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1. Introduction

The ever expanding field of ultracold atomic gases has recently entered several branches
of physics for both fundamental physics experiments and but also applications. These
include condensed matter physics, metrology, statistical physics, quantum information,
molecular physics and many others. It is the unsurpassed control over the atomic degrees
of freedom that is responsible for the success of the field. In order to extend these
possibilities further and to expose ultracold atomic gases to new kinds of environments,
transport of ultracold atoms over macroscopic distances is a key technology.

Within the framework of this diploma thesis I devised and tested a novel method to
transport ultracold atoms over tens of centimeters with the help of an optical lattice.

Already before my work, transport of cold atoms has been of central interest for various
groups who explored different kinds of approaches using magnetic and optical fields. A
couple of years ago, several groups have reported using magnetic fields to move laser
cooled atoms over macroscopic distances of tens of centimeters [Gre01, Lew02] or over
smaller distances on an atom chip (for a review see [Fol02]). In the group of Wolfgang
Ketterle a so-called optical tweezer has been realized [Gus02]. In this experiment a BEC
is loaded into an optical dipole trap, which can be moved by mechanically relocating
the focussing lens using a large translation stage. With this method they managed to
transport the condensate over 40 cm within several seconds. A moving optical lattice
offers another interesting possibility to transport ultracold atoms. In a simple picture,
atoms are loaded into individual lattice sites and then are dragged along as the lattice
is moved. Such a transport has been realized for example in the group of D. Meschede
in Bonn where single, laser cooled atoms in a deep optical lattice were moved over short
distances of a several millimeters [Kuh01]. Even beyond the field of ultracold atoms,
applications of optical lattices for transport are of interest, where e.g. sub-micron sized
polystyrene spheres immersed in heavy water were relocated [Ciz05].

In the framework of this thesis we experimentally investigate transporting BECs and
ultracold thermal samples with an optical lattice over macroscopic distances of tens of
centimeters. Our method features the combination of the following important character-
istics. The transport of the atoms is in the quantum regime, where all atoms are in the
vibrational ground state of the lattice. With our setup mechanical noise is avoided and
we achieve precise positioning (below the imaging resolution of 1µm). We demonstrate
high transport velocities of up to 6m/s, which are accurately controlled on the quantum
level. At the same time the velocity spread of the atoms is not more than 2mm/s,
corresponding to 1/3 of a photon recoil.

Horizontal transport of atoms over larger distances holds two challenges: how to move
the atoms and how to support them against gravity. Our approach here is to use a novel
1D optical lattice trap, which is formed by a Bessel laser beam and a counterpropagating
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1. Introduction

Gaussian beam. The Bessel beam leads to radial confinement holding the atoms against
gravity. By detuning the laser beams relatively to each other the lattice moves the atoms
along the axial direction.

This thesis is divided into three main chapters. Chapter 2 is an introduction into
Gaussian and Bessel laser beams and optical lattices. Chapter 3 discusses different
theoretical approaches of how to treat and understand the dynamics of atoms in moving
optical lattices. Here, we mainly focus on the acceleration process. Finally, in chapter 4
we present in detail the transport experiments and discuss the results.

Appendix A describes the self built digital radio-frequency synthesizers which con-
trolled the lattice motion. Appendix B describes another project of my diploma thesis
which is not directly connected to the transport experiments. Here, the set up of a phase
stable frequency lock between two diode lasers is described.
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2. The optical lattice

In our experiment the atoms are trapped in a standing wave of light, formed by two
lasers, which are detuned far off resonance. In the first section of this chapter the most
important features of this trapping force are presented. Then possible laser fields, in
particular the Bessel beams, are introduced. Their ideal behavior as well as the ideas
of how to produce them in the laboratory are discussed. Eventually it is shown, how a
Bessel beam together with a Gaussian beam can be used to generate an optical lattice.

2.1. The dipole potential

The optical dipole force [Gri00, Met99], also known as the gradient force or the reactive
force, relies on absorption and stimulated emission processes. Today it is widely used
to form traps for neutral atoms. Unlike radiative traps, dipole traps are operated with
light far detuned from the atomic resonances.
In the semiclassical picture this dipole force arises from the interaction between the
induced atomic dipole moment ~pe and the classical electric field.

Fdip(r) = −∇Udip(r) (2.1)

Udip(r) = −1

2
peE = −1

2
αE2 (2.2)

= − 1

2ε0c
Re(α)I(r)

where the horizontal bars denote the average over the rapid oscillations of the optical
field, α the atomic polarizability and I(r) the intensity of the light field.

The polarizability may be calculated quantummechanically and turns out to depend
decisively on the atomic level structure [CT99].

