and to compare it with the calculation, I measured the PSF of the system. To
do so, I imaged an illuminated pinhole with a diameter of 0.2µm, which is suffi-
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Figure 3.14: Panel of the imaging/projection setups. a) High NA objective below
the glass cell including the positioning system and beam paths for the
imaging (red lines), the excitation beam (green lines), and the lattice
projection beam (orange lines). b) Intensity stabilization and beam
path of the excitation beam. The light source is depicted in fig. 3.16.
c) Low resolution absorption imaging system at the glass cell. d) Pro-
jection and imaging beam paths. The light, collected by the high NA
objective (red path in a) and d)) is guided to an EMCCD camera. The
IR and bandpass filter cuts off stray light. The excitation beam shown
in b) is guided to the objective (green path) via a dichroic mirror (2).
The lattice beam (brown path) is guided over a second dichroic mirror
(1) to the objective.
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ciently smaller than the expected imaging resolution of the system. The measured
intensity distribution is shown in fig. 3.15 a).
From a fit to the intensity distribution using eq. (3.5) we obtain a peak to valley
distance of DM ≈ 0.7µm, which is in good agreement with the calculation.
Two other crucial parameters for an imaging or projecting system are the depth of
field/focus (DOF) and the field of view (FOV). The FOV is the size of the area in
the object plane that can be imaged sharply. The DOF is the range around the focus
of an imaging system, in which the object can be imaged sharply.
For the objective used here, the supplier specified a FOV of 150×150µm2. This I
have confirmed with another test (not shown here), where I imaged an array of il-
luminated pinholes over the full operation range. The image showed no significant
aberrations.
Finally, I have investigated the DOF. Using wave optics the DOF for the objective
reads [135]

DOF = 0.5
nλ

NA2 , (3.7)

where n is the index of refraction. In this case we obtain a DOF = 0.9µm. To
confirm this value, I have measured the DOF of the imaging system. For this, I have
imaged a point emitter for various objective displacements from the object plane.
To determine changes in the intensity distribution with respect to the displacement
z the width of the inner peak of the Airy pattern is determined. For simplicity, I
fit a Gaussian distribution12 to the inner peak with I = I0 exp(−2x2/w2) for each
individual z. The result is shown in fig. 3.15 b). We find that the intensity pattern
is almost constant for about one micron displacement, which is in good agreement
with the predicted DOF.

3.8 2D confinement setup
To perform experiments in a two-dimensional gas, we load the pre-cooled atoms
into a 2D trap. For this, we use the 2D confinement scheme introduced in ref.
[136].
A Hermite-Gaussian TEM01 beam at a wavelength of λ2D = 532nm, which is blue
detuned from the cooling transition, produces a repulsive double peak potential (see
fig. 3.17) for the atoms (in our case: along z-direction). In the trapping scheme,
the particles are strongly confined between these two peaks (confinement in one
axis) and are unconfined in the other directions. To close the trap a weak harmonic
confinement is added in the other two-directions, resulting in a highly anisotropic
trap. This type of confinement leads to a pancake shaped cloud in the experiment
and allows us to freeze out one degree of freedom (see also sec. A.1).
12x denotes the x-axis in the image plane.
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Figure 3.15: Point spread function and depth of field of the high resolution imaging
system. a) PSF of the imaging system. The inset shows a false color
representation of an imaged pinhole. The pinhole has a diameter suffi-
ciently smaller than the expected resolution and can be considered as
a point source for the objective. The plot shows a cut through the false
color image (circles) for y = 0 and a fit to the data based on eq. (3.5).
I0 is the peak intensity. b) DOF of the system. The focus of the objec-
tive is moved from the object plane by z and the width w is measured.
For this, the inner peak of the detected Airy pattern is approximated
by a Gaussian distribution. As a guide to the eye, a parabola fit is ap-
plied to the data. For comparison the result of the predicted DOF (see
text) is shown as the dashed line.
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Figure 3.16: 2D confinement setup. A solid state laser source is used to provide
532nm light at a power of up to 4W. The intensity of the beam is
stabilized using an AOM with the scheme of sec. 3.5. The first or-
der diffraction is used for the two-dimensional confinement, while the
zeroth order is used for excitation experiments (see sec. 3.9). To gen-
erate the TEM01 like beam, we use a π phase plate. Further beam
shaping leads to the required intensity distribution at the position of
the atoms. To avoid unwanted reflections at the glass cell the beam
delivery is adjusted with a small angle with respect to the y-axis (for
a better visibility a larger angle is drawn).

In the following lines I will introduce the potential produced by the Hermite-
Gaussian beam and present a few experimental details of our implementation to
this trap.
The potential produced by the Hermite-Gaussian beam is given by

U(x,z) =− Ph̄Γ

W 3
z WxπIsat

(
1

ω2D−ω0
+

1
ω2D +ω0

)
z2 e
− 2z2

W2z
− 2x2

W2x (3.8)

with Wl the waist for the direction l, ω0 the atomic transition frequency, ω2D the
frequency of the TEM01 beam, and P the beam power.
In the z-axis and close to z = 0 the potential is approximately harmonic with a
frequency of ωz =

√
4eU0/(mW 2

z ), where U0 is the potential at the center, and
e = exp(1). In the other two directions the beam produces a repulsive potential.
This anti-trapping potential is harmonic in the vicinity of the trap center and the

frequencies [136] read ωx =
i√

2WzπWx

(
h̄2eU0

m3

)1/4
and ωy =

√
3
2 i λ2D

2π2W 5/2
z

(
h̄2eU0

m3

)1/4
,

respectively. Here, i is the imaginary number.
Our implementation of the trap is illustrated in fig. 3.16. We use a solid state
laser (Laser Quantum Opus 532) with a maximum output power of P = 4W and
a beam diameter of 1.85mm. The beam is shaped by two lenses and guided to
an AOM, where the beam is intensity stabilized using a similar scheme as the one
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introduced in sec. 3.5. Subsequently, the beam is guided to a phase-plate. One half
of the plate leads to a phase shift of π with respect to the other half (for further
information see [137]). This phase shift changes the intensity distribution from the
Gaussian ground mode to a double peak intensity pattern, comparable to a TEM01
beam.
To produce a high aspect ratio Wx/Wz, required to produce a highly anisotropic
cloud, subsequent beam shaping is performed. The beam is expanded in the z-
axis selectively, using a concave cylindrical lens (see orange path in fig. 3.16).
A subsequent lens collimates the beam in the z-axis again, while it focuses the
beam in the x-axis (green path). In combination with the final f = 150mm plano-
convex lens, the beam is collimated along the x-axis, while it is focused on the
atoms in the z-direction. This produces the desired highly anisotropic potential
with Wz = (9±1.5)µm and Wx ≈ (240±5)µm at the position of the atoms.
Since the beam is guided through multiple optics and is finally focused to the cen-
ter of the un-coated glass cell, we lose about 45% of the initial beam power in this
setup due to unwanted absorption and reflection. This limits the achievable trap-
ping frequency to ωz ≈ 2π × 11.3kHz. The anti-trapping potential for the x- and
y-axis at maximum beam power is given by ωx = 2πi×18Hz and ωy = 2πi×8Hz,
respectively.
In fig. 3.17 the potential is shown for the given parameters. Fig. 3.17 b) shows a cut
through the potential at x = 0. At the center of the trap the potential is harmonic,
in good approximation.

3.9 Lattice projection and excitation beam

Besides imaging, the high NA objective has a second function in our experiment.
Namely, the projection of optical potentials on the cold atomic clouds.
For projection, the objective has to be positioned such that the laser beams are
focused on the atomic cloud inside the glass cell. The objective is placed on a
mechanical three axis stage13, a second three axis piezoelectric stage and a tilt
plate (see fig. 3.14 a)).
The mechanical stage is used for coarse positioning and can be adjusted using three
micrometer screws. The piezoelectric stage14 is used for fine tuning and provides
sub-micron resolution. To tune the orientation/angle of the objective with respect
to the optical table we use a tilt plate (Newport M-TTN80).

13Home-built stage, produced at the Wissenschaftliche Werkstatt (University of Ulm). The design
is taken from the groups of Tilman Pfau (University of Stuttgart) and Fedor Jelezko (Institute
for Quantum Optics, University of Ulm).

14Piezosystem Jena: TRITOR 102 SG, driver and controller: NV 40/3CLE.
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Figure 3.17: Calculated potential produced by a TEM01 beam. a) False color image
of the potential U/U0 (normalized to the potential maximum as given
in the text). For the calculation the experimental parameters presented
in the text are used. b) Potential at x = 0 (blue line). An expansion
to second order close to z = 0 shows that the potential is harmonic in
good approximation (see orange curve).

Once the correct position is found, the objective is used to project multiple po-
tentials on the trapped atoms. I will focus on the individual beam paths in the
following, starting with the excitation beam (see fig. 3.14 b),d)).

Excitation beam
In the sound excitation experiments presented in sec. 6, we modulate the confining
potential to generate a local perturbation. We make use of a laser beam blue de-
tuned to the D2-line of 6Li, which is aligned perpendicular to the dipole trap beam
along the z-direction. The excitation beam is focused to the trap center (for details
of the potential see sec. 6.7). For the excitation we use a portion of the light of the
Opus laser introduced in sec. 3.8. Specifically, the zeroth order diffraction of the
AOM in the 2D confinement setup is extracted and guided to a separate intensity
stabilization15 (see fig. 3.14 b),d). With a PM fiber the light is transported to the
beam projection setup shown in fig. 3.14 d). There the beam (green path) is shaped
and guided to the objective via a dichroic mirror (high reflectivity at 532nm, and
high transmission at 1064nm). The beam is focused via the objective to a waist of
31.4µm at the position of the atoms and produces a local repulsive potential (see
sec. 4.5). The Rayleigh length of the beam zR = 5.8mm is large compared to the

15The stabilization scheme follows the one introduced in sec. 3.5.
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typical size of a cloud of a few tens of microns. Therefore, the produced potential
can be considered as cylindrical along the z-direction.

Lattice projection
To produce optical lattices, we use the phase hologram projection technique in-
troduced in [70, 138]. A laser beam illuminates a periodically etched phase plate
and is diffracted (see fig. 3.14 d) (brown path)). After Fourier filtering the beam
is guided to the objective and is focused on the atoms located at the center of the
glass cell in order to provide the desired potential.
In the setup we use a home-built grating stabilized diode laser at λL = 1064nm
combined with a fiber amplifier (Nufern NUA-1064-PB-0050-D0) which has a
maximum output power of 50W as the laser source. The beam (see fig. 3.14
d) (brown path)) is outcoupled from the fiber and guided to an AOM where inten-
sity stabilization is carried out16. Subsequently, the beam is directed to the phase
plate. In our case the phase plate17 is made of fused silica which has an index of
refraction of n = 1.4496. The plate has a triangular pattern with edge lengths of
l = 90µm (see fig. 3.18 a) and b)). One of the two triangular sub-lattices is etched
such that it has a depth of d = λL/(2(n− 1)) = 1.19µm and produces a local π

phase shift. Illuminating the phase plate with the lattice beam leads to a diffraction
pattern.
In the setup the diffracted light is filtered (zeroth, second and higher diffraction
orders are blocked). The remaining first order diffraction is collimated and trans-
ported to the objective via a dichroic mirror. The high NA objective Fourier trans-
forms the light field to a honeycomb pattern in the focal plane. Since the frequency
of the lattice beam is red detuned from the optical transitions of 6Li the light field
produces an attractive honeycomb lattice for the particles (see fig. 3.18 c)). The
potential well depth of the lattice is determined by the intensity of the beam (see
also sec. 3.5). In contrast, the trapping frequency of a single well is depending on
the spatial intensity gradient additionally. The larger the spatial intensity gradient,
the larger the trapping frequency (see e.g. also [129]).

3.10 Detection of pairs
In some of our experiments we investigate fundamental chemical processes in a
gas of interacting 6Li atoms. To do so, we have to obtain the number of dimers and
free atoms selectively. The difficulty in particle counting is to distinguish between
the two species. In the vicinity of the broad Feshbach resonance pairs are very

16The stabilization scheme is similar as the one introduced in sec. 3.5.
17Phase plates have been produced in collaboration with the Institut für elektronische Bauelemente

und Schaltungen and the Institut für Optoelektronik (both University of Ulm).
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Figure 3.18: Lattice projection. a) Drawing of a binary phase plate of triangles with
edge lengths of about 90µm. b) Simulated intensity pattern of a pro-
jected honeycomb lattice as it will be used in future projects (lattice
constant of about one micron). c) Projected lattice in the experiment
(larger lattice constant as in future experiments). The projected pattern
is imaged with a high NA aspheric lens arranged in a confocal con-
figuration with the objective. The lattice has a constant of ≈ 3.3µm.
Small irregularities in the intensity pattern might be due to misalign-
ment of the beam in the projection path.

loosely bound, such that they absorb light stabilized to the imaging transition of
the unbound atoms (see also [86]). Excited molecules can decay to unbound atoms
after scattering a first photon. This complicates to discriminate between pairs and
unbound atoms. To separate the different particles from each other, we make use
of two different techniques. These are the magnetic field ramp technique (for more
information see appendix A.2) and the optical transfer method (see sec. 5.7 and
[105]). In this section I will focus on the setup for the optical transfer method.
In this scheme the number of molecules and free atoms in one spin state are de-
termined in a two-step process. In a first experiment, the total number of atoms in
the gas is determined via absorption imaging. As mentioned above, this is possible
since unbound atoms and atoms bound to dimers both are on resonance with light
stabilized to the atomic transition in the close vicinity of the Feshbach resonance18.
In a second experiment, with an identical sample/cloud, the weakly bound molecules
are removed prior to absorption imaging using an optical excitation beam resonant
with the pairs/molecules. The molecules, initially prepared in the |X1Σ+

g ,v = 38〉
state, are transferred to |A1Σ+

u ,v
′ = 68〉 from which the dimers either dissociate to

highly excited unbound atoms, which quickly leave the trap, or decay to deeper
bound states invisible for the particle detection. Performing absorption imaging

18Our experiments are typically done at magnetic fields of B > 700G, where both, unbound atoms
and atoms bound to dimers are on resonance with the detection light. Typically, we image the
atoms in state |1〉 or |2〉. Our experiments are done with a balanced distribution of particles in
the two spin states. Therefore, the detection of particles in one of the spin states gives us the
total particle number.
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Figure 3.19: Setup for the molecule excitation scheme. a) Frequency stabilization.
The wavelength is measured using a wavelength meter. The informa-
tion is transferred to a LabVIEW based digital controller on a separate
PC which controls the diode current and the laser grating orientation
of the home-built laser in order to adjust the wavelength. b) Alignment
of the molecule purification beam at the glass cell.

after the excitation pulse gives the number of free atoms.
To perform the optical excitation scheme we have set up a separate home-built grat-
ing stabilized diode laser locked to the |X1Σ+

g ,v = 38〉−|A1Σ+
u ,v

′ = 68〉molecular
transition with a transition frequency of ν ≈ 445.28762THz at 780G. To lock the
laser to the molecular transition, we use a wavelength meter based locking scheme
(see fig. 3.19 a)). The laser frequency is measured with a wavelength meter (High-
Finesse WS7) which is transferred to a LabVIEW based digital controller. The
controller is connected via a DAC to the driver of a piezoelectric element, which
tunes the tilt of the grating, and to the current controller of the diode in order to
tune the laser frequency (feed forward). The frequency stabilization is limited by
the readout resolution of the wavelength meter of ≈ 1MHz and the readout speed
which is about19 one second.
The light is amplified using a tapered amplifier (Toptica BoosTA), and finally trans-
ported to the glass cell via a PM fiber. At the glass cell the beam has a waist of
1.1mm, provides peak intensities of 500mW/cm2 and is aligned to the atomic
cloud (see fig. 3.19 b)).

19In our case the fiber is connected via a fiber splitter to the wavelength meter.
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4 Experimental steps

This chapter is devoted to summarize the experimental steps needed to produce a
degenerate quantum gas in our setup. Additionally, experimental protocols to the
studies, presented in this thesis, are introduced.

4.1 Laser cooling

To reach quantum degeneracy we use several steps of cooling and trapping. In this
section I will give a brief overview of the first cooling step used in this setup, the
laser cooling.
The starting point of all the experiments is the lithium oven (see fig. 4.1). It is
source of the lithium atoms and is filled with solid enriched 6Li. At room tem-
perature the vapor pressure inside the oven is psol,vap ≈ 10−20 mbar [95], which
is too low for a sufficient particle flux in the atomic beam. Therefore, the oven is
heated to a temperature of 658.15K which is above the melting point of lithium
Tm = 453.65K. At this temperature the vapor pressure is fifteen orders of magni-
tude larger than at room temperature. The particle flux of the extracted atoms is
large enough that subsequent cooling leads to a loading rate of about 2×108 atoms
per second in the magnetooptical trap.
In the setup, the atoms are extracted via a nozzle from the oven leading to an atomic
beam. It is collimated by an aperture, located in the beam path, and propagates
towards the MOT chamber (see simplified sketch in fig. 4.1) inside a Zeeman
slower. There, the atoms are cooled via laser cooling with a laser beam stabilized
close to the D2-Line of lithium (see ref. [128] or [85, 123, 124]).
At laser cooling the particles are decelerated to velocities catchable with a MOT
(typically a few mK). To reach the required velocities, the initial particle mo-
mentum has to be reduced by roughly ten thousand photon momenta. Therefore,
the atoms have to undergo a multitude of absorption/emission events during laser
cooling for which closed cooling cycles are required (see also energy level dia-
gram in fig. 3.4). In our case we use the D2 transition of 6Li for cooling. To
avoid optical de-pumping of one of the electronic ground states within the cooling
process we use two overlapped beams, resonant with the two relevant transitions
|22S1/2,F = 1/2〉 → |22P3/2〉 and |22S1/2,F = 3/2〉 → |22P3/2〉.
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Figure 4.1: Simplified sketch of the vacuum setup (top view). The atoms leave
the oven via a nozzle and are cooled on the way to the MOT chamber.
Subsequently, the particles are trapped in the MOT from which they
can be loaded to a dipole trap.

4.2 MOT
The pre-cooled atoms enter the MOT chamber with velocities on the order of a few
ten meter per second (see also fig. 4.2). The atoms reach the MOT formed by a
quadrupole field (see sec. 3.4) and six laser beams adjusted to intersect at the zero
crossing of the magnetic field. The combination of the σ− polarized red detuned1

beams and the magnetic field (see fig. 4.2 b)) lead to a restoring force in both, the
position and momentum space.
Using the MOT the atoms can be cooled down to the Doppler limit at which cooling
and radiative decay induced heating matches (for more information see e.g. [85]).
For the D2-Line of 6Li, with a natural linewidth of γ = 2π×5.87MHz, the Doppler
limit is TD = h̄γ/2kB ≈ 141 µK. This value can not be reached in the case of 6Li
since the hyperfine states of the electronically excited state 22P3/2, which has a
splitting of 4.4MHz, can not be resolved (see also fig. 3.4). In our experiment,
loading the MOT for a time of 4s, about 109 (see fig. 4.2 a)) atoms can be captured.
At this stage the gas has a temperature of ≈ 0.7mK.
However, the phase space density (see e.g. [85]) of the captured gas is too low
to provide an efficient transfer to the optical dipole trap. Therefore, we perform
a compression of the MOT (cMOT) subsequently. In this step the detuning of the
beam is reduced. This way, the restoring force inside the trap increases while the

1Red detuned to the D2 line.
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a) b)

Figure 4.2: The lithium MOT. a) Photography of 109 lithium atoms at a temperature
of TMOT ≈ 0.7mK trapped in a MOT. b) Principle of the MOT taken
from [85]. A quadrupole field combined with red detuned σ− polarized
beams forms the MOT.

trap size reduces. As a consequence, about half of the particles are lost and the
temperature lowers to a value of TcMOT ≈ 250µK. With this, we increase the phase
space density of the cloud. It typically reads

ρ = n×λ
3
dB = n× (h2/(2πmkBT ))3/2 = 2.3×10−5 (4.1)

at the trap center. After the compression the gas is loaded to an optical dipole trap
by overlapping MOT and dipole beam. During transfer about 1% of the atoms are
loaded to the dipole trap, which is sufficient for the following steps.

4.3 Evaporative cooling in the presence of a bias
magnetic field

After the cooling in the MOT the atoms are loaded to the optical dipole trap. For
this purpose the dipole beam power is ramped up while the cooling beam intensity,
as well as the quadrupole field, are ramped to zero simultaneously. After the trans-
fer, the atoms are transported from the MOT chamber to the glass cell. The focus
of the single beam optical dipole trap is shifted by moving a lens on an airbearing
translation stage (for technical details see sec. 3.5 or [126]). Once the particles
are moved to the glass cell, we ramp up the Feshbach and vertical gradient coils to
produce a bias magnetic field.
The offset field has three consequences. First, it leads to a splitting of the hy-
perfine states to |22S1/2,F = 1/2,mF =±1

2〉 which enables us to produce a two-
component Fermi gas (see sec. 4.4) favourable for efficient evaporative cooling [59,
139, 140]. Second, the bias magnetic field allows us to tune the particle interaction
of atoms in these two spin states by means of a broad magnetic Feshbach resonance
located at B0 = 832.2G [91]. Third, the field curvature produces an additional har-
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monic confinement for the particles which essentially defines the confinement of
the high field seeking particles in the x-axis (weakly confined axis of the dipole
trap, see also fig. 4.1).
For evaporative cooling we tune to a magnetic field of 780G, where a strong repul-
sive particle interaction with a scattering length of 6400a0 is present [88]. Evapo-
rative cooling in a two-component strongly interacting Fermi gas has the advantage
that a fast thermalization rate is provided. In our case, and at low temperatures, the
energy is re-distributed during thermalization via s-wave collisions between atoms
in the two states |1〉 and |2〉.
During evaporation, we lower the dipole trap depth from about 3.5mK to below
1µK within 6s. Using this, the gas reaches quantum degeneracy with a the phase
space density ρ > 1.
After evaporative cooling the magnetic offset field can be tuned to change the par-
ticle interaction as well as the chemical/thermodynamical state of the gas. For our
gas there are two distinctive limits/regimes connected via the crossover (see sec.
2.5). For (kFa)−1 � 1 the gas is in the BEC limit, where particles in opposite
spin states can form dimers. For (kFa)−1 � −1 we approach the BCS regime,
where the Fermi character of the gas dominates and Cooper pairs form for T < TC.
The impact of the particle interaction becomes evident for T < TC in time-of-flight
(TOF) experiments, where the momentum distribution can be obtained from the
particle distribution.
Figure 4.3 shows the density distributions of clouds in the BEC and BCS regime
at temperatures below TC and after a TOF. The gas on the BEC side shows the
expected bimodal distribution (see fig. 4.3 a), b)). It has a condensed core at
the center showing a parabolic particle distribution and a thermal wing at the edges
with a Gaussian particle distribution. In contrast, on the BCS side the gas smoothly
approaches the T = 0 Fermi gas distribution for T < TC (see fig. 4.3 c), d)).