In the case of trapping Rb-atoms, only the transitions from the 5S1/2 to the 5P1/2

(D1-line) and from the 5S1/2 to the 5P3/2 (D2-line) are relevant. The potential may be
written as

Udip(r) = −πc
2Γ

2ω3
0

(
1

ω1 − ω
+

1

ω1 + ω
+

2

ω2 − ω
+

2

ω2 + ω

)
I(r) (2.3)

where Γ is the total decay rate from the P-levels, ω1,2 the transition frequencies of
the D-lines and ω0 = (ω1 + ω2)/2 the mean transition frequency of the two D-lines.
The transition wavelengths are 2πc/ω1 =795 nm and 2πc/ω2 =780 nm and the relative
strength of the lines are 1/3 and 2/3, respectively.
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2. The optical lattice

In general the detuning of the dipole beams is much larger than the linewidth of the
relevant transitions (ω1,2−ω � Γ), so that the atoms stay mostly in the ground state |i〉.
Moreover in most experiments the detuning is chosen such that further approximations
can be made. Firstly the second and the forth term in equation (2.3), the so-called
counterrotating terms can be neglected as long as the detuning stays small compared
to the laser frequency itself (ω1,2 − ω � ω). Neglecting those terms is known in the
literature as the rotating wave approximation (RWA).
Secondly if the detuning does not only exceed the linewidth, but also the fine structure
splitting (ω1,2 − ω � ω2 − ω1), it is sensible to introduce an effective mean detuning.

Udip(r) = −πc2

2ω3
0

Γ

∆
I(r) (2.4)

where the effective detuning ∆ is given by

∆ =
3∆1∆2

2∆1 + ∆2
∆1,2 = ω1,2 − ω. (2.5)

Our trapping laser is operated at a wavelength of λ = 2πc/ω = 830 nm. The resulting
effective mean detuning is ∆ = 2π×20THz.

Although optical dipole traps are operated off-resonance, residual spontaneous emis-
sion processes occur, that can lead to heating of the atomic sample or a loss of trapped
atoms. For this reason another important quantity for dipole trapping is the photon

scattering rate [Gri00].

Γscatt =
πc2

2~ω3
0

(
Γ

∆

)2

I(r) (2.6)

Typically one has to keep 1/Γscatt small compared to time scale of the experiment, in
order to keep the probability for a spontaneous emission process low. Deriving the ratio

~ Γscatt

Udip
=

Γ

∆
(2.7)

shows, for a fixed trap depth Udip the scattering rate decreases for increasing detuning;
i.e. in principle the scattering rate can be made arbitrarily small. The drawback of course
is, that for larger detunings more power is needed to achieve the same trap depth.

2.2. Laser beams

In charge- and currentfree space the Maxwell equations [Jac02] lead to a wave equation
for the electromagnetic fields E(r, t) and B(r, t). This so-called Helmholtz equation
reads

∆Ei(r) + k2
iEi(r) = 0 (2.8)

with the dispersion relation k2
i =

ω2
i

c2
, i = {x, y, z} .
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2.2. Laser beams

z
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(a) (b)

zRzR

0
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w

Figure 2.1.: (a) Schematic of a Gaussian beam; e.g. generated by focussing with an
ordinary spherical lens. (b) The radius of a Gaussian Beam with a wave-
length of λ = 780nm and a waist of w0 = 250µm is shown as a function
of the distance from the focal point z(m). The resulting Rayleigh-range is
zR = πw2

0/λ = 25 cm.

2.2.1. Gaussian beams

Solving (2.8) within the paraxial approximation {kx, ky} � kz leads to the field distri-
bution of a linearly polarized Gaussian beams [Kle89].

EGauss(r, z) = E0
w0

w(z)
exp

[
− r2

w2(z)
+ i

(
kw2

0

2z

r2

w2(z)
+ arctan

z

zR

)]
eikz (2.9)

k =
2π

λ

w(z) = w0

√
1 +

z2

z2
R

zR =
πw2

0

λ

where λ is the wavelength, w0 the waist, w(z) the radius and zR the Rayleigh range of
the beam. For our further analysis, it is sufficient to continue with a simplified version

EGauss(r, z) = E0
w0

w(z)
exp

[
− r2

w2(z)
+ ikz

]
(2.10)
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2. The optical lattice
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Figure 2.2.: Schematic of a Bessel beam: The intensity of an ideal Bessel beam, given
by equation (2.13), is independent of the axial position z.

where we have neglected the fact, that the wave fronts are curved. The intensity distri-
bution of those beams may in any case be written as

IGauss(r, z) =
1

2
cε0|EGauss|2

=
2P

πw2
0

(
1 + z2

z2
R

) exp


 −2r2

w2
0

(
1 + z2

z2
R

)


 (2.11)

where P is the total power of the beam.