4.4 RF coupling

To control the distribution of 6Li atoms over the states |1〉 and |2〉 at high magnetic
field, or to measure the binding energy of Feshbach molecules, we make use RF
transitions driven via the magnetic loop antennas introduced in sec. 3.6.
To drive the |1〉 → |2〉 transition in order to produce a balanced distribution of the
particles we use an RF pulse at a frequency of ν ≈ 76.198MHz which is resonant
with the energy splitting at 780G where evaporative cooling is performed typically
(see also fig. 4.4 a)). The pulse has a power of ≈ 2W and a duration of 150ms.
This allows us to produce an incoherent mixture of particles in the states |1〉 and
|2〉. Figure 4.4 b) shows RF spectroscopy data on the |1〉 → |2〉 transition at 780G.
In the experiments the pulse is applied prior to the final evaporation step such that
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Figure 4.3: False color image of a mBEC and a degenerate Fermi gas after time-
of-flight tTOF. The color coding in the false color images indicates the
number of particles per pixel along the line of sight. a) Partly con-
densed mBEC. The gas shows the characteristic bimodal distribution
with a condensed core and a thermal wing. Here, the TOF is t = 1.7ms
and the magnetic field is B = 726G. b) Doubly integrated density pro-
file using the data of a) (blue diamonds). As a guide to the eye a bi-
modal fit is applied (green line). For comparison a Gaussian fit is ap-
plied to the wings (red dashed line). c) Degenerate Fermi gas at 860G
after TOF tTOF = 0.7ms. d) Doubly integrated density profile using the
data of c) (blue diamonds). The gas almost takes the form of a T = 0
Fermi gas (red line).
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a balanced two-component Fermi gas is produced, supporting an efficient evapora-
tion process.
Working with a balanced distribution has two advantages. First, the symmetry
in the state occupation simplifies assumptions on the particle distribution of the
trapped gas. Second, evaporative cooling is more efficient since thermalization via
s-wave collisions are enhanced in a balanced distribution.
Besides the preparation of the two-component gas, we use RF spectroscopy on the
|2〉 → |3〉 transition to determine the binding energy of the dimers (as reported in
[91, 94]). Fig. 4.4 c) shows the spectrum of a measurement at 755G. Here, we
measured the number of particles N in |2〉 after a RF pulse with a frequency of
ν (N0 is the baseline of the spectrum). We find a resonance at ν ≈ 82.198MHz,
where unbound atoms are transferred from |2〉 to |3〉. For atoms bound to dimers
this transition is shifted by the binding energy (see fig. 4.4 c) red circles), where
the RF signal drives a bound-to-free transition and leads to a broad resonance with
a large tail to higher frequencies. The large tail can be explained with the final
state of the unbound atoms. The particles transferred to |3〉 can occupy a variety of
external/trap states (see [91]). From the spectrum shown in fig. 4.4 c) we obtain a
binding energy of Eb ≈ 40.5kHz×h, which is consistent with the values reported
in ref. [91].

4.5 Trapping potentials in the glass cell

This section is devoted to give a brief overview of the potentials used in our exper-
iments. The experiment is constructed to provide several well controlled potentials
which can be used to control/tune the motional states of the ultracold particles.
Additional potentials can be easily included which makes this assembly an ideal
testbed for almost arbitrary configurations.
The starting point for all studies performed in the glass cell is an ultracold cloud
confined by the optical dipole trap and the field curvature of the Feshbach and
the vertical gradient coils (see fig. 4.5). The magnetic field curvature produces
an almost harmonic confinement in the x-y-plane with a trapping frequency of
ωx = 2π×21Hz. The single beam dipole trap produced by a focused TEM00 laser
beam with a minimal waist of w = 38µm and a Rayleigh length of zR = 4.3mm,
generates a cylinder symmetric confinement along the x-axis (see fig. 4.5 a)).
Due to the large Rayleigh length, the confinement of the dipole trap in the x-
direction is weak compared to the magnetic confinement and can be neglected
in good approximation. In contrast, in the other two directions the dipole trap
dominates the potential of the magnetic field curvature which leads to a cylinder
symmetric trap where the radius is given by r2 = y2 + z2. This confinement can be
considered to be harmonic at the center r ≈ 0, with a tunable trapping frequency
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Figure 4.4: RF spectroscopy. a) Energy splitting of the lowest hyperfine states
in a magnetic field range of 670G to 950G. b) Spectroscopy on the
|1〉 → |2〉 transition at 780G. All particles are loaded into |1〉 (blue cir-
cles), initially. N/N0 gives the number of atoms in |1〉 with respect to
the total number of atoms in the gas. Once the resonance is reached at
ν0 = (76.198± 0.001)MHz atoms are transferred from |1〉 to |2〉 and
N reduces. To determine the resonance position a Gaussian (dip) fit is
used (straight line). The line is broadened by magnetic field instabilities
given by the finite resolution of the magnetic field control of roughly
1G. For comparison a measurement to the |2〉 occupancy (brown cir-
cles) is shown. c) RF spectroscopy on the |2〉 → |3〉 transition on a
mixed gas of dimers and free atoms at B = 755G. For ν ≈ 82.198MHz
the unbound atoms are transferred to |3〉 such that the number of parti-
cles in |2〉 reduces (blue circles). Here, N0 is the baseline of the spec-
trum. The RF transition for atoms in |2〉, and bound to dimers, is shifted
from the RF transition |2〉 → |3〉 by the binding energy (red circles).
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Figure 4.5: Sketch of the trapping beams at the glass cell. a) Top view of the glass
cell including the dipole trap beam and the beam for the 2D confine-
ment. b) Side view of the glass cell. The objective, located below the
glass cell, projects the lattice onto the cloud. Please note that the offset
(Feshbach) magnetic field is oriented along the z-direction.

ωr ranging from a few hundred Hz to a few ten kHz. Considering magnetic and
optical confinement, the particles experience the following potential

U =
1
2

mω
2
x x2 +

1
2

mω
2
r r2. (4.2)

2D confinement

In order to perform experiments in two-dimensional gases, an additional 2D con-
finement (see fig. 4.5 a)) is added. This is done using the repulsive potential
produced by the TEM01 beam introduced in sec. 3.8. In our case, we superim-
pose the potential created by this additional beam with the previously introduced
trap. Figure 4.6 a) shows the corresponding potential. In the illustration the gravity,
which causes a tilt in the potential along the z-axis, is neglected. At the trap center
the particles experience a harmonic confinement in x-direction given by the field
curvature of the offset magnetic field, in y-direction by the dipole trap beam, and
by the TEM01 beam in the z-direction. For z > 0 the particles experience the anti-
trapping potential of the TEM01 beam (see fig. 4.6 b)) leading to an anharmonicity
of the trap. Therefore, only in the close vicinity of the trap center the confinement
can be considered to be harmonic in good approximation.
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Figure 4.6: Potential for the 2D confinement. a) False color image of the potential
at the center of the glass cell y = 0 (dipole beam power 0.8W, power of
2D confinement beam ≈ 2W). The color coding indicates the potential
energy U . b) Potential at z = 0 (z = 0.5µm) blue (red) straight line, re-
spectively. The attractive confinement is given by the field curvature of
the coils. For z = 0.5µm the gas experiences the anti-trapping potential
of the TEM01 beam.

Optical lattices

Besides experiments in two dimensions, our setup is constructed to provide studies
of cold atoms in optical lattices. We can superimpose the lattice beams with the
other traps to produce an additional periodic potential (see sec. 3.9). In general,
to calculate the intensity pattern of the projected beam, Fourier optics are used to
obtain the intensity distribution at the focus of the high NA objective. However,
at this point it is instructive to simplify the projected pattern. In the following, we
consider the lattice to be produced by a cluster of individual dipole traps/dimples
added to the previously introduced traps. Close to the focus of the projecting sys-
tem this assumption holds in good approximation. Figure 4.7 a) shows the potential
for a single well. The dimensions of the dimple shown here are limited by the res-
olution of the objective of 1.1µm at the projection wavelength of λLat = 1064nm.
In future experiments we expect to have small lattices with about 50 wells and will
use a laser power of 0.5W per well. The corresponding trapping frequencies for
such a potential are ωx,y = 2π×1.04MHz and ωz = 2π×250kHz.
The trapping frequencies in x- and y-direction as well as the trap depth is much
larger as in standard dipole traps used for neutral atoms. However, for single-
site single-atom imaging of light particles as lithium (see also chapter 7) this is
favorable [74, 75]. Deep lattices have the advantage that tunnelling is suppressed
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Figure 4.7: Lattice projection. a) The 2D trap, the dipole trap, and the magnetic
field confinement are superimposed with a single beam dipole trap rep-
resenting a single well of a projected lattice. The color coding gives
the potential energy U . Here, I assume that the dimple is produced by
a beam with a power of 1mW and a waist of 1.1µm. Please note, that
gravity is not included in the calculation, since it is small compared to
the other contributors and can be neglected. b) Shows the potential of a)
at x = 0. At the trap center the potential (blue line) is almost harmonic.
The red dashed line shows a parabolic fit to the trap center.
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and Raman sideband cooling can be applied, using state of the art laser sources.

4.6 Quasi 2D gases

With the trapping potentials introduced in the previous section, we are able to pro-
duce a quasi 2D quantum gas. For this, a pre-cooled gas is transferred to the 2D
confinement produced by the dipole trap, the magnetic trap and the TEM01 beam
trap. This is done adiabatically ramping up the intensity of the TEM01 beam within
300ms to a full power of ≈ 2W. After the loading process the confinement is de-
fined by the single beam dipole trap in the y-direction, the field curvature of the
FBC and VGC in the x-direction and by the TEM01 beam in the z-direction.

To be kinematically two-dimensional, the gas has to fulfil several requirements
(see sec. A.1). In such a trap the number of Fermions in the lowest transversal
state (z-axis) with nz = 0 is limited by the in-plane trapping frequencies ωx, ωy and
is called critical particle number Ncrit = ω2

z /2ωxωy [141]. This quantity can be
measured. Figure 4.8 shows an experiment performed to determine the critical par-
ticle number experimentally at 900G (here (kFa)−1 <−1) for ωz = 2π×7.5kHz,
ωx = 2π×21Hz and ωy = 2π×65Hz (analog experiment as in ref. [141]). There,
the expansion of a cloud released from the trap is measured as a function of the
number of particles loaded to the trap. In our experiment, the particle number is
tuned using a magnetic field gradient along the z-axis during sample preparation.
The field gradient produces an additional force in negative z-direction, which re-
moves particles from the trap selectively (similar to the technique used in [142]).
Performing TOF experiments on clouds with varying initial particle number, we
find that the expansion of the gas, given by the cloud size σz, is almost constant for
N < Ncrit ≈ 2.0×104 which is in good agreement with a calculated critical particle
number of N′crit = 2.06×104 for a non-interacting 2D gas.

Below the critical particle number all atoms are in the motional ground state in the
z-direction which leads to a particle number independent expansion of the cloud.
For N > Ncrit σz increases almost linearly for larger particle numbers where higher
transversal states are occupied. Please note, that in principle the critical parti-
cle number is scattering-length dependent. The redistribution of energies in colli-
sions can excite higher transversal states as observed in ref. [143]. However, for
(kFa)−1 < −1, which is the case in our experiment, the influence of the interac-
tion is small and the critical particle number can be directly obtained by measuring
σz(N) in a TOF experiment.

Our result indicates that a quasi 2D gas can be produced in our setup which is a
prerequisite for future studies in two dimensional systems.
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Figure 4.8: Time of flight (TOF) experiment on a quasi 2D Fermi gas. A degenerate
Fermi gas at 900G is loaded into the 2D confinement and released from
the trap subsequently. We measure the cloud expansion after a time
of flight of tTOF in the z-direction σz(tTOF) for various initial particle
numbers N. Here, N is the number of particles per spin state. Increasing
N we cross Ncrit . For N <Ncrit all particles are in the transversal ground
state where σz is constant. The red line gives the mean value for N <
Ncrit . For N > Ncrit atoms occupy states with nz > 0 and σz increases
with the particle number. The blue line is a linear fit to the data for
N > Ncrit , used as a guide to the eye. For comparison the calculated
critical particle number N′crit = 2.06×104 is shown (black dashed line).
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4.7 Optical lattice
To perform experiments in an optical lattice, we load the cooled gas from the 2D
trap into the lattice. This is done by ramping up the optical lattice within 300ms to
the desired trap depth. Once particles populate the lattice, the initial confinement
can be ramped down such that the particles are trapped by the projected lattice,
solely.
Figure 4.10 shows the particle distribution for a first experiment in an optical lattice
where about 300 atoms are loaded into a lattice with a weak in plane confinement
of a few hundred Hz. The particles have enough thermal energy to delocalize over
the lattice. The lattice constant d ≈ 2.4µm in the experiment presented here is
approximately a factor of two larger than in future experiments.
Most of the future experiments will address the physics in a honeycomb potential
at half filling, where each lattice site is occupied by a single atom. To prepare
this configuration the lattice sites have to be emptied down to a single particle
per well, occupying the motional ground state, prior to subsequent experiments.
This can be done applying a magnetic field gradient along the z-direction (see also
ref. [142]). The field gradient produces a tilted harmonic potential, where the
particles can tunnel through the lowered barrier to unconfined states. Similar as in
evaporative cooling this way the number of atoms can be reduced to the desired
state occupancy.
To investigate the dynamics or the equilibrium states of such an ensemble, single
particle detection is desired. However, the detection of individual atoms in a flat
optical lattice is complicated. The direct fluorescence imaging of the atomic dis-
tribution requires a large number of scattered photons per particle for a sufficient
detection fidelity. A large number of scattered photons heats the atoms, which
complicates to localize particles on a singe lattice site during detection.
In the following lines I will estimate requirements for a sufficient single-atom de-
tection in our case. Our imaging system basically consists of a high resolution
objective with NA = 0.61, a tube lens, and an EMCCD camera with a pixel size of
16µm and a quantum efficiency of 90% (see fig. 4.9a)). Another important bound-
ary condition is the transmission loss of the detection system which is roughly 40%
in our case.
To calculate the intensity distribution on the camera we have to consider that in-
dividual atoms in the lattice act as localized point sources. During detection this
leads to an array of airy disks on the camera (see fig. 4.9b)). To get the require-
ments for the signal strength or number of scattered photons in a detection process,
I calculated the intensity distribution for a partially occupied lattice with 36 sites in
the detection plane (see fig. 4.9e)). To be as realistic as possible, I added shot and
readout noise to the intensity distribution (see fig. 4.9c)). The shot noise is caused
by photon statistics, while readout noise is caused by the electronics of the cam-
era. For the readout noise I considered a Gaussian distributed noise with a standard
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Figure 4.9: Simulation of a single-site single-atom detection. a) Setup for the flu-
orescence detection with the high NA objective, the tube lens, and the
EMCCD camera (see also sec. 3.7). b) During fluorescence detection
an individual atom acts as a point-like light source. This leads to an
airy disk on the detector for each emitter/atom. With the given resolu-
tion, the light of a single atom mainly distributes over nine pixels. c)
Calculated intensity distribution for a direct fluorescence detection of a
small partially occupied lattice with 36 sites. In the calculation I have
considered 1700 scattered photons per atom and added shot and read-
out noise. With the given photon number a detection fidelity >99% can
be reached applying Gaussian fits on each lattice site. d) Amplitude
distribution obtained from Gaussian fits applied on 1000 calculated in-
tensity distributions. To discriminate between empty and occupied sites
a threshold rule is defined (dashed line) which set to 0.4 for the normal-
ized amplitudes obtained from the fits. e) Simulation of a fluorescence
image with smaller pixel size and without noise for comparison.

.
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deviation of 3 counts, which is a typical value for high performance cameras (see
also sec. 7).
To determine the impact of the signal strength on the image quality I have to define
a fidelity for the detection. Here, it is given by the percentage of successfully recon-
structed occupied (unoccupied) lattice sites. To determine the lattice occupancy in
the calculation, I have performed a Gaussian 2D fit on every lattice site. From the
amplitude distribution of the Gaussians for 1000 individual simulations a threshold
law (see fig. 4.9d)) for occupied lattice sites is defined and is used to determine the
fidelity. From the calculation I find that the fidelity reaches values > 99% for about
1700 scattered photons per atoms, which is sufficient for single-atom detection in
such a lattice experiment.
However, as mentioned above, using such a large number of scattered photons
comes at a price. Each scattering event heats the trapped particles. A large number
of scattered photons can cause excitations to higher lying external states (bands/trap
states). The tunnelling rate between neighbouring lattice sites for high lying bands
is increased and particles tend to delocalize during detection which complicates the
single-atom single-site detection.
However, recently the detection of fermions in such a lattice has been reported [74,
75, 144]. To avoid the delocalization or losses the groups performed imaging in a
deep optical lattice with trapping frequencies on the order of ω > 1MHz in all spa-
tial directions and additional Raman sideband cooling. Especially, the deep optical
lattice has two major advantages. First, the excitation of the particles to higher ly-
ing trap/well states is suppressed. Second, the large state separation enables Raman
sideband cooling with high selectivity.
In our experiment, it is planned to implement the reported scheme in future work.
However, up to now our setup does not provide the required laser beam power for
a pinning lattice as in the recent work. Nevertheless, the first steps towards single-
site single-atom detection have been made by implementing lattice projection and
by setting up the light source for the sideband cooling technique (see [145]). A
next step would be to set up a laser source to provide the power for a sufficiently
deep pinning lattice.
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Figure 4.10: Particles in an optical lattice (The false color image gives the number
of particles per pixel along the line of sight). We use the high NA
detection system for absorption imaging (see also sec. 3.7 and sec.
3.9). The lattice has a size of about 30 wells. The total number of
atoms is ≈ 300 and the lattice constant is d ≈ 2.4µm. A single pixel
corresponds to 0.37µm in the object plane.
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5.1 Abstract

Studying chemical reactions on a state-to-state level tests and improves our
fundamental understanding of chemical processes. For such investigations it
is convenient to make use of ultracold atomic and molecular reactants as they
can be prepared in well defined internal and external quantum states.
Here, we investigate a single-channel reaction of two Li2-Feshbach molecules
where one of the molecules dissociates into two atoms 2AB⇒AB+A+B. The
process is a prototype for a class of four-body collisions where two reactants
produce three product particles. We measure the collisional dissociation rate
constant of this process as a function of collision energy/ temperature and
scattering length. We confirm an Arrhenius-law dependence on the collision
energy, an a4 power-law dependence on the scattering length a and determine
a universal four body reaction constant.

5.2 Introduction

The field of ultracold chemistry has been demonstrating an increasing level of con-
trol over internal and external states of atomic and molecular reactants [3, 4, 17,
146]. However, even cold reactions have in general many possible final product
states [32, 33, 35, 36, 38, 147–152] and reaction channels are therefore hard to
track individually [39]. Nevertheless, reactions do exist where essentially only a
single reaction channel is participating, such as atom-Feshbach molecule exchange
reactions in Bose-Bose [153] and Bose-Fermi [154] mixtures, and three-body re-
combination A+A+B→AB+A in a Fermi-Fermi mixture [8]. Especially for reac-
tions involving identical Fermions the Pauli exclusion principle can lead to a par-
ticularly strong single-channel character and can also ensure a high collisional sta-
bility of AB molecules. By contrast, for a reaction A+B+D→AB+D, where A, B,
and D are distinguishable atoms, the Pauli exclusion principle does not play a direct
role. In the limit of zero-range interactions the A-A-B and A-B-D systems belong
to different universality classes, denoted non-Efimovian and Efimovian, respec-
tively. Efimov physics and a broad range of associated phenomena have recently
been studied to a great extent [24, 28]. Here, we report on the first observation
and characterization of the ultracold non-Efimovian reaction AB+AB→A+B+AB
(break-up) and its inverse A+B+AB→AB+AB (three-body recombination). Be-
sides being intrinsically four-body, these reactions also exhibit two- and three-body
aspects. A peculiarity is that although the molecule AB is distinguishable from
the atoms A and B, similar as for particle D, the large size of the weakly-bound
AB molecule prevents, however, the system from being Efimovian. A simple di-
mensional analysis then suggests [155] that at low energies the recombination rate
constant reads R2 = Ch̄a4/m, where a is the AB scattering length, m is the atom
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mass, and C is a universal number.
In our experiments we measure R2 and the break-up rate constant C2 using a gas of
6Li atoms in the lowest two hyperfine states denoted by A and B and weakly-bound
AB dimers. By driving the mixture out of chemical equilibrium we observe the
subsequent reaction dynamics. Our measurements confirm the detailed-balance re-
lation between these two constants [98] R2 and C2 and, in particular, the Arrhenius
law for the break-up reaction. We confirm this a4-dependence of R2 and provide the
first experimental estimate for C ≈ 470. Our results are important for the stability
problem of a pure atomic mixture, an issue proved to be relevant for the controver-
sial issue of itinerant ferromagnetism (see, for example ref. [156, 157]). Due to the
different threshold laws and the large value of C, the reaction A+B+AB→AB+AB
may be faster than A+A+B→AB+A, as soon as there is a sizeable seed of bound
AB molecules in the system [98].

5.3 Results

5.3.1 Experimental scheme

The initial atomic and molecular sample is prepared from an ultracold gas of
Ntot = 2.6× 105 fermionic 6Li atoms which consists of a balanced mixture of the
two lowest hyperfine states |mF = ±1/2 > of the electronic ground state. In the
vicinity of the Feshbach resonance at B0 = 832.2G (see ref. [91]) exothermic
three-body recombination can convert pairs of | − 1/2 >, |+ 1/2 > atoms into
weakly-bound Feshbach molecules with the same well defined internal quantum
state. The process is reversible and a Feshbach molecule can dissociate again into
the unbound |−1/2 >, |+1/2 > atoms via an inelastic, endothermic collision with
another molecule or atom. At thermal equilibrium balance of the back and forth re-
actions is established. This balance is a function of the particle densities, tempera-
ture, molecular binding energy, and scattering length, all of which can be controlled
in our setup via confinement, evaporative cooling, and by choosing a magnetic off-
set field B < B0. Our trap is a combination of a magnetic trap and an optical dipole
trap and is cigar shaped. The trap has a depth of U0 = 21µK× kB, corresponding
to a radial (axial) trapping frequency of ωr = 2π × 0.99kHz (ωax = 2π × 21Hz),
respectively. We use evaporative cooling to set the temperature to approximately
1.2 to 1.3µK. At this temperature 80% to 90% of all atoms are bound in Feshbach
molecules within the B-field range of 705 G to 723G of our experiments, corre-
sponding to a binding energy Eb between 6 and 10µK×kB (see Methods). We note
that at these settings where T ≥ TF (TF is the Fermi temperature) and Eb > kBTF,
quantum degeneracy only plays a negligible role for the reaction kinetics.
In our first experiment we suddenly raise the temperature of the gas using an ex-
citation pulse of parametric heating. This shifts the gas out of thermal equilibrium
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Figure 5.1: Molecule dissociation dynamics. a Detailed balance of collisional dis-
sociation and association of dimers. b A parametric heating pulse trig-
gers the reaction dynamics. c As part of the detection scheme, the Fesh-
bach molecules which have a large admixture of the X1Σ+

g ,v = 38 state
are optically pumped to undetected atomic or molecular states via the
intermediate level A1Σ+

u ,v
′ = 68. d Measurement of dissociation dy-

namics at 709G. Lower part: Circle (triangle) symbols show the num-
ber of unbound atoms NA (ÑA) for variable holding time t with (with-
out) initial parametric heating pulse. Upper part: Diamond (square)
symbols show the total particle number Ntot (Ñtot) with (without) para-
metric heating pulse.
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and the gas responds by collisionally dissociating a part of its molecules, (see fig.
5.1a). For this, we modulate the dipole trap depth (see fig. 5.1b) with frequency
ωheat ≈ 1.7ωr and amplitude ∆U = 0.21U0 during a period tp = 20ms. After the
excitation atoms and dimers thermalize on a time scale of a few milliseconds via
elastic collisions, whereas the chemical equilibrium requires a much longer time of
150ms.

5.3.2 Dynamics

To investigate these dynamics we measure how the number of molecules NM and
the number of unbound atoms NA change as a function of time. We measure NA by
using standard absorption imaging. However, prior to the imaging we first remove
all Feshbach molecules from the gas. For this, a resonant laser pulse transfers
the molecules to an electronically excited molecular state A1Σ+

u ,v
′ = 68 which

subsequently decays with in a few ns to undetected atomic or molecular states
[99, 105] (see fig. 5.1c), see Methods. The laser pulse has a duration of 0.5ms
which is short compared to the reaction dynamics. In order to determine NM we
measure in a second run the total number of atoms Ntot = 2NM +NA, whether they
are bound or unbound, and subtract NA. For this we use again absorption imaging.
The Feshbach molecules are so weakly bound that the imaging laser resonantly
dissociates them quickly into two cold atoms which are subsequently detected via
absorption imaging [86].
Figure 5.1d shows the measurements of NA and Ntot as a function of holding time
after the heating pulse. While the total number of atoms Ntot is essentially constant
apart from some slow background losses, the atom number NA exhibits a 30%
increase in about 100ms which is the dissociation response of Li2 molecules to
the thermal pulse. Besides this, NA also exhibits a slow, steady increase which
we attribute to a background heating of the gas, e.g. due to spontaneous photon
scattering of the dipole trap light (see Supplementary Note 11). As shown by ÑA
in fig. 5.1d) this background heating is also present in the absence of the initial
heating pulse. Similarly, the slow decay of Ntot is also present without the heating
pulse (see Ñtot in fig. 5.1d). It can be completely explained by inelastic collisions
between molecules as previously investigated in ref. [104].
In principle, collisional dissociation in our experiment can be driven either by
atom-molecule collisions or by molecule-molecule collisions. We only consider
molecule-molecule dissociation since its rate is about two orders of magnitude
larger in our experiments than for atom-molecule dissociation with its known rate
constant of [98] C1 ≈ 10−13cm3 s−1 and given the fact that the mean density of
atoms is a factor of ten smaller than for the dimers. In a simple physical picture,
the suppression of the atom-dimer dissociation is due to the Pauli principle act-

1See also sec. 5.6.1
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ing on the outgoing channel, which involves two identical fermionic atoms [158,
159]. In the molecule-molecule collisional dissociation, the molecules can either
dissociate into four unbound atoms, 2AB⇒ 2A+2B, or into two unbound atoms,
2AB⇒AB+A+B. However, since in our experiments the molecular binding en-
ergy Eb is typically by a factor of 5 larger than the thermal energy kBT , the disso-
ciation into four atoms comes at an additional sizeable energy cost and is therefore
comparatively suppressed by an Arrhenius factor of exp(−Eb/kBT ) ≈ 7× 10−3,
see also [98]. Therefore, to first order, we only need to consider dissociation into
two atoms. The evolution of the density nA of unbound atoms is then given by the
rate equation,

ṅA = 2C2 n2
M−R2 n2

A nM/2 (5.1)

Here, nM is the molecule density and C2 (R2) are the rate constants of molecule
dissociation (association). A spatial integration of eq. 5.1 gives the rate equation
for the number of unbound atoms,

ṄA = (4π
3/2)−1 C2

σ2
r σax

N2
M−2−7(2π

2)−3/2 R2

σ4
r σ2

ax
N2

A NM (5.2)

where we assume a Boltzmann distribution in a harmonic trap. Here, σr(ax) =√
kBT/2mω2

r(ax) denote the radial (axial) cloud width of the molecular gas and m

is the mass of 6Li. Furthermore, in eq. 5.2 we have used the fact that the cloud size
for the unbound atoms is σr(ax),A =

√
2σr(ax). By fitting eq. 5.2 to the data of fig.

5.1d we can determine the rate coefficients to be C2 = (2.0±0.6)×10−12 cm3 s−1

and R2 = (4.1±1.2)×10−22 cm6 s−1. For the fit we use the measured widths σr(ax)
which turn out to be fairly constant during the holding time t (a more detailed
discussion will be given below).

5.3.3 Temperature dependence

Next, we investigate how the reaction rates depend on temperature. For this, it is
convenient to study the atom molecule system in a state of near equilibrium, where
ṄA ≈ 0, i.e. ṄA is much smaller than the individual collisional dissociation/as-
sociation rates of eq. 5.2. We can then set C2

R2
= 2−5(2π)−3/2 1

σ2
r σax

N2
A

NM
. Thus, a

change in the ratio C2/R2 due to a variation in temperature, can be experimentally
observed in terms of a change of particles numbers and widths. Figure 5.2a shows
such measurements at B = 723G (ṄA was always at least a factor of ten smaller
than the collisional dissociation/association rates). Within the small temperature
range between 1 and 3µK, the rate constant ratio C2

R2
increases by more than two

orders of magnitude. This result can be compared to a prediction based on statisti-
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Figure 5.2: Temperature dependence of the equilibrium state and temperature evo-
lution. a The ratio C2/R2 (circles) is plotted as a function of tempera-
ture T at B = 723G. The errorbars denote the s.d. in the thermometry.
The continuous line is a calculation without any free parameters (see
text passage to Temperature dependence). b Measured evolution of the
axial cloud size σax (green circles) at B = 705G after injecting a heat
pulse during -20 ms< t < 0 ms (vertical dashed lines). The heat pulse
abruptly increases the temperature T and size σax ∝

√
T . In addition

it excites small collective breathing mode oscillations, see red line as
a guide to the eye. The red triangles mark the evolution of σax when
averaged over one oscillation period. This evolution is well described
by a model calculation (blue line) as described in Supplementary Note
1 and Supplementary Fig. 12. The temperature scale applies to the
non-oscillatory part of the data.



80 5 Reaction kinetics in ultracold molecule-molecule collisions

cal mechanics [98],
C2

R2
= h−3(πmkBT )3/2e−Eb/kBT (5.3)

which is shown in Fig. 5.2a as a continuous line with no adjustable parameters.
The agreement between experiment and theory is quite good. The strong increase
of C2

R2
with temperature is dominated by the Arrhenius law exponential e−Eb/kBT

which comes into play for the endothermic dissociation (C2) but is absent for the
exothermic recombination process (R2).
The strong temperature dependence of the rate constants potentially has a strong
influence on the reaction dynamics of our atom/ molecule system, as the chemical
reactions change the temperature of the gas. To quantify this influence, we take a
closer look at the temperature evolution in our experiment by tracking the cloud
size σax ∝

√
T , see fig. 5.2b. Initially the system is in thermal equilibrium and the

molecular cloud has an axial cloud size of about σax = 230µm which corresponds
to a temperature of T ≈ 1.3µK (see Supplementary Note 2 and Supplementary
Fig. 23). The heating pulse, which starts at t =−20ms and ends at t = 0, deposits
thermal energy in the system. Due to the fast elastic collisions of dimers and atoms
the thermal energy deposition results in a fast increase of the cloud size of about
6% which corresponds to a temperature increase of ∆T ≈ 0.15µK. In addition, the
modulation of the dipole trap during the heating pulse excites unwanted breathing
mode oscillations in the cloud with a small amplitude of two percent. The mean
cloud size which is obtained by averaging over one oscillation (red circles in fig.
5.2b) is almost constant within the first 150ms after the heating pulse. This might
be at first surprising since one might expect the endothermic dissociation to con-
siderably lower the temperature again. However, since the initial atom number is
quite small, only a small amount of molecules need to break up to significantly
increase the recombination rate ∝ N2

A and thus to reach a new balance. Therefore
only a small amount of the injected heat is consumed for the dissociation, corre-
sponding to a small amount of cooling. Moreover, this residual cooling is almost
canceled by the background heating. As a consequence the remaining temperature
variation is less than 1%. For later times, t > 150ms, when the reaction triggered
by the heating pulse has already stopped, the background heating leads to mono-
tonically increasing mean cloud size. From our results in fig. 2a we conclude that
a temperature variation of 1% leads to C2/R2 variations of at most a few percent,
which is negligible with respect to our current measurement accuracy.
In view of these complex dynamics we have set up a system of coupled differential
equations that describe in a more complete fashion the various reaction/loss pro-
cesses at varying temperatures (see Supplementary Note 14). The solid curve in fig.
5.2b is a result of these calculations which in general show very good agreement

3sec. 5.6.2
4sec. 5.6.1
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Figure 5.3: Dependence of the reaction rate constants on the scattering
length. a Reaction dynamics for three scattering lengths of a =
(1760,1920,2000)a0 (green squares, red diamonds and blue circles),
corresponding to the magnetic fields B = (705,711,714)G, respec-
tively. The continuous lines are fits based on eq. 5.2 from which R2
and C2 can be extracted. b The measured association rate constant R2
as a function of a (red diamonds). R2 roughly follows the universal re-
lation R2 =Ch̄a4/m, with C = 470 obtained from a fit to the data (red
continuous line). The majority of the data can be found in a band (or-
ange area) around the fit curve. The band is bounded by 370<C < 570.
c The dissociation rate constant C2 (red diamonds) as a function of a.
The temperatures between the individual measurements varied by about
15%. To compensate the influence of the temperature we use eq. 5.4
to rescale C2 to values corresponding to T = 1.5µK (blue circles). The
error bars correspond to temperature uncertainties and the 95% confi-
dence bounds determined by fits as in a. The blue continuous line is the
theoretical prediction of eq. 5.4 for a universal constant of C = 470.

with our measurements.

5.3.4 Interaction strength dependence

Finally, we investigate the influence of the interaction strength between the par-
ticles on the reaction dynamics. For this, we tune the scattering lengths with the
help of the magnetic B-field. We note that the dimer-dimer scattering length add
is given by add = 0.6a, where a is the scattering length for atom-atom collisions
[42]. Figure 5.3a shows three measurements for a = (1760,1920,2000)a0. For
technical reasons, we start with three different NA at t = 0. However, this has neg-
ligible influence on the dynamics of the dissociation, which we have checked with
a numerical calculation. Already from the data shown in fig. 5.3a it is obvious
that the dissociation rates strongly increase with the scattering length. From fits to
these and additional measurements we extract R2(a) and C2(a) for various scatter-
ing lengths and plot the results on a double logarithmic scale in fig. 5.3b, c (red
diamonds).



82 5 Reaction kinetics in ultracold molecule-molecule collisions

The association (three-body recombination) process characterized by the rate con-
stant R2 has been extensively discussed for various Efimovian systems [25–27],
where it depends on the three-body parameter, and for non-Efimovian Fermi-Fermi
mixtures, where it is suppressed in the low-energy limit [158, 159]. By contrast,
here we are dealing with a non-Efimovian system of three distinguishable particles,
for which a simple dimensional analysis [155] predicts the low-energy threshold
law R2 = C h̄a4/m, where C is a universal constant. In fig. 5.3b this a4 scaling
behavior is plotted for C = 470, obtained from a fit to our data. Our results show
quite good agreement with the expected power law dependence within the error
bars. Figure 5.3c shows C2 for various a (red diamonds). These data are still raw in
the sense that each measurement is taken at a slightly different temperature which
increases with the scattering length (see Supplementary Note 35). In order to com-
pensate this temperature change we use eq. 5.3 to rescale the measured C2 rate
constants to values corresponding to a constant temperature T = 1.5µK (see blue
circles in fig. 5.3b). The resulting rate constant C2 increases by more than one
order of magnitude in the tuning range and agrees reasonably with the theoretical
prediction (without any free parameter),

C2 =C
(πmkB)

1/2 kB

2h2 T 3/2 a4 e−
Eb(a)
kBT , (5.4)

which is obtained by inserting R2 = C h̄a4/m into eq. 5.3 and using again C =
470. As far as we know there is no direct theoretical prediction for this number.
D’Incao and co-workers [44] calculated dimer-dimer elastic and inelastic scattering
properties in a wide range of collision energies. For the energy interval relevant
here, these calculations indicate 30 . C . 100 which is also consistent with our
own numerical estimates based on [42, 43]. The large discrepancy between the
theoretical and experimental value needs to be investigated in future studies. It
may be due to an atom dimer attraction in the p-wave channel (see supplemental
material of ref. [160]), which is difficult to take into account theoretically within
our current approach.

5.4 Discussion
In conclusion, we have investigated the collisional dissociation of ultracold mo-
lecules in a single reaction channel which is characterized by the precisely defined
quantum states of the involved atoms and molecules. Using a heating pulse we
shift an atom/ molecule mixture which is initially in detailed balance out of equi-
librium and measure the evolution of the system until it reaches a new equilibrium.
This allows us to determine reaction rate constants, in particular for the collisional

5sec. 5.6.3



5.4 Discussion 83

dissociation of two molecules. Furthermore, we find a strong temperature depen-
dence of this rate which is consistent with the well known Arrhenius equation. In
addition, we find agreement of the association (dissociation) rate constant with a
scaling behavior of a4 (a4 e−Eb/kBT ), respectively. From our data we estimate the
universal constant C ≈ 470, which is in discrepancy with the theoretical predic-
tion. For the future, we plan to extend the current work to study the dynamics of
chemical reactions in a regime, where Fermi and Bose statistics play an important
role.



84 5 Reaction kinetics in ultracold molecule-molecule collisions

5.5 Methods

5.5.1 Preparation of the atomic and molecular quantum gas
To prepare our sample of ultracold atoms and molecules, we initially trap 109

6Li atoms in a magneto-optical trap, where the atoms are cooled to a tempera-
ture of 700µK. The particles are transferred to an optical dipole trap of a focused
1070nm laser beam with an efficiency of 1%. To generate a balanced distribu-
tion (50%/50%) of atoms in the |mF = ±1/2 > spin states we apply a resonant
100ms radio frequency pulse. Initially the optical trap has a depth of 4mK× kB
and is subsequently ramped down within 6s to 1.3µK×kB to perform forced evap-
orative cooling. This is carried out at a magnetic field of 780G and during this
process Feshbach molecules form via three-body recombination. To suppress par-
ticle loss in the experiments and to assure harmonicity of the trapping potential,
the trap depth is ramped up again to U0 = 21µK× kB after evaporation. We then
ramp the B-field in a linear and adiabatic fashion to the specific value at which
the experiment will be carried out, within the range of 705G to 723G. After a
holding time of 100ms the gas has a temperature of approximately 1.2 to 1.3µK
and is in chemical equilibrium, with 80% to 90% of all atoms being bound in Fes-
hbach molecules. The binding energy of the molecules can be determined from
[93] Eb =

h̄2

m(a−ā)2

(
1+2.92 ā

a−ā −0.95 ā2

(a−ā)2

)
using ā = 29.9a0, which yields val-

ues between 6 and 10µK× kB in our B-field range. The scattering length a as
a function of the B-field is taken from ref. [91]. It can be approximated with
a = abg

(
1− ∆B

B−B0

)
, where ∆B = −263.3G is the width of the resonance and

abg =−1582a0 is the background scattering length.

5.5.2 Removing of Feshbach molecules
To optically pump the Feshbach molecules into undetected states, we use a 673nm
laser with a peak intensity of I0 = 500mWcm−2 which excites all Feshbach mo-
lecules to the A1Σ+

u ,v
′ = 68 state [105] (see fig. 1c) within 500µs. The ex-

cited molecular state decays within a few ns either into two unbound atoms which
quickly leave the trap or into deeply bound Li2 molecules which are invisible for
our detection.
Besides molecule excitation, the pulse leads to photoassociation of unbound atoms.
This reduces the number of free atoms and leads to an overestimation of the molecule
number. However, in our parameter range and for our free atom densities the re-
sulting error for the free atom number is below one percent and can be neglected
(see also [99]).
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5.6 Supplementary Information

5.6.1 Supplementary Note 1: Modelling of the reaction
dynamics

We perform model calculations to describe in more detail the measured dynamics
of the atom/ molecule system, triggered by the initial heat pulse. For this, we
integrate the following coupled system of rate equations for the atom number NA,
the molecule number NM and the temperature T ,

ṄA =C2 a1
N2

M
σ2

r σax
−R2 a2

NM N2
A

σ4
r σ2

ax
(5.5)

ṄM =−ṄA

2
−CDD a1

N2
M

2σ2
r σax

(5.6)

Ṫ =− Eb

6kB (NA +NM)
ṄA +CH (5.7)

where a1 = (4π3/2)−1 and a2 = 2−7(2π2)−3/2 are numerical constants. Equation
(5.5) is identical to eq. (2) in the main text. The first term in eq. (5.6) corresponds
to the conversion between molecules and unbound atoms, while the second term
accounts for molecule losses in inelastic dimer-dimer collisions with rate constant
of CDD = 2.3× 10−13 cm3s−1, which is extracted from the previous measurement
of ref. [104]. Equation (5.7) has two contributions. The first one accounts for cool-
ing due to endothermic dissociation and heating due to exothermic recombination
reactions. The second contribution corresponds to background heating of the gas
caused, e.g., by off-resonant scattering of the dipole-trap light. Equations (5.5) and
(5.6) are coupled via the cloud sizes σr(ax) =

√
kBT/mMω2

r(ax) to the temperature
equation (5.7).
The results of a corresponding calculation at 709G are shown in Supplementary
Fig. 5.4 and are in very good agreement with the experimental data. The values
of the parameters C2 and R2 are the same as in the main text. CH = (3.0± 1.0)×
10−7 s−1 is mainly determined by the long-time evolution of the cloud size (see
Supplementary Fig. 5.4d,e).
The total particle number in Supplementary Fig. 5.4c) exhibits the losses caused
by the inelastic dimer-dimer collisions and agrees well with the experimental mea-
surements. The temperature in Supplementary Fig. 5.4d) first decreases slightly
due to endothermic dissociation after the heat pulse and then increases again due
to the dipole-laser induced photodissociation. Supplementary fig. 5.4e shows the
calculated cloud width σax as determined by the temperature T . It agrees well with
the measurements (green circles) if we average over the small-amplitude collective
oscillations which have been excited by the initial heat pulse.
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Figure 5.4: Model calculation for the evolution of the atom/ molecule system.
Results from the coupled differential equations (5.5-5.7) (continuous
lines). Plot symbols show experimental data for 709G. For details see
text of Supplementary Note 1.
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5.6.2 Supplementary Note 2: Thermometry
Within the parameter range of our experiments the molecular and atomic density
distributions are each well described by that of a non-interacting thermal gas lo-
cated in a harmonic trap. The axial sizes of the molecular and atomic clouds are
given by σax =

√
kBT/mω2

ax and σax,A =
√

2σax, respectively. Because the axial
trapping frequency ωax is precisely known for our setup, we can determine the tem-
perature T by measuring the molecular or atomic cloud size. These cloud sizes are
extracted from images of the mixed atom/ molecule clouds after careful analysis,
for which we also determine the atom fraction NA/Ntot of the cloud. Supplemen-
tary Figure 5.5 shows a calculated typical example for the 1D density distributions
(where the transverse directions have been integrated out) for atoms nA, molecules
nM and both ntot = 2nM +nA.

5.6.3 Supplementary Note 3: Rescaling the measured C2 to a
constant temperature

Supplementary table 5.1 is the list of temperatures at which the C2 measurements
in fig. 5.2 are taken. The statistical uncertainty of the temperatures is around
∆T = 0.08µK.

Table 5.1: Temperatures and scattering lengths of the measurements in fig. 5.2.

a (a0) 1760 1830 1920 2000 2090 2180 2280
T (µK) 1.60 1.52 1.51 1.47 1.42 1.41 1.35

The temperatures increase with decreasing scattering length a. This temperature
change is a result of the way we prepare the sample. In particular, the magnetic field
ramp to the target field takes place within a 21µK× kB deep trap which prevents
further evaporative cooling. With decreasing a, the binding energy of the dimers
increases and therefore for a given temperature the equilibrium molecule fraction
increases. The corresponding molecular association, however, heats the sample.