2.2.2. Bessel beams

In 1987 Durnin and Co-workers found another interesting solution to the Helmholtz
equation (2.8). The field is given by [Dur87a, Dur87b]

E(r, ϕ, z) = E0 · eiβz eilϕ Jl(αr) lεZ (2.12)

α2 + β2 = k2 =
(w
c

)2

where Jl(αr) is the l-th order Bessel function of the first kind. The beam is characterized
by the parameters α and β. It is important to note, that the expression (2.12) is a product
of a radial and an axial part; i.e. the radial field distribution does not depend on the
axial position.

In the following, we restrict the discussion to order l = 0, which we have used in the
experiment. By taking the absolute square of (2.12) one gets the intensity distribution
(Fig. 2.2) given by

I(r, z) = I0 J
2
0 (αr), ∀z, (2.13)

where α determines the radius r0 of the central spot via the first zero crossing of J0(αr)

r0 ≈ 4.81

2α
. (2.14)
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2.2. Laser beams

Figure 2.3.: Decomposition of a Bessel beam: The Bessel beam can be seen as a sum of
plane waves, whose k - vectors are lying on the shell of a cone with radius
α and height β.

As pointed out before, r0 and I0 do not change with the axial position z. Because of
this axial independence the Bessel beams are said to be “diffraction-free”. Due to this
distinctive feature, a Bessel beam can be used to form a 1D optical lattice with macro-
scopic axial extension.

Decomposition of a Bessel beam

In cylindrical coordinates the Fourier-transform is given by

Ẽ (k⊥, ϕk, kz) =

∫ ∞

0
dr r

∫ 2π

0
dϕ

∫ ∞

−∞
dz E (r, ϕ, z) e−ik⊥r cos(ϕ−ϕk)e−ikzz

(2.15)

Inserting the Bessel field yields to

=

∫ ∞

−∞
dz ei(β−k)z

∫ ∞

0
dr rJl (αr)

∫ 2π−ϕk

−ϕk

dϕ̃ eil eϕ−ik⊥r cos eϕeilϕk

∝ eilϕk

∫ ∞

−∞
dz ei(β−k)z

∫ ∞

0
dr rJl (αr − k⊥r)

∝ eilϕk δ (kz − β)
δ (k⊥ − α)

α
(2.16)

Equation (2.16) shows that a Bessel beam is a superposition of plane waves with (k⊥, kz) =
(α, β) i.e. the k - vectors of these plane waves are forming a cone (see Fig.2.3).

2.2.3. Generation of Bessel Beams

First we want to start with a more general treatment of how one may calculate the
intensity distribution behind an arbitrary thin and radially symmetric optical element
with transmission function t(r) and radius R (Fig. 2.4). In the literature this is known
as Kirchhoff’s scalar diffraction theory [Hec05].
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2. The optical lattice
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H
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r
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Figure 2.4.: (a) Deriving the field distribution E(r, z) behind an arbitrary optical el-
ement of radius R. (b) A light ray passing the refractive axicon at a
radial distance r′ from the center: The distance covered within the glass
is ∆s = (R − r′)/ tan δ, leading to an optical path difference ∆s̃(r ′) =
(nG − 1)(R − r′)/ tan δ and consequently to a phase shift k∆s̃(r ′).

We assume that the optical element is illuminated with an ideal plane wave. The
electric field can be written as a sum of spherical waves coming from the optical element,
which is located in the z=0 plane. In cylindrical coordinates (x, y, z) → (r cosφ, r sinφ, z)
the monochromatic field (wavelength λ) reads

E(r, z) =
E0

iλ

∫ R

0
dr′r′

∫ 2π

0
dφ′ t(r′)

eik|x−x
′|

|x − x′| (2.17)

where r′ = 0...R and φ′ = 0...2π are the coordinates of the optical element. For the
distance |x − x′| we can write

|x − x′| =
√

(x− x′)2 + (y − y′)2 + z2

=
√
r2 + r′2 + z2 − 2rr′ cos(φ− φ′)

≈ z

(
1 +

r2

2z2
+
r′2

2z2
− rr′

z2
cos(φ− φ′)

)
(2.18)

Here we have performed a Taylor expansion, valid for r � z and r ′ � z. Plugging (2.18)
into (2.17) leads to

E(r, z) ≈ E0

iλ

1

z
e
ik

“
z+ r2

2z2

” ∫ R

0
dr′r′ t(r′) eik

r2

2z2

∫ 2π

0
dφ′e−k rr′

z
cos(φ−φ′)