88 5 Reaction kinetics in ultracold molecule-molecule collisions

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1 n
tot

n
A

n
M

Figure 5.5: Calculated 1D density distribution for a thermal cloud of atoms
and molecules. In a harmonic potential non-interacting atoms and
molecules exhibit a Gaussian density distributions nA and nM, respec-
tively, of which the widths differ by a factor or

√
2. The total density

distribution is the sum ntot = 2nM+nA. Here, the atom fraction NA/Ntot
is 0.6.
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5.7 Additional information to the molecule detection
technique

In this section I present additional information to the molecule detection technique
described in this chapter so far (not included in the paper, i.e. sections 5.1 to 5.6.3).
The key technique used in the experiments presented in this chapter, is the molecule
detection technique. It allows us to determine the number of dimers and unbound
atoms in an ensemble of ultracold 6Li atoms. In the case of strongly interacting 6Li
atoms, this information can not be accessed directly via absorption imaging since
both species (unbound fermions and bosonic dimers) are detected simultaneously.
This is due to the fact that the binding energy of the dimers is small compared to
the width of the transition in the investigated magnetic field range (here: (700−
726)G).
Therefore, spin selective absorption imaging in the vicinity of the Feshbach res-
onance, e.g. measuring the number of atoms in |1〉, gives the total number of
particles in |1〉 whether they are bound or not. To determine the number of free
atoms and molecules in a given configuration, we perform two experimental runs
as described in sec. 5.3.1. In the first experimental run the total number of atoms
is determined via absorption imaging. In a second experiment, with an identical
cloud, molecules are optically excited prior to the detection. From the excited state
the dimers decay either to deeper bound vibrational states of the electronic ground
state, invisible for the detection system, or dissociate to unbound atoms which
quickly leave the trap. A subsequent detection of the remaining particles in the |1〉
state yield the number of unbound atoms.
To make use of this scheme, the frequency of the laser has to be adjusted to the
molecular transition (see refs. [100, 105]). To determine the position of the exci-
tation frequency, we performed spectroscopy on the molecular gas. In fig. 5.6 a)
spectroscopy data for a measurement at a magnetic field of B = 650G is shown. In
the experiment we find the resonance to be located at ν0 = 445.287245THz which
we identify as the X1Σ+

g ,v = 38→ A1Σ+
u ,v

′ = 68 transition. Here, for simplicity a
Gaussian fit is used to determine the resonance position which is reasonable since
we observe power broadening and a broadening due to magnetic field fluctuations.
For the identification of the molecular transition we performed extended spec-
troscopy in the frequency range of 444THz to 446THz. We compared the detected
transition frequencies with the results of coupled channel calculations (see fig. 5.6
b)) provided by Eberhard Tiemann (University of Hannover) [161].
It is important to note that the molecular transitions shift with the magnetic field
similar as the bare atomic transition. This is due to the fact that the dimers have
a large triplet contribution [162]. For 700G < B < 900G the X1Σ+

g ,v = 38→
A1Σ+

u ,v
′ = 68 transition tunes with ∆ν/∆B≈ 2.7MHz/G.
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Figure 5.6: Molecule spectroscopy. a) Spectroscopy on a gas with a molecule frac-
tion of about 30% at B = 650G. Here, N is the number of atoms in
|1〉. At ν0 = 445.287245THz we find the resonance of the X1Σ+

g ,v =

38→ A1Σ+
u ,v

′ = 68 transition. The decay of the molecules from the
excited to the electronic ground state leads to the observed losses. The
natural linewidth of the transition is ≈ 12MHz. Here, we see power
broadening and broadening due to magnetic field fluctuations. b) Mea-
surement results for the X1Σ+

g ,v = 38→ A1Σ+
u ,v

′ = 65..68 transitions
(diamonds). For comparison, the result of coupled-channel calculations
provided by Eberhard Tiemann [161] are shown (crosses).

Removing dimers

As mentioned in the previous passage, in the molecule detection scheme there are
two possible mechanisms that lead to dimer losses. The excited dimers can either
decay to deeper bound molecules, which are invisible for the detection scheme, or
lead to dimer dissociation where the decay products have a large thermal energy
and quickly leave the trap. To estimate which process dominates, we have a closer
look on the Franck-Condon factors (FCFs) for the decay of the optically excited
dimers (taken from ref. [161]). Figure 5.7 shows the corresponding FCFs. The
data reveals that a decay to the initial state X1Σ+

g ,v = 38 with FCF(v = 38) = 0.08
has by far the highest FCF [100, 162] and that the probability for a decay to deeper
bound states, where Σ2

R=0Σ37
v=0FCF(v,R) = 0.018, is highly suppressed. The prob-

abilities indicate that a decay to a bound state is comparatively low, making it more
likely that molecule losses are mainly driven by a bound-free transition and a sub-
sequent product ejection than a transfer to a deeper bound state.
Besides this, we also looked into the dynamics of the excitation process itself.
We find that the dimers decay exponentially as a function of the optical excitation
pulse width (see also [99, 105]). In a sample consisting of both, dimers and un-
bound atoms, this exponential curve is offset by the unbound atoms. In fig. 5.8 a
corresponding experiment at 723G is shown. The curves show an exponential de-
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Figure 5.7: Franck-Condon factors (FCFs) for the decay of molecules from
A1Σ+

u ,v
′ = 68,R′ = 1 to X1Σ+

g ,v = 0− 38 obtained from coupled-
channel calculations of Eberhard Tiemann [161]. In the molecule ex-
citation scheme the dimers are transferred to the A1Σ+

u ,v
′ = 68,R′ = 1

initially, according to the selection rules. From this state the dimers can
decay to X1Σ+

g ,R = 0,1,2,v = 0..38. The green squares give the FCFs
for the decays to states with R = 0, the red triangles for the decays to
the states with R = 1, and the blue circles for the decays to states with
R = 2, respectively.
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Figure 5.8: Optical excitation of molecules. Number of remaining unbound atoms
N in one spin state as a function of the excitation pulse duration t for a
temperature of T = 0.7TF (green circles) and T = 1.3TF (blue circles)
at B = 726G. In both cases the number of atoms decays almost expo-
nentially with t. Both curves show an offset which corresponds to the
remaining unbound atoms. An exponential fit is applied for both curves
(straight lines). The excited molecules mainly decay to unbound atoms
that quickly leave the trap leading to the detected losses.

cay and an offset given by the unbound atoms in the gas. Please note that the time
constant of the decay is a function of the intensity of the excitation beam which
increases with increasing intensity (for more information see refs. [99, 105, 163]).
In general, the optical excitation pulse could also lead to photo-association (PA)
of two atoms in opposite spin states. The PA rate scales with the atomic density
squared. Additionally, in our case the PA rate constant increases for (kFa)−1→ 0
which is due to the fact that the binding energy is small close to resonance. How-
ever, for a gas with moderate density (see also appendix A.2) and (kFa)−1 � 1,
which is the case for the experiments presented in this chapter, PA can be ne-
glected. This assumption is supported by the observed dynamics in fig. 5.8 which
do not show any onset of a two-body decay.
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6.1 Abstract

Second sound is an entropy wave which propagates in the superfluid compo-
nent of a quantum liquid. Because it is an entropy wave, it probes the ther-
modynamic properties of the quantum liquid which are determined, e.g., by
the interaction strength between the particles of the quantum liquid and their
temperature. Here, we study second sound propagation for a large range of
interaction strengths within the crossover between a Bose-Einstein condensate
(BEC) and the Bardeen-Cooper-Schrieffer (BCS) superfluid. In particular, we
investigate the strongly-interacting regime where currently theoretical predic-
tions only exist in terms of an interpolation between the BEC, BCS and unitary
regimes. Working with a quantum gas of ultracold fermionic 6Li atoms with
tunable interactions, we show that the second sound speed varies only slightly
in the crossover regime. We gain deeper insights into sound propagation and
excitation of second s ound by varying the excitation procedure which ranges
from a sudden force pulse to a gentle heating pulse at the cloud center. These
measurements are accompanied by classical-field simulations which help with
the interpretation of the experimental data. Furthermore, we determine the
spatial extension of the superfluid phase and estimate the superfluid density.
In the future, this may be used to construct the so far unknown equation of
state throughout the crossover.
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6.2 Introduction
Second sound is a transport phenomenon of quantum liquids that emerges below
the critical temperature for superfluidity TC [51, 115, 164]. It was experimentally
discovered [52] in 1944 in He II [165] and was described with a hydrodynamic
two-fluid model [47, 50, 51, 166] which treats He II as a mixture of a superfluid
(SF) and a normal fluid (NF). The SF component has no entropy and flows without
dissipation. The NF component carries all the entropy and has non-zero viscosity.
In the limit of vanishing temperature T → 0, the two-fluid model predicts that first
sound (i.e. standard sound waves) correspond to a propagating pressure oscillation
with constant entropy, while second sound is an entropy oscillation propagating at
constant pressure [166].
The properties of a superfluid naturally depend on parameters such as its tempera-
ture and the interaction strength between its particles. With the advent of ultracold
quantum gases, with tunable interactions, these dependencies can now be stud-
ied. In particular, an ultracold fermionic quantum gas with a tunable Feshbach
resonance offers a unique opportunity to access various sorts of superfluidity in
one system, ranging continuously between a Bose-Einstein condensate (BEC) of
bosonic molecules, a resonant superfluid, and a superfluid gas of Cooper pairs
(BCS superfluid) [86, 103, 167]. In the experiment this is done by tuning the in-
teraction parameter (kFa)−1, where a is the scattering length, kF =

√
2mEF/h̄ the

Fermi wavenumber, EF is the Fermi energy and m the atomic mass.
A large range of thermodynamical properties of the BEC-BCS crossover has been
studied e.g. in refs. [106, 108, 167–172]. Recently, second sound has been mea-
sured by Sidorenkov et al. [53] in a unitary Fermi gas and by Ville et al. [56] in a
two-dimensional bosonic superfluid.
Here, we experimentally investigate how second sound changes across the BEC
– BCS crossover. This is especially important, since full theoretical calculations
are not yet available in the strongly interacting regime. Nevertheless, comparing
our measurements to existing calculations and interpolations we find reasonable
agreement. In particular, c-field simulations in the BEC regime match quite well
the corresponding observed wave dynamics of the experiment up to an interaction
strength of 1/kFa = 1.
Furthermore, we explore how to tune second sound generation by testing experi-
mentally and theoretically various excitation schemes ranging from a gentle local
heating of the superfluid to a short local force pulse. As second sound is mainly an
entropy wave and first sound is mainly a pressure wave, these different excitation
schemes give rise to different responses for first and second sound. This helps for
separating the generally weak second sound signals from the first sound ones. We
find, that this separation works especially well when both first and second sound
are excited as density dip wavepackets. For this case, we were able to quantita-
tively compare the amplitudes of first and second sound and compare the results to
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a prediction.

6.3 Results

6.3.1 Experimental details
Our experiments are carried out with a balanced, two-component ultracold gas of
fermionic 6Li atoms in the two lowest hyperfine states |F,mF〉 = |1/2,±1/2〉 of
the electronic ground state. The gas is confined by a combined magnetic and op-
tical dipole trap with a trap depth of U0 ≈ 1µK× kB, for details see ref. [40, 99].
The trap is nearly harmonic and cylindrically symmetric with trapping frequencies
ωr = 2π×305Hz and ωx = 2π×21Hz. The temperature and the particle density
are controlled by evaporative cooling. In the experiments the temperature ranges
approximately from 0.12TF to 0.28TF, where TF = EF/kB = h̄(3ω̄3N)1/3 is the
Fermi temperature, ω̄ =

(
ωxω2

r
)1/3 is the geometric mean of the trapping frequen-

cies and N is the total number of atoms. The scattering length a is tunable with an
external magnetic field B via a magnetic Feshbach resonance at 832G [91].
To excite sound modes in the system, we focus a blue-detuned 532nm laser onto the
trap center (see ref. [53] and Fig. 6.1a). The laser beam is aligned perpendicularly
to the optical dipole trap and produces a repulsive potential barrier of Uex ≈ 0.2U0.
At its focus, the beam has a waist of about 20µm, which is comparable to the cloud
size in the radial direction. To excite sound waves, the height of this additional
potential is modulated. The excited sound modes generally exhibit contributions
from both first and second sound [62, 173, 174]. However, it is possible to generate
preferentially either one of the two sound modes by adapting the excitation method.
To excite primarily first sound, we abruptly switch on the excitation laser beam
(see Fig. 6.1b), similarly as for the first experiments on sound propagation in a
dilute BEC [175]. This applies pressure on the cold cloud on both sides of the laser
beam and creates two density wave packets (see Fig.6.1c) which propagate out in
opposite directions along the axial trap axis with the speed u1. In the experiments
we detect these waves with the help of absorption imaging by measuring the density
distribution of the atomic cloud as a function of time.
Figure 6.1d shows such density waves for an experiment at (kFa)−1 ≈ (1.91±
0.05), B = 735G and a temperature of T = (140± 30)nK = (0.28± 0.06)TF ,
which corresponds to T = (0.71± 0.15)TC, where TC is the critical temperature.
For the given interaction strength, we used TC = 0.4TF (see Supplementary Note 1
in sec. 6.6.1).
Figure 6.1d is a time ordered stack of one-dimensional column density profiles of
the atom cloud (see Methods for details). It shows the propagation of the sound
waves along the axial direction x as a function of time. The two density wave
packets propagate with first sound velocity from the trap center towards the edge
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Figure 6.1: Sound excitation in a trapped superfluid Fermi gas in the vicinity of
the BEC-BCS crossover. a, Set-up: A focussed, intensity-modulated,
blue-detuned laser beam excites sound waves in the cigar-shaped atom
cloud. b, Two different modulation sequences of the laser intensity.
Purple dashed line: step excitation. Green solid line: heat pulse. The
time t is given in units of the axial trapping period 2π/ωx. c, Sketch of a
bimodal density distribution of a trapped BEC (purple line) at y= z= 0.
At the center of the trap a blue detuned beam produces a dimple in the
potential. Modulating the beam intensity produces first sound waves
(red arrows) and second sound (orange arrows) waves. Second sound
reduces the local density of the cloud, while for first sound a density
peak emerges. The thin black line shows the profile of the unperturbed
cloud. d, The false color plot shows the measured local change in
the density ∆n̄(x, t) as a function of axial position x and time t. Here,
(kFa)−1 = (1.91±0.05) at B = 735G and T/TC = (0.71±0.15). Af-
ter excitation, two wave packets (bright traces, marked with red arrows)
propagate with first sound velocity u1 towards the edges of the cloud.
The excitation method predominantly excites first sound. Second sound
is present as well but is barely discernible here. e, Propagation of first
sound waves (bright traces, marked with red arrow) and second sound
waves (dark traces, marked with orange arrows) after excitation with
sinusoidal pulse of b). All other settings are the same as in d). f, Sim-
ulated sound propagation for the same parameters as in e). The orange
arrows mark the propagating second sound and the red arrows the first
sound, respectively.
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of the cloud (two bright traces, marked with red arrows). To obtain the speed of
sound, we examine how the center position of each wave packet changes with time.
The center positions are determined via a Gaussian fit. From Fig.6.1d we obtain
u1 = (17.2± 3)mm/s near the trap center. Our analysis shows that the sound
propagation slows down as the pulse approaches the edge of the cloud where the
particle density decreases. In the following, we focus on the sound speed close to
the trap center.
To primarily excite second sound, we sinusoidally modulate the intensity of the
excitation beam for 7ms with a modulation frequency of ωex = 2π×570Hz≈ 2ωr
and a modulation amplitude of ∆U ≈ 0.2U0. This parametrically heats the gas
in radial direction (see Fig. 6.1b). Subsequent thermalization via collisions occurs
within a few milliseconds. This creates a local depletion of the superfluid density,
filled with normal gas, forming a region of increased entropy (see Fig.6.1c). This
gives rise to two wave packets which propagate outwards along the axial direction
with the speed of second sound. Figure 6.1e shows corresponding experimental
data where we measure the local density distribution as in Fig. 6.1d. The second
sound wave appears here as a density dip (dark traces, marked with orange arrows).
A clear indication that the dark trace corresponds to second sound is the fact that it
vanishes at the Thomas-Fermi radius RT F ≈ 110µm where the superfluid fraction
vanishes. Second sound only propagates inside the superfluid phase.
Besides a second sound wave the excitation also produces a first sound wave (bright
traces, marked with red arrows) which propagates faster than the second sound
wave and travels beyond the Thomas-Fermi radius. The first sound wave is broader
than in Fig. 6.1d, which can be mainly explained by the longer excitation pulse.
To obtain u2 we measure the time-dependent position of the minimum of each
dark trace, which is determined via a Gaussian fit. For Fig. 6.1e we obtain u2 =
(5.1±1.1)mm/s.
Figure 6.1f shows numerical simulations of our experiment applying a dynamical c-
field method [176] (see Supplementary Note 2 in sec. 6.6.2 for detailed information
on the method). The dimer scattering length [158] is add = 0.6a and we assume
all fermionic atoms to be paired up in molecules. To compare the simulations
with the experimental results we choose the same values of (kFa)−1 and the same
central density of the trapped gas as in the experiment. The theory value for u2 is
(5.7±0.05)mm/s in agreement with the experimental value (5.1±1.1)mm/s.

6.3.2 Interaction strength dependence of second sound

We now perform measurements of second sound in the range (−0.26± 0.04) <
(kFa)−1 < (1.91± 0.05) of the BCS-BEC crossover. These are shown in Fig. 6.2
along with theoretical predictions. The second sound velocity u2 is given in units of
the Fermi velocity vF = h̄khom

F /m. Here, the Fermi wavenumber khom
F is determined
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Figure 6.2: Second sound velocity u2 as a function of interaction strength.
The purple circles depict measured data for temperatures in the range
T = 65− 145nK which corresponds to T/TC = 0.69− 0.81 (see Sup-
plementary Note 1 in sec. 6.6.1). The error bars are due to statisti-
cal uncertainties. The brown and blue solid line show hydrodynamic
predictions for the BEC and BCS regime at T = 0.75TC, respectively
(see Supp. Note 3 in sec. 6.6.3). The shaded areas mark the sec-
ond sound velocity in the temperature range of the experiments. The
blue dash-dotted line shows a theoretical prediction of second sound
in the crossover [62] for a homogeneous gas at T/TC = 0.75. It in-
terpolates between the results from hydrodynamic theory in the BEC
and BCS regime. The green squares are results of our numerical c-field
simulations which are consistent with both, analytic and experimental
results. For comparison we also show the second sound velocity on
the resonance measured in ref. [53] at the temperatures T/TC = 0.65
(blue triangle), T/TC = 0.75 (brown triangle), and T/TC = 0.85 (red
triangle).
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from the peak density at the trap center khom
F =

(
3π2n0

)1/3. The blue dash-dotted
line is a calculation from ref. [62], based on a hydrodynamic description in a
homogeneous gas for the limiting cases of the BEC and the BCS regime, and uni-
tarity. To connect these regimes, the results are interpolated across the crossover,
bridging the range

∣∣∣(kFa)−1
∣∣∣ < 1. The blue solid and the brown solid lines are

our analytic hydrodynamic calculations which are valid in the BCS and BEC limit,
respectively (see Supplementary Note 3 in sec. 6.6.3). For comparison, we show
the results of the numerical c-field simulations (green squares), which agree with
both, analytic description and experimental results. Despite the large error bars the
measurements indicate an increase of u2 when approaching unitarity from the BEC
side, in agreement with the theoretical results.
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Figure 6.3: Comparing signal strength of first and second sound. a, Sound ex-
citation experiment at (kFa)−1 = (1.91±0.05) and at a temperature of
T/TC = (0.71±0.15). In contrast to Fig.6.1d, first sound (red arrows)
and second sound (orange arrows) are now visible simultaneously. For
tωx/2π < 0.15 first and second sound waves overlap and therefore can-
not be distinguished from each other. b, shows ∆n̄ for t = 0.29νx. We
fit the center position of each of the two sound waves using a Gaussian
function (solid line).

In general, second sound can only propagate in the superfluid phase of the gas.
It is therefore natural to ask how the superfluid density ns and the speed of sec-
ond sound u2 are related. This relation could, in principle, be derived from the
equation of state. However the equation of state is unknown for the strongly in-
teracting regime. Nevertheless, we can still get a handle on the relationship be-
tween ns and u2, by estimating the superfluid density for the regime of interme-



100 6 Second sound in the BEC-BCS crossover

diate coupling, 1/kF a > 1.5, as follows. We carry out self-consistent mean-field
calculations to determine the density distributions of the superfluid and the normal
fluid for an interacting BEC in the trap (see Supplementary Note 4 in sec. 6.6.4).
As an important input into these calculations we make use of the Thomas-Fermi
radius which we have measured in the second sound experiments (the measured
Thomas-Fermi radii can be found in Supplementary Note 1 in sec. 6.6.1). As an
example, from the measurement at (kFa)−1 = (1.91±0.05) we determine the peak
superfluid fraction to be ns0/n0 = 0.98 close to the trap center at maximum den-
sity, where the local (khom

F a)−1 = (1.06±0.05) and T/T hom
C = (0.40±0.15), with

T hom
C = 0.21T hom

F and T hom
F = h̄2(khom

F )2/2mkB. For comparison, for a homoge-
neous weakly-interacting BEC with a superfluid fraction close to unity the temper-
ature would need to be T � T hom

C , according to ns/n = 1−
(
T/T hom

C

)3/2. At uni-
tarity, by contrast, the superfluid fraction reaches unity already at T/T hom

C ≈ 0.55,
as shown by Sidorenkov et al. [53]. As expected, this comparison shows that for a
given T/T hom

C the superfluid fraction grows with interaction strength.

6.3.3 Tuning the sound mode excitation

In the following we investigate how the superfluid gas responds to different ex-
citation protocols [62, 173, 174]. For this, we tune the excitation scheme, the
excitation frequency and amplitude to gain additional insight into the nature of first
and second sound.
In Fig. 6.3a we show the evolution of the system after a step pulse excitation at
B = 735G and ∆U = 0.3U0, in which both, first and second sound are excited. In
contrast to the experiment in Fig. 6.1d, the laser beam is abruptly switched off - not
on. As a consequence, the wave packets of both first and second sound now corre-
spond to dips in the particle density. In Fig. 6.3b we show the density distribution
for the time and position range indicated by the purple rectangle in Fig. 6.3a. From
a fit of two Gaussian dips to the two wave packets, we determine an amplitude ratio
of W2/W1 ≈ 0.7. This result approximately matches the predictions of ref. [173,
174] (see also Supplementary Note 3 in sec. 6.6.3), where the response of both, a
weakly and a strongly interacting molecular Bose gas has been derived. The pre-
diction yields W2/W1 = 0.9 for an interaction parameter of (kFa)−1 = 2, which is
of similar magnitude as our result.
Next, we study the response for first and second sound waves after exciting them
with short sinusoidal modulation sequences, as shown in Figs. 6.4a-d, where
(kFa)−1 = (1.91±0.05). The modulation frequency is ωex = 0.61ωr, so that para-
metric heating is somewhat suppressed and coupling to first sound is enhanced
as compared to the experiment shown in Fig. 6.1e. The numerical simulations
in Figs. 6.4b-d demonstrate how the excitation pattern produces a corresponding
wave train of first sound. Once waves of first sound have propagated beyond the
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Figure 6.4: Sound excitation with different modulation sequences. a, ∆n̄(x, t)
data for ωex = 0.61ωr, ∆U = 0.3U0 and at (kFa)−1 = (1.91± 0.05).
The excitation pulse excites both, first and second sound waves (dark
and bright traces). b-d, ∆n̄(x, t) from numerical c-field simulations.
Top row: False color images of ∆n̄(x, t). First and second sound waves
are marked with red and orange arrows, respectively. Mid row. Shown
is ∆n̄ for t = 0. Bottom row: Applied excitation scheme.
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Thomas-Fermi radius they diffuse out and lose signal strength. The first sound
wave train is always followed by a single dark second sound wave packet. The
experimental data in Fig. 6.4a agrees quite well with the simulation in Fig. 6.4b.
Notably, the diffusion of the first sound wave train is somewhat less strong than in
the simulations. This descrepancy might be explained by the higher longitudinal
trap frequencies used in the simulations which lead to a faster dispersion.

6.4 Conclusion
In conclusion, we have studied second sound propagation in an ultracold Fermi gas
of 6Li atoms across the BEC-BCS crossover for a range of different superfluidity
at T = 0.7TC. We find the second sound velocity to vary only slightly across the
BCS-BEC crossover, which is in agreement with an interpolation of hydrodynamic
theory [62]. In the BEC regime the results match numerical predictions based on
c-field simulations.
Additionally, we investigate the response of the superfluid gas on various excitation
pulse shapes, ranging from gentle local heating to an abrupt kick which allows for
tuning waveform and amplitude of the sound modes. The responses of first and
second sound are quite different, which hints at their different nature. We find that
a particular useful excitation is a step wise excitation where both first and second
sound propagate as density dips. With this scheme we achieve similar amplitudes
for second and first sound and the second sound wave can be easily distinguished
from the first one. In the future it will be useful to extend our measurements in the
strongly interacting regime to a larger range of temperatures below TC. Since the
second sound velocity is related to the local superfluid density, this measurement
technique can help to construct the equation of state in the strongly interacting
regime.
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6.5 Methods

Calculating ∆n̄ from the density profiles

Each of the experimental sound propagation images in Figs. 1d-e, 3a, 4a is a time-
ordered stack of one-dimensional column density profiles ∆n̄(x, t) of the atom
cloud. A one-dimensional column density profile n(x, t) is produced as follows:
For a given propagation time t after the sound excitation ended we take an ab-
sorption image of a cloud to obtain the density distribution nex(x,y, t). We in-
tegrate each absorption image along the y-axis to obtain a one-dimensional col-
umn density profile nex(x, t). To reduce noise, we average 15 density profiles
and obtain n̄ex(x, t). We repeat this procedure for an unperturbed cloud to obtain
n̄(x). By subtracting the two density profiles from each other we obtain ∆n̄(x, t) =
(n̄ex(x, t)− n̄(x))/n̄(0).

6.6 Supplementary Information

6.6.1 Supplementary Note 1: Temperatures to the
measurements in Fig. 6.1 and Fig. 6.2

In this section we present the temperatures to the measurements shown in Fig. 6.1
and Fig. 6.2 (see table 6.1). We determine the temperatures by fitting a second
order virial expansion of the density distribution at the wings of the cloud [99]. To
compare the absolute temperature with TC for various interaction strengths we use
values for TC as shown in figure 6.5.
TC is not precisely known yet in the strongly interacting regime. In the limit of
the BEC regime the BEC mean field model should give accurate values for critical
temperature. Closer towards the resonance we expect the diagrammatic t-matrix
calculation to provide quite good values [177]. For the range in between (0.5 <
(kFa)−1 < 3) we linearly interpolate between both TC curves.
For the measurements on the BCS side we have compared our results with temper-
atures obtained from the approach in reference [178], where the total energy and
entropy of a cloud is measured for thermometry. We find reasonable agreement
between the temperatures obtained from the two approaches.

6.6.2 Supplementary Note 2: C-field simulation method

Here we present our simulation method that is used to simulate sound mode dy-
namics in a condensate of 6Li molecules on the BEC side. The system is described
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(kFa)−1 T [nK] T/TF TC/TF T/TC RT F [µm]
-0.26 ± 0.04 67 ± 23 0.12 ± 0.04 0.171 0.71 ± 0.24 110 ± 5
-0.09 ± 0.03 65 ± 22 0.12 ± 0.04 0.194 0.61 ± 0.21 115 ± 5

0 ± 0.02 114 ± 28 0.17 ± 0.05 0.207 0.81 ± 0.24 124 ± 5
0.16 ± 0.03 90 ± 30 0.17 ± 0.05 0.231 0.74 ± 0.22 139 ± 5
0.33 ± 0.04 90 ± 30 0.18 ± 0.05 0.256 0.69 ± 0.20 153 ± 5
0.45 ± 0.04 120 ± 30 0.22 ± 0.06 0.272 0.79 ± 0.22 156 ± 5
0.81 ± 0.05 120 ± 30 0.22 ± 0.06 0.316 0.69 ± 0.19 121 ± 5
1.22 ± 0.05 130 ± 30 0.24 ± 0.06 0.347 0.70 ± 0.17 108 ± 5
1.71 ± 0.05 150 ± 30 0.28 ± 0.06 0.379 0.73 ± 0.16 107± 5
1.91 ± 0.05 140 ± 30 0.28 ± 0.06 0.391 0.71 ± 0.15 96 ± 5

Table 6.1: Temperatures and Thomas-Fermi radii to the measurements pre-
sented in Fig. 6.2. The temperatures are given in nK as well as units
of TF and TC. For expressing the temperature in units of TC we use an
interpolated critical temperature curve (see fig. 6.5).

by the Hamiltonian

Ĥ0 =
∫

dr
[ h̄2

2M
∇ψ̂

†(r) ·∇ψ̂(r)+V (r)ψ̂†(r)ψ̂(r)+
g
2

ψ̂
†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
.

(6.1)

ψ̂ and ψ̂† are the bosonic annihilation and creation operator, respectively. The 3D
interaction parameter is given by g = 4πadd h̄2/M, where add is the dimer-dimer
scattering length and M the dimer mass. The external potential V (r) represents
the cigar-shaped trap Vtrap(r) = M(ω2

axx2 +ω2
r r2)/2. ωax and ωr are the axial and

radial trap frequencies, respectively. r = (y2 + z2)1/2 is the radial coordinate.
To perform numerical simulations we discretize space with the lattice of 180×35×
35 sites and the discretization length l = 0.5µm, where l is chosen to be smaller
than or comparable to the healing length ξ and the de Broglie wavelength λ . In
our c-field representation we replace in Eq. 6.1 and in the equations of motion the
operators ψ̂ by complex numbers ψ , see ref. [176]. We sample the initial states in a
grand-canonical ensemble of temperature T and chemical potential µ via a classical
Metropolis algorithm. We obtain the time evolution of ψ using the equations of
motion. We calculate the observables of interest and average over the thermal
ensemble. We use the trap frequencies (ωax,ωr) = 2π×(70mHz,780mHz), which
are higher than those in the experiments. The reason for choosing higher ωax,ωr
is that we need to keep the effective total lattice size small enough to be able to
carry out the numerical calculations. The scattering length add and the trap central
density n0 are the same as the experiments. add varies in the range add = 720−
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Figure 6.5: Critical temperature TC in units of TF as a function of (kFa)−1 for
a harmonically trapped Fermi gas. The blue dash-dotted line shows
a diagrammatic t-matrix calculation and the orange dash-dotted line a
calculation based on a BEC mean field model [177]. The green straight
line interpolates linearly between the two approaches.

1650a0, where a0 is the Bohr radius, and n0 in the range n0 = 8.2− 11.2µm−3.
This results in a cigar-shaped cloud of N = 4.0× 104− 4.5× 104 6Li molecules.
The temperature varies in the range T = 240−280nK or T/Tc = 0.4−0.6, where
kBTc ≈ 0.94h̄(ωaxω2

r N)1/3 is the critical temperature of a noninteracting gas.

To excite sound modes we add the perturbation Hex(t) =
∫

drV (r, t)n(r), where
n(r) is the density at the location r = (x,y,z). The excitation potential V (r, t) is
given by

V (r, t) =V0(t)exp
(
−(x− x0)

2 +(z− z0)
2

2σ2

)
, (6.2)

where V0(t) is the time-dependent strength and σ is the width. The location x0,
z0 are chosen to be the trap center. We excite sound modes following the scheme
used in the experiment, where σ and V0 are chosen such that the changes in the
local density due to the excitation potential are the same as in the experiment. We
calculate the density profile n̄ex(x, t), which is integrated in the radial direction. For
sound propagation we examine ∆n̄(x, t) =

(
n̄ex(x, t)− n̄(x)

)
/n̄(0), where n̄(x) is the

density profile of the unperturbed cloud integrated in the radial direction and n̄(0)
is the maximum density.

The time evolution of ∆n̄(x, t) shows excitation of second sound identified by a
vanishing sound velocity at RT F . We fit the density profile with a Gaussian to
determine the second sound velocity u2 at the trap center. We note that u2 changes
only negligibly compared to the experimental errorbars for the temperatures in the
range T/Tc = 0.5−0.7.
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6.6.3 Supplementary Note 3: Analytic description of the sound
modes

In the following we present an analytic description of first and second sound based
on the two-fluid hydrodynamic model for a uniform gas. The total density n of the
gas is a sum of the superfluid ns and normal fluid density nn. The first and second
sound mode squared velocities are given by [85]

u2
1/2 =

1
2
(c2

T + c2
2 + c2

3)±
[1

4
(c2

T + c2
2 + c2

3)
2− c2

T c2
2

]1/2
, (6.3)

where c2
T = 1/M(∂ p/∂n)T and c2

2 = nss2T/(nncV ) representing the isothermal and
entropic sound velocities, respectively. p is the pressure, s the entropy per unit
mass, T the temperature, and cV = T (∂ s/∂T )n the heat capacity per unit mass.
The quantity c2

3 ≡ c2
S− c2

T = (∂ s/∂n)2
T (n

2T/cV ) couples the sound velocities c2
and cT , where c2

S = 1/M(∂ p/∂n)s corresponds to the adiabatic sound velocity.
The decoupled sound modes in the limit of vanishing T are

u2
1 = c2

T =
1
M

(
∂ p
∂n

)
T

and u2
2 = c2

2 =
ns

nn

s2T
cV

. (6.4)

Here, first and second sound can be described as a pressure and entropy wave,
respectively. To determine the second sound velocity u2, we calculate the entropy
and the normal fluid density defined as

S = ∑
k

(
− fk log fk± (1± fk) log(1± fk)

)
(6.5)

and

nn =
1
M

∫ dk3

(2π)3
h̄2k2

3

(
− ∂ fk

∂Ek

)
, (6.6)

respectively [85]. fk = 1/
(
exp(Ek/kBT )∓ 1

)
is the thermal occupation number,

where Ek is the excitation energy and k the wavevector. The upper and lower sign
correspond to a Bose and Fermi gas, respectively.

BEC
We use the Bogoliubov theory, valid in the dilute limit, to analyze the regime
kBT < gn, where gn is the mean-field energy. The Bogoliubov spectrum is given
by Ek =

√
εk(εk +2gn), where εk = h̄2k2/(2M) is the free-particle spectrum. M is
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the molecular mass. To examine the decoupled modes in Eq. 6.4 we approximate
Ek by the linear spectrum Ek ≈ h̄ck, where c =

√
gn/M is the Bogoliubov sound

velocity. We obtain the entropy and the normal fluid density, respectively,

S =V
2π2

45h̄3 (kBT )3
(M

gn

)3/2
and nn =

2π2

45
(kBT )4

h̄3
M3/2

(gn)5/2 . (6.7)

The entropy per unit mass is s = S/(NM) = gnn/(MT ) and the heat capacity per
unit mass is cV = 3s.
Within upper description we can deduce following sound speeds

u1 =

√
gn
M

and u2 =

√
1
3

gn
M

. (6.8)

Here, u2 is u1/
√

3. This result is only valid at zero temperature, see Fig. 6.6a,
where we show the full numerical solutions of Eq. 6.3 using the Bogoliubov de-
scription.
For kBT > gn instead we make use of a thermal gas description to determine
s, cV , and nn, which are given by s = 2.568kBnn/(2Mn), cV = 3s/2, and nn =
n(T/TC)

3/2, respectively [85]. In our experiments on the BEC side kBT/gn ranges
from 1.9 to 3.2 which allows us to apply the thermal gas description.
In this regime, solving eq. 6.3 the sound velocities read,

u1 =

√
gn
M

+
0.856kBT

M
and u2 =

√
ns

n
gn
M

. (6.9)

u2 is proportional to
√

ns/n and can be approximated by u2 =
√(

1− (T/TC)3/2
)
gn/M

(see Fig. 6.6a).

Sound amplitudes

Besides the sound velocity, our analytic description can be used to determine the
amplitudes of the propagating sound modes, described as [173]

δn(x, t) =W1δ ñ(x±u1t)+W2δ ñ(x±u2t). (6.10)

where δ ñ(x, t) is the density variation created by the excitation potential. δ ñ(x±
u1/2t) represent wave packets of first and second sound with weights W1/2. The
relative weight is given by
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W2

W1
=

c2
2−u2

2
u2

1− c2
2

u2
1

u2
2

(6.11)

We determine W2/W1 by numerically solving Eq. 6.3 for the regimes kBT < gn
and kBT > gn using the Bogoliubov and thermal gas description, respectively.
We show these results in Fig. 6.6b. The Bogoliubov description of the weight
works only for kBT � gn. We note that at higher temperatures terms beyond Bo-
goliubov are needed to account for the thermal damping of the modes. The Bogoli-
ubov description thus leads to an overestimation of the weight at high temperatures.
For temperatures above the mean-field energy the weight is described by the ther-
mal gas description, which we use to estimate the relative weight of the two modes
in the main text. Please note that the thermal description gives unphysical solutions
for kBT/gn→ 1.
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Figure 6.6: Sound velocities and amplitudes. a, Sound velocities u1/2 are deter-
mined from eq. 6.3 and are shown as a function of kBT/gn using the
Bogoliubov (blue lines) and thermal gas description (red lines). Here,
c is the Bogoliubov sound speed introduced in the text. b, shows the
relative weight W2/W1 for kBT < gn (blue line) and kBT > gn (red line).

BCS

A condensate of an interacting Fermi gas is described by the BCS spectrum Ek =√
ξ 2

k +∆2, with ξk = h̄2k2/(2m)−µ , where µ is the chemical potential and ∆(T )
the gap. At low kBT � ∆, we use µ ≈ EF and expand ξk near the Fermi surface,
i.e. ξk = h̄2k2/(2m)−EF ≈ h̄vF |k− kF | (see ref. [179]). The entropy in Eq. 6.5
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results in

S =
3Ntot

EF

∫
∞

0
dξk

Ek

kBT
exp
(
− Ek

kBT

)
= 3Ntot

∆0

EF

√
π∆0

2kBT
exp
(
− ∆0

kBT

)
, (6.12)

with

∆0 = (2/e)7/3EF exp
(
π/(2kFa)

)
(6.13)

which is the gap at zero temperature [180]. With Eq. 6.12 we determine s =
S/(mNtot) and cV . The normal fluid density in Eq. 6.6 gives

nn

ntot
= 2

∫
∞

0
dξk

(
− ∂ fk

∂Ek

)
=

√
2π∆0

kBT
exp
(
− ∆0

kBT

)
. (6.14)

Using s, cV , and nn in Eq. 6.4 we obtain the second sound velocity

u2 =

√
3

2
kBT
EF

vF , (6.15)

which is valid for T < TC. The BCS critical temperature is given by kBTC =
(γ/π)∆0 = 0.567∆0, which depends on the interaction parameter (kFa)−1. We
show in the main text the result u2 at various interactions on the BCS side (see Fig.
2). u2 vanishes at zero temperature contrary to the BEC superfluids. We note that
this result is consistent with ref. [62].

6.6.4 Supplementary Note 4: BEC mean-field model
To estimate the density distribution of a partially Bose condensed cloud in the
BEC regime we carry out a self-consistent calculation where the condensate phase
is treated within the Thomas-Fermi approximation and for the normal phase we
use a standard thermodynamical approach. Specifically, we solve the following set
of coupled equations [181]

ns(r) =
µs−Vext(r)−2gnn(r)

g
Θ(µs−Vext(r)−2gnn(r)) (6.16)

nn(r) =
1

λ 3
dB

Li3/2

(
exp
{

µn−Vext(r)−2gns(r)−2gnn(r)
kBT

})
. (6.17)

Here, λdB is the thermal deBroglie wavelength, g = 4π h̄2add/M is the coupling
constant, T is the temperature and Vext(r) is the external potential consisting of the
harmonic trapping potential and the repulsive potential of the excitation beam, µs
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and µn are the chemical potentials of the superfluid and the normal fluid part, re-
spectively. For the calculation we set µn = min[Vext(r)+2gns(r)+2gnn(r)] which
ensures that the normal gas reaches the critical density nn,crit = Li3/2(1)/λ 3

dB at the
Thomas-Fermi radius. This way, the number of normal fluid atoms is fixed. µs is
chosen such that the total atom number matches the experimental value.
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Figure 6.7: Axial line densities of the superfluid and the normal phase obtained
from a self-consistent calculation. The calculation is performed for a
gas at (kFa)−1 = 1.91 and a temperature of T = 145nK. The repulsive
potential of the excitation laser beam at the center locally reduces the
density of the cloud. The vertical dotted lines indicate the Thomas-
Fermi radius at x =±110µm.

Equation 6.16 represents the Thomas-Fermi approximation where we take into ac-
count the repulsive mean-field potential of the normal fluid part. Equation 6.17 is
the density distribution of a thermal bosonic cloud, again including the additional
mean field potential produced by the atoms. By self-consistently solving the cou-
pled equations we obtain the density distributions of the superfluid and the normal
fluid gas as shown in fig. 6.7.
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6.7 Additional information to the sound excitation
scheme

In this section I provide additional details to the excitation scheme (not presented
in the paper, i.e. sections 6.1 to 6.6.4).

First sound experiments

To investigate the propagation of the two sound modes we choose two different
excitation schemes. Depending on the modulation scheme the perturbation excites
predominantly first or second sound waves. For first sound excitation, the intensity
of the excitation beam is modulated by a step function. The excitation laser is
deactivated initially and is abruptly switched on at tex = 0 (starting point of wave
propagation). This way the dimple at the trap center is removed (see fig. 6.8 a)
and b), red line) such that only the cylinder symmetric trap, produced by the dipole
laser, and the magnetic field curvature remains. The system responds upon the
modulation with two counter-propagating wave packets [76, 170] (see fig. 6.8 c)
red line).
Figure 6.8 e) shows ∆n̄ for an experiment at 808G and at a temperature of T ≈
0.7TC. The horizontal-axis is given in units of the Thomas-Fermi radius which
marks the position where the superfluid density approaches zero. The vertical axis
gives the time after the excitation pulse ended and is scaled by the axial trapping
frequency ωx = 2π×νx = 2π×21Hz. The axial trapping frequency sets the time
scale for the propagating excitation. Due to momentum conservation, the local
perturbation leads to two wave packets (bright traces) propagating from the trap
center to the edges of the cloud. We observe the two wave packets propagating
along the axial direction to the edge of the cloud, where n→ 0, c1 =

√
gn/2m→ 0

and where the signal starts fades out.

Second sound experiments

To investigate second sound, the excitation scheme is changed from a step exci-
tation to a sinusoidal modulation of the excitation potential (see fig. 6.8 a), b),
green line). This heats the system locally. The deposited energy is transported via
entropy wave packets.
For the excitation the modulation frequency is chosen to be ωex ≈ 2ωr, where ωr is
the radial trapping frequency. The excitation couples to the motional states of the
particles in the radial direction, which corresponds to a local parametric heating
of the gas. Due to the large anisotropy of the trap the motional states in the radial
direction are excited selectively.
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Figure 6.8: Sound excitation. Excitation scheme, system response and measure-
ments. a) Trapping potential (blue line). The height of the dimple
is modulated (see also b)) to produce predominantly first or second
sound waves. The axial position is scaled by the Thomas-Fermi ra-
dius RTF. b) Intensity modulation. For first sound excitation a step
function (red dashed line) and for second sound excitation a sinusoidal
modulation (green solid line) is used. c) Sketch of the response of a
gas on first sound excitation. For simplicity a 1D Gaussian particle
distribution is shown which roughly matches the particle distribution
of a strongly interacting degenerate Fermi gas. The modulated beam
produces two wave packets propagating to the cloud edges (red solid
lines). For comparison the black line shows the density distribution of
the unperturbed system. d) Sketch of the 1D particle distribution in a
second sound experiment (Gaussian particle distribution considered).
The excitation produces two wave packets reducing the local density
(green solid lines). e) and f) show ∆n̄(t) (see also sec. 6.5) for a first
and a second sound experiment at 808G at T ≈ 0.7TC, respectively.
The white dashed line marks the SF/NF transition.
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The strong confinement in the radial direction ωr � ωz has another consequence.
Due to the high radial trapping frequency the time constant for particle motion is
much smaller as in the axial direction such that the gas is able to thermalize quickly
in the radial direction. Therefore, on the time scale of the experiments the gas is
essentially always in thermal equilibrium in this direction (see also [62]).
The local temperature variation manifests itself as a decrease of the local density
(see fig. 6.8 d)). Figure 6.8 f) shows ∆n̄ for a measurement at 808G and at T ≈
0.7TC. The propagating wave packets (dark lines) propagate from the center to
|x| = RTF, where the superfluid density ns → 0. At this point (SF/NF transition)
c2→ 0 and the propagation stops. The bright traces in Figure 6.8 correspond to first
sound excitation which could not be fully suppressed with the excitation scheme.
Since the modulation is done over an extended period of time the first sound signal
is blurred and broadened.
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7.1 Abstract

We propose a novel approach to site-resolved detection of a 2D gas of ultracold
atoms in an optical lattice. A near resonant laser beam is coherently scattered by
the atomic array and after passing a lens its interference pattern is holographically
recorded by superimposing it with a reference laser beam on a CCD chip. Fourier
transformation of the recorded intensity pattern reconstructs the atomic distribution
in the lattice with single-site resolution. The holographic detection method requires
only about two hundred scattered photons per atom in order to achieve a high recon-
struction fidelity of 99.9%. Therefore, additional cooling during detection might
not be necessary even for light atomic elements such as lithium. Furthermore, first
investigations suggest that small aberrations of the lens can be post-corrected in
imaging processing.

7.2 Introduction

Ultracold atoms in optical lattices allow for investigating many-body physics in a
very controlled way (see e.g. [182]). For such experiments site-resolved detec-
tion of the exact atomic distribution in the lattice can be very advantageous and it
has recently been demonstrated [69–72, 74, 75]. In these experiments, the fluores-
cence of illuminated atoms is detected using a high-resolution objective. During
the imaging process, typically several thousand photons are scattered per atom.
This leads to strong heating of the atoms, requiring additional cooling.
Alternative imaging techniques using the diffraction of a laser beam by an atomic
ensemble have been demonstrated for the detection of cold atomic clouds [76–
79, 183, 184]. However, these techniques have neither been discussed for single-
particle resolution nor single-site detection.
Here, we propose to image an atomic array with high resolution by using a vari-
ation of the off-axis holography technique of Leith and Upatnieks [77, 80]. Two
coherent laser beams are used to record the hologram of an illuminated atomic
array. One acts as a probe beam and is coherently scattered by the atoms [185],
while the other acts as a reference beam which bypasses the atoms. Both beams
are superimposed to interfere and to generate the hologram which is recorded with
a charge-coupled device (CCD) camera. An algorithm based on fast Fourier trans-
formation reconstructs an image of the atomic array. The reference beam fulfills
two purposes: On the one hand it separates the holographic image from disturbing
low spatial frequency signals in the reconstruction. On the other hand it strongly
amplifies the atomic signal, as in spatial heterodyne detection [77]. This allows
the use of a weak probe beam while keeping the signal high compared to detection
noise. We estimate that for our scheme the number of scattered photons per atom
can be small enough (≈ 150 photons) such that single site detection could be re-
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alized without additional cooling. Moreover, the scheme might open the path for
multi-particle detection per lattice site, since the low photon flux reduces photoas-
sociation.
The paper is organized as follows: Section 7.3 sketches the basic scheme of the
holographic detection method. Section 7.4 reviews theoretical background on atom
light interaction, and on optical signals. In Section 7.5, we present the results of
numerical calculations for the concrete example of 6Li atoms in an optical lattice.
Furthermore, we discuss the conditions for which a successful reconstruction of an
atomic distribution can be achieved, including noise, mechanical vibrations, and
lens aberrations. Section 7.6 concludes with a short summary and an outlook.

7.3 Detection scheme
We discuss the proposal in terms of a concrete example. As depicted in Fig. 7.1, we
consider an ensemble of NA = 50 atoms distributed over a 2D lattice with 11×11
sites and a lattice constant of a = 1 µm. Each site is either empty or occupied
by one single atom. We assume the lattice potential to be deep enough such that
tunneling between the lattice sites is negligible.
The overall setup for the detection method is shown in Fig. 7.2. A Gaussian laser
beam, near resonant to an optical atomic transition, is split into two beams, the
probe and the reference beam. The probe beam propagates perpendicularly to the
atomic layer and illuminates the atoms in the optical lattice. It has a diameter
much larger than the spatial extent of the atomic sample, such that its electric field
strength is approximately the same for all atoms.
The atoms are treated as Hertzian dipoles that coherently scatter the probe light.
The scattered light is collimated by a diffraction-limited lens with a large numerical
aperture and forms nearly perfect plane waves, which propagate towards the CCD
detector. Since the spatial extent of the atomic sample is typically about three
orders of magnitude smaller than the focal length f (Fig. 7.2 is not to scale!), the
wave vectors of the plane waves are nearly parallel to the z-direction (optical axis).
The non-scattered part of the probe beam is blocked by a small beam dump in
the back focal plane of the lens. The reference beam bypasses the atomic layer
and is superimposed with the collimated scattered light in the detection plane at
an angle θ . In order to keep θ small (see discussion in Sec. 7.5), the reference
beam is transmitted through the same lens as the scattered probe light. For this
purpose, it is strongly focussed to a micrometer spot size in the front focal plane
(at a sufficiently large distance to the atoms) and then collimated by the lens.
The overall intensity pattern is recorded by a CCD camera with a high dynamic
range in order to resolve weak interference fringes on a high background signal.
The pattern is subjected to a 2D Fourier transform (FT) [186] which directly yields
the atomic distribution in the lattice. This step is analogous to classical hologra-
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Figure 7.1: Ensemble of NA = 50 atoms, distributed over a 2D square lattice with
lattice constant a = 1 µm.
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Figure 7.2: Basic scheme of the holographic detection method. A probe beam il-
luminates the 2D array of atoms and the scattered light is collimated
by a lens with focal length f . The scattered light is superimposed with
a reference beam on the CCD detector which is placed at a distance d
behind the back focal plane. A beam dump blocks the unscattered light.

phy where a readout wave reconstructs the original object, corresponding to the
holograms Fourier transform [133].

7.4 Theoretical description

Coherent light scattering
We use a semi-classical model for the interaction of a single atom with a monochro-
matic coherent light field. Each atom acts as a quantum mechanical two-level sys-
tem with transition frequency ω0. The atom is driven by a weak external laser field
with frequency ω . This leads to photon scattering with a rate [187]

RS =
Γ

2
I/Isat

1+(2∆/Γ)2 + I/Isat
=

Nph

Tac
, (7.1)

where I denotes the incident intensity of the driving field, Isat the saturation in-
tensity of the atomic transition, and ∆ = ω −ω0 the detuning between laser and
transition frequency. Γ is the linewidth of the atomic transition, and Nph the total
number of scattered photons per atom within the acquisition time Tac.
In general, the intensity Isc of the scattered light consists of both coherently and
incoherently scattered parts. The coherent fraction of the scattered light Icoh/Isc is
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given by [187, 188]
Icoh

Isc
=

1+(2∆/Γ)2

1+(2∆/Γ)2 + I/Isat
. (7.2)

A weak incident beam with large detuning will therefore yield mainly coherently
scattered light. As a concrete example, choosing I/Isat < 1 and ∆ = −Γ yields
mostly coherent emission.

The probe beam as well as the reference beam (θ ≈ 1◦,φ = 45◦ see Eq. (7.9)) are
linearly polarized along the y direction. Treating the atoms as Hertzian dipoles, the
electric field at position r = (x,y,z) in the far field, emitted by a single atom n at
position rn = (xn,yn,0), is given by

EA(r,rn) = EA0

√
(x− xn)2 + z2

k |r− rn|2
eik|r−rn| , (7.3)

with the wavenumber k = 2π/λ . Integrating the corresponding intensity over the
entire solid angle 4π relates EA0 and the total number Nph of scattered photons per
atom

E2
A0 =

3k2h̄ω

4πcε0Tac
Nph. (7.4)

Here, c denotes the speed of light in vacuum and ε0 the permittivity of free space.

The wave emitted by the nth atom in the optical lattice is converted by the lens into
a nearly perfect plane wave with wave vector

kn =

 kn,x
kn,y
kn,z

=
k√

x2
n + y2

n + f 2

 −xn
−yn

f

 . (7.5)

The field distribution of the plane wave in the detector plane z = zD reads

ES,n(x,y) = EA0 gA(x,y)ei(xkn,x+ykn,y+ϕn), (7.6)

where ϕn includes the constant term zDkn,z and the phase shift acquired by the wave
while passing through the lens.

The field envelope gA(x,y) is a slowly varying function which can be determined
from Eq. (7.3). Since f � |xn|, |yn|, the propagation directions of all plane waves
behind the lens are almost parallel to the z-axis and gA(x,y) is essentially indepen-
dent of z. Therefore, we calculate gA(x,y) at the position of the lens. Setting z = f
in Eq. (7.3) and using the relation |rn| � |r| we obtain

gA(x,y)≈
√

x2 + f 2

k(x2 + y2 + f 2)
Θ(rl−

√
x2 + y2). (7.7)
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The Heaviside function Θ accounts for the finite size of the lens with radius rl .
The electric field of the Gaussian-shaped reference beam at the detector reads

ER(x,y) = ER0 gR(x,y)ei(xkR,x+ykR,y+ϕR), (7.8)

with the wave vector

kR =

 kR,x
kR,y
kR,z

= k

 sinθ cosφ

sinθ sinφ

cosθ

 . (7.9)

For small θ , the Gaussian field envelope gR(x,y) is given by

gR(x,y)≈ e−(x
2+y2)/w2

Θ(rl−
√

x2 + y2), (7.10)

with reference beam waist w.

Interference and Fourier transformation

The total electric field in the detector plane is obtained by adding up all individual
fields. The corresponding intensity,

ID(x,y) =
1
2

cε0

∣∣∣∣ER(x,y)+∑
n

ES,n(x,y)
∣∣∣∣2 , (7.11)

can be written as a sum of three contributions

ID = I0 + IS + IRS. (7.12)

The particle distribution is derived from the Fourier transform FD of the intensity
profile ID. FD decomposes into three parts, F0,FS, and FRS. This is illustrated in
the schematic plot in Fig. 7.3, which depicts a 1D cut through a 2D FT along the
spatial frequency axis νx at νy = 0. The illustration is consistent with the atomic
distribution in Fig. 7.1 and presumes a wave vector kR with kR,y = 0.
The first contribution I0 in Eq. (7.12) is a broad structureless intensity background

I0 ∝ E2
R0 g2

R(x,y)+NAE2
A0 g2

A(x,y) (7.13)

whose FT F0 is represented by the large peak at the origin in Fig. 7.3. The width of
the peak is determined by the inverse beam sizes gR and gA. The second contribu-
tion

IS ∝ E2
A0 g2

A(x,y) ∑
n>m

cos[2π(νnmxx+νnmyy)+∆ϕnm] (7.14)
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Figure 7.3: 1D cut through a schematic 2D FT along the spatial frequency axis νx
at νy = 0, illustrating the contributions of F0,FS, and FRS. The four
peaks around νx×λ f ≈ 20 µm reconstruct the positioning of the four
atoms in Fig. 7.1 arranged along the xA axis at yA = 0.
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with ∆ϕnm = ϕn−ϕm arises from the interference between the electric fields ES,n
emitted by the individual atoms in the optical lattice. Since f �|xn|, |yn|, the spatial
frequencies νnmx and νnmy are approximately given by

νnmx =
xm− xn

f λ
, νnmy =

ym− yn

f λ
, (7.15)

where (xn,yn) are the atomic positions in the optical lattice. Each pair of spatial
frequencies νnmx,νnmy gives rise to a well-defined peak in the FT close to the origin.
The width of the peaks is again determined by the inverse of the collimated beam
width gA. The third term in Eq. (7.12),

IRS ∝ ER0EA0 gR(x,y)gA(x,y)×
× ∑

n
cos[2π(νnxx+νnyy)+∆ϕRn], (7.16)

arises from the interference of the scattered beams with the reference beam. Here,
∆ϕRn = ϕR−ϕn. The FT of IRS, i.e. FRS, can be conveniently used to extract the
atomic distribution in the lattice. Apart from an overall constant factor λ f , the
spatial frequencies νnx and νny directly correspond to the coordinates xn and yn of
each particle n.

νnx =
xn

λ f
+

sinθ cosφ

λ
,

νny =
yn

λ f
+

sinθ sinφ

λ
(7.17)

The offsets, sinθ cosφ/λ and sinθ sinφ/λ , can be tuned by adjusting the direction
of the incident reference beam (see Eq. (7.9)). As in spatial heterodyne detection,
they are used to shift the peaks of the signal FRS away from the origin to separate
them from the peaks of F0 and FS. Resolving Eq. (7.17) for the atomic coordinates
xn and yn yields

xn = λ f νnx− f sinθ cosφ ,

yn = λ f νny− f sinθ sinφ . (7.18)

7.5 Numerical Calculations

In this section, we present the results of our numerical calculations. First, we
specify the used parameters and discuss the case of a noiseless detection. Then,
we include detection noise and analyze its influence on the reconstruction fidelity.
Finally, we compare our method with direct fluorescence detection and estimate its



124
7 Holographic method for site-resolved detection of a

2D array of ultracold atoms

sensitivity to mechanical vibrations.

7.5.1 Parameters and details

In the following, we consider an ensemble of NA = 50 6Li atoms in a 2D lattice
(see Fig. 7.1). The wavelength of the coherent probe and reference laser beams
is set to λ = 671 nm, close to the D2 transition of 6Li. The saturation intensity
is Isat = 2.54 mW/cm2 at a natural linewidth of Γ = 2π × 5.87 MHz. The focal
length of the collimation lens is chosen to be f = 7 mm and the numerical aperture
(NA) is 0.71, which matches typical parameters of a custom long working distance
objective (see Fig. 7.2).
In the given case, we set the reference beam waist to w = 5 mm (see Eq. (7.10)).
The illuminated area in the detection plane, which is located 70 mm away from the
lens, has a radius of about 7 mm. In our simulations we consider only a part of this
area, namely a square section of 10×10 mm2. The CCD pixel size is assumed to be
AP = 7×7 µm2, the quantum efficiency is set to Q = 0.8. We choose an acquisition
time Tac of 200 µs. On the considered time scale mechanical vibrations and particle
tunneling inside the lattice can be neglected.
Two fundamental parameters are varied: The average number of photons Nph scat-
tered by a single atom into the entire solid angle 4π within Tac, and the total
power PR of the reference beam. In the present study, we consider the ranges
100 ≤ Nph ≤ 500 and 10−8 W ≤ PR ≤ 10−2 W. Given an average number of scat-
tered photons Nph, the corresponding electric ld strength EA0 is obtained from
Eq. (7.4). Using Eqs. (7.1) and (7.2), we verify that with these parameters we
stay in the regime of mainly coherent emission.

7.5.2 Intensity pattern

We calculate the image captured by the CCD camera as follows. First, the intensity
profile ID(x,y) in the considered section of the detection plane is calculated using
Eq. (7.11). Then, the intensity ICCD(xp,yp) collected by a CCD pixel at position
(xp,yp) is obtained by averaging over all intensity contributions covered by the
corresponding pixel area. In contrast to x and y, the coordinates xp and yp exhibit
only discrete values. ICCD is converted into an integer number ND of nominally
incident photons, ignoring for now photon shot noise,

ND(xp,yp) = round
(

ICCD(xp,yp)TacAP

h̄ω

)
. (7.19)
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The output signal of a CCD camera in counts is

Ncounts(xp,yp) = round
(

ND(xp,yp)Q
α

)
, (7.20)

where α denotes the number of accumulated electrons per pixel that correspond to
one count. It predefines the dynamic range of the CCD camera, which decreases
with increasing α . In the calculations presented in Sec. 7.5 we use α = 1. For the
considered parameters, however, values up to α = 10 yield almost the same results.

7.5.3 Calculations without noise

Let us start the discussion of our calculations by considering the idealized situation
of absent noise. Furthermore, for the purpose of better illustration, we choose
an example where the power of the reference laser is comparatively low (PR =
10−8 W). For this choice, interference fringes are clearly visible, since the ratio
IRS/I0 is comparatively high.
Figure 7.4a shows a cut through the corresponding intensity profile ID(x,y) along
the x axis at y = 0 calculated with Nph = 500.
The pronounced oscillations on top and at the tails of a Gaussian profile as well
as weak oscillations in between arise from the interference between the scattered
probe light and the Gaussian-shaped reference beam. Since the relevant informa-
tion about the atom positions is stored in these interference fringes, the period
length of the oscillations must be large enough to be resolved even after averaging
intensity values within a pixel (see explanation above). We achieve this by using a
small angle of incidence θ ≈ 1◦. This results in a sufficiently large period length
of about 40 µm as revealed by the inset of Fig. 7.4a. The angle corresponds to a
distance between the focus of the reference beam and the atomic ensemble of about
100 µm (see Fig. 7.2).
The emergence of the pronounced interference peaks at 0,±4.5mm in Fig. 7.4a
can be understood as follows. To first order, the light scattered by the rectangular
array of atoms resembles the diffraction pattern of a perfect 2D square lattice, as
depicted in Fig. 7.4b. The quickly-oscillating intensity peaks in the center and at
the edges in Fig. 7.4a are the corresponding zeroth and first-order diffraction peaks
which interfere with the reference beam. The atomic array, however, is not perfect
as a number of lattice sites are unoccupied. As a consequence, the intensity in
between the major diffraction peaks is non-zero. This leads to the weak, but still
clearly visible interference patterns in Fig. 7.4a between the strong oscillations
in the middle and at the edges. The information about occupied lattice sites is
contained in these oscillations. In order to resolve them, especially for a higher
reference laser power, the CCD camera needs a large dynamic range (12 bit or
better).
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(a)

(b)

Figure 7.4: (a) 1D cut through the calculated 2D intensity profile ID(x,y) in the
detection plane along the x axis for y = 0. The intensity profile re-
sults from a superposition of the scattered probe beam and the broad
Gaussian reference beam. An enlargement of the central part (inset)
clearly reveals a sinusoidal interference pattern. For illustration pur-
poses, a very low reference signal has been used in this model calcula-
tion, such that the interference fringes are clearly visible on the Gaus-
sian background signal. (b) 2D intensity distribution in the detection
plane without reference beam (false color image; blue: low, red: high
intensity). It strongly resembles the diffraction pattern of a 2D square
lattice where the zeroth and first-order peaks are located in the center
and at the edges, respectively.
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Figure 7.5: Section of the 2D FT yielding a perfectly reconstructed image of the
atomic distribution in Fig. 7.1. The false color plot displays absolute
values of the Fourier coefficients (blue: low, red: high FT amplitude).
The simulation was performed without noise using the parameters Nph
= 150 and PR = 10−5W.

As explained in Sec. 7.4, the atomic positions in the lattice can be directly derived
from a 2D FT of the intensity profile ID(x,y), or more precisely from a FT of
Ncounts(xp,yp). An appropriately chosen section of such a FT is shown in Fig. 7.5,
where the absolute values of the Fourier coefficients are displayed as a false color
image.
The coordinates xA and yA give the position within the atomic layer and are related
to the spatial frequencies νx and νy of the FT by (see Eq. (7.18))

xA = λ f νx− f sinθ cosφ ,

yA = λ f νy− f sinθ sinφ . (7.21)

The maxima in the 2D plot at yA = 0 correspond to the group of peaks labeled by
FRS in the schematic 1D illustration of Fig. 7.3. In contrast to Fig. 7.4a, Ncounts(xp,yp)
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is calculated using Nph = 150 and PR = 10−5 W. A comparison with Fig. 7.1 reveals
that the atomic distribution is perfectly reconstructed.

7.5.4 Speckle and shot noise

Let us now turn to the realistic situation where the image acquired by the CCD cam-
era is disturbed by different kinds of noise. These need to be taken into account to
understand where the limits of the presented holographic detection method lie. In
general, in an experiment there are several sources which decrease the fidelity of a
detection. For a CCD camera, there are photon shot noise, read-out noise, and dark
counts which have to be taken into account. However, for the case of a relatively
strong reference beam and thus of a high light intensity, the dominant detection
noise is given by shot noise. Shot noise describes fluctuations in the number of
detected photons and obeys a Poisson distribution. It is taken into account by re-
placing ND, calculated from ICCD(xp,yp) in Eq. (7.19), by a Poisson-distributed
variable with expectation value ND.
Imperfections of the ideally Gaussian intensity profiles of the probe and reference
beams will also have an effect on the reconstruction. Such corrugations can be
caused by effects such as shortcomings in the quality of optical elements or weak
stray reflections of the laser beams. The resulting intensity distribution typically
shows high-frequency intensity fluctuations similar to laser speckle [189, 190]. If
we assume the fluctuations to occur on a length scale of about 1 µm in the detection
plane, this kind of noise adds the intensity ISP(x,y) to ID(x,y). It is known [189,
190] that this added noise has an exponentially decreasing probability as a function
of |ISP|

PSP(ISP) ∝ exp
(
−|ISP|

αID

)
. (7.22)

From our own laboratory experience we estimate that the typical amplitude of these
fluctuations is on the level of about one percent. Therefore, we set α = 0.01.
In order to take into account read-out noise, we add an integer number ∆Ncounts(xp,yp)
to Ncounts(xp,yp). This noise is obtained from a zero-centered normal distribution
with a standard deviation of 3 counts (typical specification of a commercial elec-
tron multiplying CCD camera).
The combined effects of intensity averaging, noise, as well as photon counting (see
Eq. (7.20)) are illustrated in Fig. 7.6. It depicts a 1D cut through the CCD image
Ncounts(xp,yp) along the xp axis for −0.3mm ≤ xp ≤ 0.3mm and yp = 0, calcu-
lated with Nph = 150 and PR = 10−5W. In contrast to the inset of Fig. 7.4a, which
displays the same x range, the interference pattern is now barely perceptible.
The corresponding 2D FT is shown in Fig. 7.7.
In contrast to Fig. 7.5, it is very noisy. However, we can still reconstruct the atomic
distribution with a sufficiently high fidelity.
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Figure 7.6: 1D cut through the calculated CCD image Ncounts(xp,yp) along the xp
axis at yp = 0 including noise (red line/dots). The parameters used in
the calculation are Nph = 150 and PR = 10−5W. The blue line depicts
the undisturbed interference signal for comparison.
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Figure 7.7: Example of a reconstructed image of the atomic distribution (2D FT
of Ncounts(xp,yp)) taking into account speckle, shot, and read-out noise
(blue: low, red: high FT amplitude). The simulation was performed
using the parameters Nph = 150 and PR = 10−5W. For this example our
simple recognition algorithm (see text) yields a fidelity of 99.2% to
identify the occupation of an individual site.
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Figure 7.8: Probability distribution of the normalized Fourier coefficients deter-
mined at the optical lattice sites (see Fig. 7.7). The histogram repre-
sents an average over 1000 probability distributions obtained for Nph
= 150, PR = 10−5W, fixed speckle noise, and randomly varying shot
noise. The dip at 0.4 coincides with the threshold value with highest
reconstruction fidelity. The red solid curve are two partially overlap-
ping Gaussians which are fitted to the histogram.

For this, we use the following simple algorithm. We normalize the reconstruction
signal (absolute values of the Fourier coefficients) within the FT section depicted
in Fig. 7.5 and Fig. 7.7. Next, we place the lattice grid on top as shown in Fig. 7.7.
The normalized value at each grid point is compared to a threshold value. If the
value lies (below) above the threshold, the lattice site is identified as (un)occupied.
We define a fidelity as the percentage of correctly identified sites. An analysis of a
variety of atomic arrays with different filling factors shows that for the investigated
range of parameters Nph and PR a threshold value of 0.4 yields the highest fidelity.
The histogram in Fig. 7.8 displays the probability distribution of the normalized
Fourier coefficients for Nph = 150, PR = 10−5W. It is obtained by averaging over the
probability distributions of 1000 reconstructed images of the particle distribution
of Fig. 7.1. The calculation includes a fixed speckle noise and randomly varying
shot and read-out noise. As shown by the red line in Fig. 7.9, the distribution
resembles two overlapping Gaussians with a pronounced minimum at 0.4.
In Fig. 7.9, the fidelity is plotted as a function of PR for different values of Nph. Each
data point is again obtained by averaging over the fidelities of 1000 reconstructed
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images, calculated with randomly varying shot and read-out noise. For Nph ≥ 150
the fidelity reaches maximum values clearly exceeding 99.5%, for Nph = 100 (not
shown) it is still nearly 98.5%.
Depending on the range of PR, the fidelity is limited by different kinds of noise.
At low and high reference power, read-out noise and speckle noise prevail, respec-
tively. In both cases, the noise leads to a strong decline of the fidelity. In between,
shot noise is dominant. The dependence of the fidelity on PR and Nph can be un-
derstood by the signal-to-noise ratio (SNR) of the interference fringes on the CCD
camera. Neglecting atomic contributions to I0 in Eq. (7.13), a rough estimate yields

SNR≈ IRS√
I0

∝ EA0 ∝
√

Nph. (7.23)

In the fraction IRS/
√

I0, the field amplitude ER0 of the reference beam drops out
and the SNR is independent of PR. As a consequence, the fidelity features a plateau.
The width of the plateau as well as the maximum fidelity decreases with decreas-
ing Nph. This can be explained by the proportionality of SNR to the atomic field
amplitude EA0 ∝

√
Nph. Above a critical value of PR, marked by the dashed line

in Fig. 7.9, the pixels near the center of the CCD camera saturate (assuming a dy-
namic range of 16 bit). Therefore, in practice the speckle-induced drop should be
irrelevant.
Moreover, all effects leading to global laser intensity fluctuations do not disturb the
interference signal, since they do not change the relative phase between atomic and
reference signal.

7.5.5 Comparison with fluorescence detection

As demonstrated in Fig. 7.9, the proposed detection scheme should yield fideli-
ties higher than 99.5% even for moderate numbers of scattered photons. This is
achieved by means of the reference beam which amplifies the atomic diffraction
signal. In contrast, the direct fluorescence detection method, e.g. used in [70–
72, 74, 75], does not involve such a reference beam. During detection several
thousands of photons are scattered by a single atom. As a disadvantageous conse-
quence, the atoms are strongly heated and may hop between lattice sites even in the
case of deep optical lattices (see e.g. [75]). Therefore, complex cooling techniques
have to be applied.
To compare our scheme with the fluorescence detection, we estimate the particle
heating. We assume that the particles are initially in the vibrational ground state
|v = 0〉 of a deep optical lattice with a depth of 2.5 mK and a Lamb-Dicke param-
eter of η = 0.23 (see [73]). During detection, the particles scatter 150 photons per
atom. The transition probability from |v = n〉 to |v = n±1〉 for a single scattering
event is given by η2 (n+1) and η2n, respectively. An estimate based on random
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Figure 7.9: Fidelity as a function of PR for different average total numbers of scat-
tered photons per atom Nph. Each data point is obtained by averaging
over the fidelities of 1000 reconstructed images (with fixed particle dis-
tribution), calculated with randomly varying shot and read-out noise.
Above a critical value of PR, marked by the dashed line, the pixels near
the center of a CCD camera with a dynamic range of 16 bit start to
saturate.
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walk yields that 99% of the atoms end up at a vibrational state |vFinal ≤ 24〉. The
excitation to higher vibrational states reduces the tunneling time of a particle inside
the lattice. However, since the tunneling time of a particle in state |vFinal = 24〉 is
on the order of 1 ms, i.e. long compared to the acquisition time Tac = 200 µs, tun-
neling can be neglected. This means that the heating due to light scattering should
hardly influence the reconstruction fidelity. Therefore, our scheme might open the
path to circumvent additional cooling during detection.

7.5.6 Mechanical vibrations

In terms of a technical issue of the proposed scheme, we need to take into ac-
count the sensitivity of the setup to mechanical vibrations. For this, we consider
Eq. (7.16) and Eq. (7.21). During the acquisition time, the relative phases ∆ϕnR
between reference and scattered laser fields may vary, leading to a blurring of the
contrast of the interference fringes. A jitter δθ in the reference angle θ leads to
a similar effect. In order to estimate the influence of the jitter, we rewrite xA in
Eq. (7.21) for angles close to θ ≈ 1◦ (as used in our simulations) with φ = 45◦

fixed:
xA = λ f νx−

f√
2

θ . (7.24)

A jitter δθ thus causes a blurring δx = f δθ/
√

2 of the coordinates in the recon-
struction. If we demand δx � a, the jitter has to be much smaller than

√
2×

1 µm/ f ≈ 200 µrad. This should not pose a problem since pointing stabilities of
10 µrad or better are typical in an optical lab environment. Furthermore, achieving
fluctuations in the relative phase ∆ϕnR� π is standard on an optical table.

7.5.7 Lens aberrations

Another technical issue of the holographic detection
scheme is lens aberrations. In our scheme a large NA lens collimates the emit-
ted light of the atoms and the reference beam. Even for a high-quality lens the
transmitted wavefront can be distorted by lens imperfections and aberrations.
To estimate such shortcomings, we perform a 1D calculation in the presence of
small spherical aberration which results in a position-dependent tilt of the wave
vectors kn and kR (see Eqs. (7.5), (7.9)). We simulate the tilt in the detection plane
by

kn,R ∝

(
−xn,R−β (x+10xn,R)

3

f

)
, (7.25)

where the empirical parameter β sets the influence of the spherical aberration and
xR denotes the position of the reference beam in the front focal plane of the lens.
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(a)

(b)

Figure 7.10: Distortion of the interference pattern due to spherical aberration and
its correction. (a) Shown is a distorted 1D holographic interference
pattern in the presence of spherical aberration (black curve). The
atomic emitters are located 0, 2, 5 µm away from the optical axis. Us-
ing an appropriate mapping the interference pattern can be corrected
(red curve). (b) Reconstruction of the particle distribution with (red)
and without (black) correction. The positions of the atomic emitters
are marked with arrows.
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The black curves in Fig. 7.10a and 10b show the interference fringes and the corre-
sponding reconstruction, respectively, for a reference beam and three atoms at po-
sitions xn = 0,2,5 µm. The aberration leads to an increase of the spatial frequency
νSF(x) in the interference pattern with increasing distance x to the optical axis.
As a result, the Fourier transform no longer yields a high-fidelity reconstruction
(Fig. 7.10b). However, the effect of the aberration can be compensated with the
help of an empirical non-linear mapping which locally stretches the interference
pattern such that it exhibits a constant νSF (red curve in Fig. 7.10a). The sharp
peaks at xn = 0,2,5 µm in Fig. 7.10b demonstrate that the atomic distribution can
be successfully reconstructed in this way.
In order to derive an appropriate non-linear mapping, we calculated the interfer-
ence between the reference beam and a single point emitter at xn = 0 µm in the
presence of aberration and determined the dependence of νSF(x) on the position x.
The mapping results from a comparison between νSF(x) and the known spatial fre-
quency in the case of absent aberration. Although the correction is obtained only
for a single point emitter it successfully works even for a larger number of atoms.
We thus demonstrate a preliminary way to correct distorted interference patterns.
Clearly, more general and sophisticated compensation algorithms can be developed
which will turn the holographic detection scheme robust against aberrations of the
lens. This might prove to be very useful in the future as it relaxes the required lens
specifications for high-resolution imaging.

7.6 Conclusion
In conclusion, we propose a holographic scheme for site-resolved detection of a
2D gas of ultracold atoms in an optical lattice. We have discussed the method
for the example of 50 lithium atoms in a square optical lattice, but it will also
work for larger sample sizes, other atomic elements, or other lattice geometries.
The method features a high detection fidelity (> 99.5%) even for a low number of
scattered photons per atom (≈ 150) in the presence of detection noise and small
lens aberration.
The low number of scattered photons might open the path for single site detection
without additional cooling. Moreover it might allow for imaging multiple occu-
pancy of a single lattice site.
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In my thesis, I have set up an experimental apparatus with ultracold 6Li atoms in a
small team including Thomas Paintner and me. I have described in detail the tech-
nical implementations and experimental sequences required to prepare and work
with an ultracold gas. Subsequently, I have described two experimental studies and
one theoretical proposal.
In the first experimental study, reactive collisions between ultracold Feshbach di-
mers have been investigated. The main focus in the study lies on the dynamics of
the dissociation process. Especially its dependence on the interaction strength and
on the collision energy has been studied.
In the second experimental work, the properties of a superfluid Fermi gas in the
close vicinity of a magnetic Feshbach resonance has been targeted. We used a
local perturbation to excite entropy wave packets in order to determine the speed
of second sound in the gas. We measured the speed of second sound across the
BEC-BCS crossover and verified a theoretical prediction based on hydrodynamic
theory and compared our results to numerical c-field calculations. Additionally, we
investigated the coupling of first and second sound modes to the pertubation.
In the theoretical proposal, a holographic detection approach for ultracold atoms
in optical lattices has been introduced. The scheme is based on off-axis holography
and requires only a small number of photons from the detected atoms to determine
the lattice occupancy.

Extension of previous work
In the next few paragraphs I will present a few prospects for future work.

Second sound in two dimensions

One way to extend our work on second sound could be to switch to a lower di-
mensional quantum gas. Especially, the study on a quasi two-dimensional gas is of
interest, since second sound has never been detected in liquid Helium in the two-
dimensional case [115]. In previous experiments on Helium films on a substrate
second sound has not been observed. This is due to the fact that the movement of
the normal phase was prevented in the experimental configuration [54, 55, 115].
Recently, for the first time a measurement of second-sound in a two-dimensional
system has been reported in an experiment with an ultracold Bose gas [56]. How-
ever, the experiment was limited to weak interactions. Using our setup the mea-
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surements can be extended to an interacting Bose gas and can be performed for a
quasi two-dimensional Fermi gas, which has not been reported yet [191].
Second sound in lower dimensions, especially for tunable interactions, offer rich
physics as predicted theoretically [55, 115]. For an ultracold gas in two dimensions
the behavior of second sound changes drastically when the particle interaction is
tuned [55]. For weak interaction, second sound is a density wave, while for strong
coupling second sound is an entropy wave as in the 3D case. In this context, it
would be interesting to study second sound in the crossover between three and two
dimensions.
Additionally, second sound experiments in a quasi two-dimensional gas could be
used as an alternative way to prove a Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition, which has recently been reported for an ultracold gas of 6Li atoms [192,
193]. This detection of the BKT transition has been debated in ref. [194], such that
an independent measurement using second sound can be beneficial.

Alternative excitation protocols

In addition to the work on a lower-dimensional configuration, alternative excitation
protocols might be investigated in three-dimensional gases. Due to the underlying
wave nature of the second sound, the interference between multiple separately ex-
cited entropy waves could be studied. This could include measurements with bar-
riers in the propagation direction in order to investigate the diffraction of entropy
waves.

Molecule dissociation dynamics in lower dimensions

In another extension of ongoing work molecule-dissociation dynamics in lower
dimensional systems might be investigated. As described in appendix A1, the
trapping geometry highly influences the character of pairs inside the trap. For
weakly-bound pairs and high transversal trapping frequencies (2D confinement),
the confinement dominates the degrees of freedom of the individual atoms of a
dimer such that pairs are two-dimensional objects (see e.g. [141, 192, 195, 196]).
In this configuration the paths for two approaching pairs are geometrically limited.
Therefore, the scheme described in sec. 5 might enable studies on stereochemistry
with a focus on the reaction kinetics on a state-to-state level.
Furthermore, an additional confinement can be used to go to an one-dimensional
system. There, the collision paths are even more restricted such that reactive colli-
sions for very specific trajectories can be investigated (see also [38]).
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Combination of sound excitation and molecule dissociation
measurements
Finally, a combination of a molecule-dissociation measurement and second-sound
excitation can be used in future studies. After an initial second-sound excitation the
molecule fraction of the system could be determined for various sound propagation
times. The transported thermal energy changes the thermodynamical state of the
gas locally, which should trigger local dissociation processes.
In combination with an additional molecule detection we could investigate the dis-
sociation process as a function of the interaction strength. If we tune to a weak
particle interaction we can adjust the dissociation to be slow compared to the sec-
ond sound speed close to the trap center. As long as the entropy wave packet prop-
agates faster than the time scale of the dissociation process, there will be a delay
in the state change of the system. Reaching the Thomas-Fermi radius the second
sound speed reduces, such that the dissociation process can follow. Although the
second sound signal vanishes approaching the Thomas-Fermi radius, changes in
the molecule number should be visible in the molecule detection.
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A Appendix

A.1 Two-dimensional systems
In almost all physical systems dimensionality has a significant impact on the be-
havior of the system. In recent years tremendous effort has been made to extend
the studies on ultracold Fermi gases from three- to two-dimensional systems [141,
182, 197]. So far, in this work I have focused on three-dimensional gases. How-
ever, the experimental setup established in this thesis (see sec. 3) is constructed to
enable studies on two-dimensional Fermi gases. Therefore, I will introduce a few
peculiarities of such a gas. The focus lies on fundamental aspects of particle statis-
tics as well as the particle interaction. The description starts with a non-interacting
Fermi gas in a highly anisotropic confinement and will be extended to the case of
strong interactions.

A.1.1 Condition for two-dimensional Fermi gases
In this subsection I will summarize conditions for two-dimensional/quasi two-
dimensional ultracold Fermi gases. To do so, I consider a confined non-interacting
two-component Fermi gas at temperatures where quantum statistics has to be taken
into account (for fermions: T � TF ). For a highly anisotropic harmonic confine-
ment (see Fig. A.1) with ωx,ωy� ωz the motion of the trapped particles is limited
to the x-y-plane as long as

h̄ωz� EF ,kBT (A.1)

is fulfilled. A gas obeying eq. (A.1) is called two-dimensional (please note that I
follow the description of ref. [141] in this passage).
To illustrate and explain the two conditions in eq. (A.1) the probability distribution
of a single component Fermi gas in a harmonic trap is sketched in fig. A.2 a).
The first condition in eq. (A.1) reflects that the energy of the last occupied state1 has
to be much smaller than the trap state separation h̄ωz. According to Fermi-Dirac
statistics even at temperatures close to zero the trap can be filled to energies with
nz > 0. If higher transversal states are occupied at non-zero temperature, kinemat-
ics are no longer limited to in-plane movement and the gas cannot be considered

1Here, the occupied state with the largest energy at T = 0.
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Figure A.1: Sketch of a gas in a highly anisotropic trap. The strong confinement
freezes out the motion in z-direction.

2D anymore. The second condition demands that the probability distribution for
a transversal excitation vanishes. For instance, a gas with a temperature that is
comparable with h̄ωz/kB the probability for the occupation of states with nz > 0 is
non-negligible even for weak particle interaction due to the large tail of the energy
distribution function. Therefore, in this case the occupied motional states are not
restricted to the transversal ground state solely.
For an ensemble fulfilling upper criteria, we can calculate the critical particle num-
ber Ncrit which is the maximum number of particles in the ground state nz = 0. To
do so, we count all in-plane states of the harmonic confinement for nz = 0, which
yields

Ncrit =
ω2

z

2ωxωy
. (A.2)

Besides the strict definition of eq. (A.1), a gas occupying nz > 0 at temperatures
of T � h̄

kB
ωz can essentially be considered as a two-dimensional gas as well. This

is due to the fact that for a gas fulfilling the second condition of eq. (A.1) the
probability for a collisional excitation to a higher transversal state is small (see fig.
A.2 b)). Therefore such a system is called quasi 2D Fermi gas [141].
In the group of Chris Vale measurements were performed that showed the transi-
tion of a Fermi gas from the transversal ground state to higher states [141]. To
determine the critical particle number experimentally, time-of-flight (TOF) experi-
ments on a Fermi gas loaded into a 2D trap have been carried out at temperatures
of T � TF . It was found that tuning the particle number inside the trap, the cloud
size σz showed a plateau for N < Ncrit at fixed time of flight. For larger particle
numbers σz increased almost linearly (see fig. A.3). This can be understood as
follows. For N < Ncrit all atoms are in the motional ground state nz = 0 with the
ground state wave function. Releasing the gas from the trap, particles with the
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1 1

a) b)

Figure A.2: Sketch of the trap-state occupancy of a Fermi gas in a highly
anisotropic trap. The ladder shows the trap-state energies (nx, ny, and
nz denote the corresponding quantum numbers). The red dots indicate
the occupied states and the red lines shows a Fermi-Dirac distribution
of a Fermi gas with T 6= 0, respectively. a) 2D Fermi gas. The temper-
ature and particle number of the gas are low enough, such that states
with nz = 0 are occupied, exclusively (kinematically 2D). b) Quasi 2D
gas. The particle number is larger than Ncrit such that higher transver-
sal states are occupied. Since nz = 1 is the only partly occupied state,
the gas can be treated as a 2D system in the presence of a filled Fermi
sea.
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same wave function propagate the same way such that the transversal cloud size
σz(N < Ncrit , tTOF) is constant. Or vice versa, for N > Ncrit higher transversal trap
states with larger potential energy are occupied and the cloud size after TOF (re-
flecting the momentum distribution of the gas) is larger with respect to a gas in the
ground state.

A.1.2 2D Fermi gas, statistics, and density distribution

In this subsection I summarize a few basic aspects of a 2D Fermi gas inside a
harmonic trap. The density-of-states (DOS) of a two-dimensional quantum gas
inside a harmonic potential is given by g(ε) = ε/(ωxωyh̄2), where ε is the energy.
Integrating over the product of the DOS and the Fermi-Dirac distribution (at T = 0)
with given particle number per spin state N↑, we get the Fermi energy

EF,2D = h̄
√

ωxωy
√

2N↑. (A.3)

Another important quantity is the absolute temperature of the gas. One way to
determine it, is to measure the density distribution at the cloud wings after TOF or
in situ. For a not fully superfluid gas, we consider the wing of the cloud to follow
the Boltzmann distribution [192].

ñ(x) ∝ exp
(
−Mω2

x x2

2kBT

)
(A.4)

Here ñ is a doubly integrated density profile, M is the mass of the particles, ωx is
the trapping frequency in x-direction, and T is the absolute temperature.

For in situ measurements we can fit the corresponding function to the thermal tail
or use the full density distribution of a doubly integrated density profile

n1D(x) = n1D,0

Li5/2

(
−exp

(
µβ − x2

R2
x

f
(

eβ µ

)))
Li5/2

(
−eβ µ

) , (A.5)

to determine T (see [86]). Here, n1D,0 is the peak density, β = 1/(kBT ), Rx =√
2EF
mω2

x
is the Thomas-Fermi radius, Li5/2 is the polylogarithm of order 5/2, and the

function f is given by f (x) = 1+x
x ln(1+ x).
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Figure A.3: Transition from three to two dimensions taken from ref. [141]. A de-
generate Fermi gas of 6Li is loaded into a 2D trap at 992 G. After a
TOF of t = 500µs the transversal and in-plane cloud widths σz and σy,
respectively, are measured as a function of the particle number N. The
solid and dashed lines show theoretical predictions for a weakly inter-
acting and an ideal Fermi gas, respectively. Inset: For N < Ncrit all
particles are in the transversal ground state and the expansion is inde-
pendent of the particle number. For N > Ncrit higher transversal states
are occupied and the cloud width depends on the particle number.
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A.1.3 Interacting Fermi gas in 2D

In the previous section we have discussed 2D Fermi gases where no or only weak
particle interaction was considered. In the following, I will give a brief introduction
to the main aspects of elastic scattering in a 2D quantum gas and its influence on
the thermodynamical state of the system.

A.1.4 Scattering theory in 2D

Analog to scattering theory in 3D the discussion in 2D starts with the wave function
of colliding atoms [195],

ψ(r)≈ eirq− f (q,Φ)

√
i

8πqr
eiqr, (A.6)

with the scattering amplitude f (characterizing the interaction strength), the rel-
ative momentum q, the inter-particle distance r (here: r→ ∞) and the scattering
angle Φ. In the case of qRe � 1 (Re is the characteristic interaction radius) the
scattering amplitude is dominated by the s-wave contribution [195]. Inserting the
wave function in the Schrödinger equation gives the s-wave scattering amplitude
for rq� 1

f (q) =
2π

ln(1/qd∗)+ iπ/2
, (A.7)

with d∗ = (d/2)C, where C is the Euler constant. Here, d > 0 is computed from the
time-independent Schrödinger equation for q = 0 and is depending on the details
of the interaction potential [195].
However, the discussion so far is only valid for an ideal 2D system. This means
that no spatial extension of the gas in the transversal direction is considered so
far. A real gas has a finite size in the transversal direction which is included in
the following. To do so, we follow the description in [195] to get the scattering
amplitude in the s-wave regime

f (q) =
4π√

2πlz/a3D− ln(πq2l2
z /A)+ iπ

, (A.8)

with A = 0.905, and lz =
√

h̄/(mωz) being the harmonic oscillator length of the
strong confinement, and a3D = a representing the scattering length in 3D. In equa-
tion (A.8), the definition of the 2D scattering length
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Figure A.4: Binding energy of dimers in a 2D potential (finite size) as a function
of lz/a3D (a3D = as) taken from ref. [196]. Here, Eth is the thermal
energy, and εb is the binding energy. In the 2D scattering case the
continuum is shifted by h̄ωz/2 (here: h̄ is set to 1). In the limiting
cases |lz/a3D| � 1 the binding energy can be obtained from eq. (A.11)
and eq. (2.31), respectively.

a2D = lz

√
π

A
exp
(
−
√

π

2
lz

a3D

)
(A.9)

has been used. Contrary to the 3D case, we find a two-body bound state for all
interaction strengths (see e.g. supplementary to [192]) in the 2D system. The strong
confinement induces bound states even for negative 3D scattering lengths. The
binding energy of the pairs EB can be obtained from the following transcendental
equation [196] (see fig. A.4):

lz
a3D

=

∞∫
0

du√
4πu3

(
1− e−EBu/(h̄ωz)√

(1− e−2u/2u)

)
. (A.10)
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The quantity lz/a3D plays a crucial role in the analysis of the two-body character
of these pairs. Using eq. (A.10) we can define three regimes:

2D limit - 2D dimers

For lz/a3D �−1 the binding energy of the confinement induced dimers is small
and the dimer size is large compared to the harmonic oscillator length in the strongly
confined direction. Therefore, the degrees of freedom of the pairs are limited. The
dimers can be treated as two-dimensional objects with binding energy

EB =
h̄2

ma2
2D
≈ h̄ωz

A
π

exp
(√

2πlz/a3D

)
. (A.11)

Intermediate regime

For lz/a3D ∼ 0 (close to the position of the three-dimensional FB resonance) the
dimer state is highly influenced by the confinement. The binding energy can be
extracted from eq. (A.10) and takes the universal value EB = 0.244h̄ωz [196].

3D dimers in 2D confinement

For lz/a3D � 1 the dimer binding energy matches the 3D dimer binding energy
given in equation (2.31). In this regime the binding energy is large and the dimer
size small compared to lz. Therefore, the dimer state is only weakly influenced by
the confinement. The internal structure of the dimer can be considered to be 3D.
For deeply bound molecules and low enough temperature, the gas can be consid-
ered as a weakly interacting Bose gas occupying the lowest transversal state (see
supplementary to [192]) as in any other two-dimensional Bose gas.

A.1.5 Two dimensional kinematics in the presence of interaction

Adding interaction to a kinematically 2D degenerate quantum gas has another cru-
cial consequence. For strong particle interaction transversal excitations can occur
and shift the system out of the regime of 2D kinematics. Measurements performed
in the group of Chris Vale [143] reveal the dependency of the critical particle num-
ber on the interaction strength. The results show that the interaction energy can
be converted to the excitation of motional/external states such that Ncrit is reduced
with increasing interaction strength. In other words, the larger the scattering length
a3D the smaller the critical particle number.
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Figure A.5: Crossover of a trapped Fermi gas from the kinematically 2D to the
3D regime in the presence of particle interaction obtained using TOF
experiments (Pictures taken from ref. [143]). The interaction strength
increases from c) to a). With increasing interaction strength the critical
particle number decreases. Ncrit is obtained from the kink in the cloud
width.

In the measurement shown in fig. A.5 Ncrit is determined using the technique
introduced in sec. A.1.1. The results of [143] can be used to impose a second
condition for a gas to be motional 2D:

EB� EF . (A.12)

A.1.6 Achievements on two-dimensional gases and future steps
In the course of this thesis the basic steps towards experiments with two-dimension-
al gases have been made. In future experiments the recent technical achievements
might be combined with experimental sequences on second sound excitation to
provide extended studies on the thermodynamical properties of lower dimensional
Fermi gases. A first step towards such studies is the production of a superfluid gas
in lower dimensions.
Fortunately, in recent years tremendous progress in the production and in the un-
derstanding of such two-dimensional Fermi gases has been made. Among others,
this includes studies on superfluidity in two-component Fermi gases [192, 193], as
well as the equation-of-state [198, 199] of such systems. Especially, the production
of pair condensates in two dimensions [193] and the observation of the Berezinsky-
Kosterlitz-Thouless (BKT) transition [192] are the basis for future studies on sec-
ond sound in two-dimensional Fermi gases. The natural next step in our experiment
would be to prepare a superfluid gas in lower dimensions. To prove the phase tran-
sition it is planned to use the matter wave focusing technique introduced in [192,
200], which allows for measuring the momentum distribution of the gas. A phase
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Figure A.6: Momentum distribution of a superfluid two-dimensional interacting
Fermi gas taken from ref. [192]. a) The momentum distribution is
obtained using the matter wave focusing technique [200] for lz/a3D =
1.55. The data points are obtained by averaging over 30 measurements.
b) False colour image of the momentum distribution extracted from the
TOF measurements of the gas. The image shows the data displayed in
a).

transition manifests in a steep increase in the momentum distribution (see fig. A.6
a)).
An obvious further step would be to produce a superfluid gas and perform second
sound experiments. This can be the starting point for an extended study of second
sound in the BEC-BCS crossover in a lower dimensional system. With this our
recent work on second sound might be extended to two dimensions which has been
shown recently for a bosonic gas [56].
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We investigate pairing in a strongly interacting two-component Fermi gas with positive scattering length. In
this regime, pairing occurs at temperatures above the superfluid critical temperature; unbound fermions and pairs
coexist in thermal equilibrium. Measuring the total number of these fermion pairs in the gas we systematically
investigate the phases in the sectors of pseudogap and preformed pair. Our measurements quantitatively test
predictions from two theoretical models. Interestingly, we find that already a model based on classical atom-
molecule equilibrium describes our data quite well.
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I. INTRODUCTION

A unique feature of fermionic superfluids is the pairing.
For a weakly interacting Bardeen-Cooper-Schrieffer (BCS)
superfluid pairing occurs directly at the critical temperature
for superfluidity Tc [1]. This pairing is accompanied with
the emergence of an excitation gap �sc which is identified
with the superfluid order parameter and �2

sc is proportional to
the density of condensed pairs [2]. For fermions with strong
coupling, an excitation gap already emerges at a temperature
above Tc. This is referred to as the pseudogap regime [3].
The existence of the pseudogap has been observed early on,
e.g., in underdoped high-Tc superconductors [4,5]. While its
nature has been intensely studied, it is still not fully under-
stood. Understanding the pseudogap is expected to be the
key for revealing the mechanism behind high-Tc supercon-
ductivity [6,7]. One interpretation of the pseudogap is based
on the presence of noncondensed pairs with nonvanishing
momentum [8].

Ultracold Fermi gases are an excellent system for inves-
tigating the gap and pseudogap physics from the BCS to
Bose-Einstein condensate (BEC) regimes [9]. Using radio-
frequency (RF) spectroscopy in various forms, e.g., [10–13],
the excitation gap has been studied in the way similar to angle-
resolved photoemission spectroscopy (ARPES) of solid-state
systems [14]. Evidence for pairing above Tc was found in the
RF experiments, as well as in other physical quantities, such
as viscosity [15], heat capacity [16], and Tan’s contact [17,18].

In this article, we investigate pairing of fermions for
various temperatures and interaction strengths on the BEC
side of the BEC-BCS crossover. For this, we measure the
total number of bound fermion pairs Np in our sample for
T > Tc. Such counting of fermion pairs is in general not

*Corresponding author: johannes.denschlag@uni-ulm.de

possible for solid-state systems and therefore complements
existing methods. We determine the fermion pair number by
converting all atom pairs to tightly bound diatomic molecules,
either by photoexcitation [19] or by a fast magnetic-field ramp
[20,21] and measuring the decrease in atom number of the
cloud. When we compare the measured and calculated pair
numbers we find quite good agreement with two models: an
ab initio t-matrix approach and a classical statistical model of
atom-molecule equilibrium [22]. We provide an explanation
why the classical model achieves good results, despite the
fact that strong interactions and quantum statistics play an
important role in our system.

In the following, we consider an ultracold, spin-balanced,
strongly interacting two-component Fermi gas in a harmonic
trap. Collisions lead to pairing of atoms with opposite spins,
|↑〉, |↓〉. For a given temperature and interaction strength
well-defined fractions of pairs and atoms are established at
thermal equilibrium, as long as collisional losses are negligi-
ble. Figure 1 shows the phase diagram of such a system in
the vicinity of a Feshbach resonance at (kFa)−1 = 0. Here,
a is the s-wave scattering length, kF = √

2mEF/h̄ denotes
the norm of the Fermi wave vector, m is the atomic mass,
and EF = kBTF is the Fermi energy in the trap center with
kB the Boltzmann constant. The dash-dotted and solid lines
are contours of constant molecular fractions Np/Nσ for two
different approaches. Here, Nσ = Np + Na is the number of
all atoms per spin state regardless of whether they are bound
in pairs (Np) or free (Na). The dotted lines are calculations
based on a self-consistent t-matrix approach [23], while the
solid lines correspond to a statistical mechanics approach
treating the particles as a canonical ensemble of noninter-
acting molecules and atoms in chemical equilibrium (see
[22] and Appendix A). Here, the molecules have a binding
energy of Eb = −h̄2/(ma2). Also shown is a calculation (cyan
dash-dotted line) by Perali et al. [24] of the BCS mean-
field critical temperature which provides an approximate es-
timate of the pair breaking temperature. It partially coincides

2469-9926/2019/99(5)/053617(5) 053617-1 ©2019 American Physical Society
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T    CT    C

FIG. 1. Theoretical phase diagram for a balanced
two-component harmonically trapped ultracold Fermi gas in
the vicinity of a Feshbach resonance (vertical line) where kF and TF

are determined in the trap center. Shown are calculated contours for
various pair fractions. Dotted lines are based on a self-consistent
t-matrix approach [23], while solid lines are based on a classical
model of noninteracting atoms and molecules (see text) [22]. Close
to the Feshbach resonance the solid lines are blurred because the
classical model is expected to lose its validity. The cyan dash-dotted
line marks a pair breaking temperature, as calculated by [24] with a
BCS mean-field model that was extended to the near-BEC regime.
The gray shaded area marks the superfluid phase below the critical
temperature Tc which was calculated within the self-consistent
t-matrix approach [25].

with the 50 % pair fraction line of the statistical mechanics
approach.

We carry out our experiments with a spin-balanced two-
component Fermi gas of 6Li atoms which is initially prepared
at a magnetic field of 780 G. The atoms have magnetic quan-
tum numbers mF = +1/2 (|↑〉) and mF = −1/2 (|↓〉) and
correlate to the F = 1/2 hyperfine level of the ground state
at 0 G. They are confined in a harmonic three-dimensional
cigar-shaped trapping potential which is generated in radial
direction mainly by a focused 1070-nm dipole trap laser beam
and along the axial direction mainly by a magnetic field
gradient. The temperature T is set via evaporative cooling
and is measured by fitting a distribution obtained from the
second-order quantum virial expansion to the outer wings
of the density profile [26]. The particle number Nσ per spin
state ranges from 3 × 104 for the lowest temperature of about
0.3 TF to 3 × 105 for the highest temperature of about 3 TF.
The population balance of the two spin states is assured by
means of a 100-ms-long resonant RF pulse that mixes the
two Zeeman states |↑〉 and |↓〉. For a spin-balanced system
the Fermi energy is given by EF = h̄(6Nσ ω2

r ωa)1/3, where
ωr and ωa denote the radial and axial trapping frequency,
respectively. In our experiment ωr ranges from about 2π ×
300 Hz to 2π × 1.6 kHz while ωa = 2π × 21 Hz is almost
constant as it is dominated by the magnetic confinement.
The interaction parameter (kFa)−1 can be tuned by changing
either the scattering length a via the broad magnetic Feshbach
resonance located at 832 G [27,28], or by adjusting the Fermi
energy EF.

II. MEASURING THE PAIR FRACTION

In order to determine the pair fraction Np/Nσ we measure
the particle numbers Np and Nσ separately. Nσ is obtained
by means of spin-selective absorption imaging of the |↑〉
component using a σ−-polarized 671-nm laser beam resonant
with the D2 transition of 6Li [29]. This transition is essentially
closed due to a decoupling of the nuclear spin and the total
electronic angular momentum in the Paschen-Back regime of
the hyperfine structure [30]. All |↑〉 atoms will be counted
regardless of whether they are free or bound in the weakly
bound pairs. Since the binding energy Eb of these pairs is
always less than h × 1 MHz in our experiments, the imaging
laser is resonant with both free atoms and bound pairs. In
order to determine the number of bound pairs Np, we transfer
all pairs to states that are invisible in our detection scheme
and measure again the remaining |↑〉 state atom number via
absorption imaging. We use two different bound-state transfer
methods which produce consistent results. They are briefly
described in the following.

A. Optical transfer (OT) method

This transfer method is based on resonant excitation of
fermion pairs to a more strongly bound molecular state
(A1�+

u , v′ = 68) with a laser (λ = 673 nm) which is detuned
by 2 nm from the atomic transition; see also [19]. Subse-
quently, the excited molecules quickly decay to undetected
atomic or molecular states; see Fig. 2(a). This optical exci-
tation of the fermion pairs occurs via an admixture of the
molecular bound state X 1�+

g , v = 38 to the fermion pair wave
function [19].

If, for now, we ignore other loss processes, the number of
fermion pairs decays exponentially as a function of the laser
pulse length �t such that the measured total number Nσ (�t )
of mF = +1/2 atoms as a function of time is given by

Nσ (�t ) = Nσ (0) − Np(1 − e−k1�t ), (1)

where 1/k1 is the time constant for the optical excitation.
Figure 2(b) shows this decay for five different initial temper-
atures T/TF at a magnetic field of 726 G. By fitting Eq. (1) to
the measured data (see fit curves) we are able to extract the
pair number Np. Besides the photoexcitation of pairs a loss
in Nσ could in principle also be induced by photoassociation
of two free atoms. However, we made sure that within our
field range its rate is negligible. The photoassociation rate
constants range between 1 × 10−9 and 3 × 10−9 cm5(W s)−1

for magnetic fields between 726 and 820 G. We work with
low particle densities of at most 1011 cm−3 and a maximum
laser intensity of about 1.9 W/cm2.

For the data shown in Fig. 2(b) the laser intensity is
0.22 W/cm2 and the peak density for the lowest temperature
of T/TF = 0.64 is 1.4 × 1011 cm−3 which corresponds to an
initial photoassociation time constant of about 33 ms. This is
much longer than the loss dynamics observed in Fig. 2(b).
Indeed, the fact that the curves in Fig. 2(b) approach constant
values for pulse times t � 0.3 ms already suggests that the
photoassociation of free atoms is negligible.

However, closer to resonance the time constants for pho-
toassociation and pair excitation become more comparable.
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FIG. 2. Measurement of the number of fermion pairs. (a) and
(b) Optical transfer method. A resonant laser pulse transfers pairs
to states which are invisible to our detection scheme [blue arrows
(1)]. The total number Nσ (�t ) of remaining fermion pairs and
single atoms is measured by absorption imaging [red arrows (2)]. (b)
Nσ (�t )/Nσ (0) as a function of the pulse width �t at a magnetic field
of 726 G for various temperatures T/TF = {0.64, 0.79, 1.2, 1.4, 1.7}.
The solid lines are fit curves using Eq. (1). (c) and (d) Magnetic
transfer method. Using absorption imaging, the particle number
Nσ = Na + Np is measured at the magnetic field (1) and the number
of unbound atoms Na is measured after a fast ramp to (2). (d) The
measured particle numbers at (1) (B = 726 G, green solid circles)
and at (2) (B = 550 G, red solid squares) for various temperatures
T/TF.

Therefore, we generally release the particles from the trap
0.3 ms before applying the laser pulse. The subsequent expan-
sion lowers the cloud density by about a factor of 4 and assures
additionally that photoassociation is negligible. Furthermore,
lowering the density also strongly suppresses regeneration
of depleted Fermi pairs during the laser pulse, since pair
regeneration mainly occurs via three-body recombination. We
have checked that during the expansion the fermion pairs do
not break up. For this, we carried out measurements at a
magnetic field of 780 G, working at the lowest temperatures
of about 0.3 TF, where only about 10%−15% of the atoms are
unbound and thus photoassociation does not play a significant
role. We measured the same pair numbers with and without
expansion.

In general the OT method works very well up to magnetic
fields of about B = 820 G, close to the Feshbach resonance.
There, we observe marked deviations from the exponential
decay in Eq. (1), a behavior that also had been reported
earlier by the Rice group [19]. An analysis of these signals
would require a better understanding of the nature of strongly
interacting pairs. For this reason, we decide to stay below
magnetic fields of 820 G for the present investigations where
the analysis is unequivocal.

FIG. 3. Measured pair fractions Np/Nσ (blue circles) at 726 G
for various temperatures T/TF. (a) Optical transfer (OT) method;
(b) magnetic transfer (MT) method (see Fig. 2). We note that due
to evaporative cooling (kFa)−1 also changes with T/TF (orange
diamonds). The green curves are calculations based on the classical
model.

B. Magnetic transfer (MT) method

Here, we increase the binding energy of the pairs to h ×
80.6 MHz by quickly ramping the magnetic field at 20 G/ms
down to 550 G; see Fig. 2(c). This works very efficiently
without breaking up the molecules as previously shown in
[20,21]. At 550 G the fermion pairs cannot be resonantly
excited anymore by the imaging laser and become invisible
to our detection scheme; see [31]. Np is determined as the
difference of the numbers for atoms and pairs (Nσ ) measured
before the ramp and unbound atoms (Na) obtained after the
ramp. Figure 2(d) shows these particle numbers for different
temperatures at a magnetic field of 726 G.

We did not perform measurements with the MT method
for magnetic fields higher than 750 G because of technical
limitations for the ramping speed. If the field ramp duration
(≈10 ms for the case of 750 G) becomes comparable to the
equilibration time for the atom-molecule mixture (a few mil-
liseconds at 750 G) the measurement does not yield the correct
molecule number anymore. This restriction of the magnetic
field ramp implies that we cannot use the MT method in the
strong interaction crossover regime, but only in the far BEC
regime. There, however, the MT method is quite useful to
check for consistency with the OT method. This consistency
is shown in Fig. 3 where we plot the pair fractions Np/Nσ

obtained at 726 G from both methods as a function of the
temperature (blue circles). Since the temperature was adjusted
by varying the evaporative cooling, different temperatures cor-
respond to different particle numbers Nσ and thus to different
interaction parameters (kFa)−1(orange diamonds). The green
lines are calculated pair fractions using the classical model.
In general, we find good agreement between the experimental
data and the theoretical prediction, which also indicates con-
sistency between the OT and MT methods.

III. RESULTS

We now apply the OT and MT methods to map out the
fraction of pairs on the BEC side. For this, we perform mea-
surements for a variety of magnetic fields and temperatures.
The pair fractions Np/Nσ obtained from both experimental
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FIG. 4. Map of the pair fraction Np/Nσ as a function of tem-
perature and interaction strength on the BEC side of the Feshbach
resonance. The circles (diamonds) are measurements obtained with
the OT (MT) method. The thick solid and dashed lines are classical
model calculations (cf. Fig. 1). They are dashed in the strong-
interaction regime where the classical model is expected to be no
longer valid. The error bars include both a statistical and a systematic
part, i.e., the standard deviation of the mean of 10 temperature mea-
surements and the uncertainty in determining the molecule fraction
from the fit, respectively. The upper-right area bounded by the gray
dash-dotted line exhibits >5 % particle loss due to inelastic collisions
on the time scale of a measurement. The gray shaded area indicates
the superfluid phase below Tc, as in Fig. 1.

methods are shown in Fig. 4 (circles, OT method; diamonds,
MT method). The area on the right-hand side of Fig. 4, as
bounded by the thin dash-dotted line, marks a region where
we observe non-negligible loss of particles (>5 %) during
our measurements due to inelastic collisions of bound pairs.
This loss increases with (kFa)−1; see, e.g., [32,33]. In order to
simplify our discussion we only consider data points outside
this area.

The solid and dashed lines in Fig. 4 represent the statisti-
cal mechanics model without any adjustable parameters. For
higher temperatures we generally observe larger fluctuations
and thus larger error bars, because of the larger atom cloud
within a limited field of view. Overall, we find that the agree-
ment between measurement and model remains quite good
even in the crossover regime where this model of classical
particles with no interaction energy should be expected to
break down. In fact, the model could be expected to work to
the extent that the internal degrees of freedom of the fermion
pairs are frozen and only the degrees of freedom associated
with the center of mass of the pair remain active. This approx-
imately occurs when the fermionic chemical potential changes
sign which, using a t-matrix approach, we estimate to occur
at a coupling value of about (kF a)−1 = 0.5 at Tc. This might
explain the good agreement found between the model and
the experimental data when (kF a)−1 � 0.5 as well as with
the theoretical calculation based on a self-consistent t-matrix
approach.

IV. CONCLUSION

To conclude, we have systematically mapped out the
fermion pair fraction in a strongly interacting Fermi gas

as a function of both temperature and coupling strength.
Our measurements show how pairing of ultracold fermions
changes as we move from the BEC regime into the strong in-
teraction regime. We demonstrate a novel method to measure
the pair fractions from the near-BEC limit to the pseudogap
regime, which is based on a number measurement of fermion
pairs. This method is complementary to existing excitation-
gap measurements and has no counterpart in conventional
condensed matter systems. We find that a statistical mechanics
model treating the fermions and pairs as classical particles
describes the measured data quite well in the investigated
range, as we have also confirmed through an advanced many-
body calculation based on a t-matrix approach. In the future,
we plan to extend our measurements and investigate more in
detail the coupling region [0.1 � (kF a)−1 � 0.5] where the
preformed-pair and the pseudogap regimes overlap with each
other.
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APPENDIX A: MODEL OF A CANONICAL ENSEMBLE OF
NONINTERACTING ATOMS AND MOLECULES

In our simple statistical mechanics model we treat the cold
gas of fermions and fermion pairs as a classical canonical en-
semble of atoms and molecules, respectively, with negligible
interaction energy among each other. In collisions a pair of
|↑〉 and |↓〉 atoms can combine to form a molecule, and vice
versa a molecule can break up into an unbound pair of |↑〉, |↓〉
atoms. At a given temperature the atom and molecule numbers
are in chemical equilibrium. Following [22], the equilibrium
condition is derived by minimizing the Helmholtz free energy
F = kBT ln Z , subject to the constraint of particle number
conservation. Here

Z = Zs
2Na Zs

NpeNpEb/kBT

Na!Na!Np!

is the partition function of the system and Zs and Zse−Eb/kBT

are the single-particle partition functions for atoms and
molecules, respectively. ω = 3

√
ω2

r ωa is the geometric mean
of the trapping frequencies ωa, ωr in axial and in radial direc-
tion, respectively. Using Stirling’s formula to approximate the
factorials a minimum in the free energy is found at a molecule
(pair) number,

Np = 1

Zs
Na

2 e−Eb/kBT ,

for a given temperature T and binding energy Eb =
−h̄2/(ma2). Using the partition function Zs = (kBT/h̄ ω)3,
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FIG. 5. Ratio Nσ (�t )/Nσ (0) after an optical transfer pulse of
length �t at a magnetic field of 820 G for various temperatures (see
legend). The solid lines are fits of an exponential decay towards a
constant offset.

the Fermi energy EF = kBTF = h̄ω 3
√

6Nσ , and the total pair
fraction per spin state Nσ = Na + Np we obtain the following

implicit expression for the pair fraction Np/Nσ in thermal
equilibrium:

(1 − Np/Nσ )2

Np/Nσ

= 6

(
T

TF

)3

exp

[
Eb

kBT

]
.

APPENDIX B: MEASUREMENTS CLOSE TO UNITARITY

As pointed out in the main text we only carry out measure-
ments at magnetic fields of up to 820 G because for higher
magnetic fields we observe deviations from an exponential
decay during the optical excitation of the pairs towards deeply
bound molecules. Such deviations are indeed expected close
to resonance as a result of many-body effects [34]. In addition,
as the optical excitation cross section decreases towards the
resonance its rate becomes increasingly comparable to the one
of photoassociation. In order to clarify that an exponential
fit towards a constant value is still a good description at
820 G, we show corresponding decay curves in Fig. 5. A
slight nonexponential behavior of the measured decay will
increase the uncertainty in the measured equilibrium pair
fraction.
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