≈ E0

iλ

1

z
e
ik

“
z+ r2

2z2

” ∫ R

0
dr′r′ t(r′) eik

r2

2z2 2πJ0

(
rr′

z
k

)
(2.19)

Refractive axicons

One possibility to produce Bessel-like beams is to use a conical lens, a so-called refrac-
tive axicon (Fig. 2.5). Assuming negligible reflection and absorption as well as a small
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2.2. Laser beams

axicon

(b)

z
max

2 w
0

in

(a)

Figure 2.5.: (a) Refractive axicon: a conically-shaped lens characterized by the radius
RA and the apex-angle δ. (b) Geometrical optics picture: A Bessel beam
is formed, where the light rays of different directions cross each other. This
region has an extension zmax, which increases linearly with the radius of the
incoming beam win

0 .

axicon height H � z, the transmission function has the form

t(r′) = eik∆s̃(r′). (2.20)

The optical path difference ∆s̃(r′) arises from the fact, that the light passes through
glass (index of refraction nG) instead of air (index of refraction n ≈ 1) for a distance
∆s(r′) (Fig. 2.4). Given the apex angle of the axicon δ (see Fig. 2.5), the optical path
difference

∆s̃(r′) = (nG − 1)
R − r′

tan δ
(2.21)

and thus the transmission function

t(r′) = eik(nG−1) (R−r′)
tan δ → e−ik(nG−1) r′

tan δ (2.22)

may be calculated. In the right hand side of equation (2.22) the constant term eik(nG−1)R/ tan δ

is omitted, since the absolute square of this term, which is the relevant quantity for the
intensity distribution, equals unity.

By plugging (2.22) into (2.19) we can now calculate the field distrbution behind the
axicon. The integral can be derived approximately with the method of stationary phase
[Vas90, Nig97].

I(r, z) ∝ z · |J0 (αr) |2, 0 < z < zmax (2.23)

where α is determined by the apex angle δ and the index of refraction nG of the axicon
as well as the wavevector k = 2π/λ of the laser light.

α = k
(nG − 1)

tan δ
(2.24)
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2. The optical lattice
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Figure 2.6.: The intensity of the central spot as a function of distance z from the axicon.
(a) Here win

0 � RA= 25.4mm, i.e. the axicon is illuminated homogeneously.
The oscillations are a consequence of aperturing the beam. (b) Here the
radius of the incident beam is win

0 = 1 cm and win
0 = 2 cm, respectively.

With this choice win
0 is much smaller than RA and consequently aperture

effects are avoided.

Using equation (2.14) the radius of the inner spot may be calculated

r0 =
4.81

2k(nG − 1)
tan δ. (2.25)

The finite axial extension (Fig. 2.5(b)) of the Bessel beam is given by

zmax =
RA tan δ

nG − 1
(2.26)

As seen from equation (2.23) and Fig. 2.6 the intensity of an axicon beam is not
independent of the axial position. But the radial distribution and therefore the value
for r0 remain constant within 0 < z < zmax, as in the case of an ideal Bessel beam.

In our experiments the axicon is not illuminated homogeneously but with a Gaussian
beam of waist win

0 . To account for this, we modify the transmission function accordingly.

t(r′) = e−ik(nG−1) r′

tan δ e
− r′2

2(win
0

)2 (2.27)

The parameter α and consequently the radius r0 of the inner spot stay the same as for the
homogeneous illumination. However, the axial intensity distribution and in particular
the range of the beam zmax now depend on the waist of the incoming beam

zmax ' win
0 tan δ

nG − 1
. (2.28)
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2.3. Standing wave potentials

The intensity distribution itself may be calculated numerically. In Fig. 2.6(b) it is shown
for two different sizes win

0 of the impinging beam.

In summary refractive axicons may be used to create Bessel-like beam quite efficiently.
The only drawback is, that refractive axicons with a tip of decent quality seem to be
hard to produce1.

Diffractive axicons

Diffractive axicons are circular symmetric diffraction gratings (Fig. 2.7(a)). For ideally
blazed gratings, whose height h is a multiple of the laser wavelength λ = 2π/k, the
transmission function equals the transmission function of the refractive axicon. The
angle δ is then given by the blazing angle of the grating.

Well blazed circular-symmetric gratings are hard to fabricate. Thus the grooves of
commonly produced diffractive axicons do not have a smooth triangular shape, but are
cascaded. The simplest version of such a grating is a binary one (Fig. 2.7(b)). It is
fairly easy to produce, however, the Bessel beam only contains approximately 40% of
the power of the illuminating beam. The rest of the light has to be filtered out [Vas90]
and cannot be used for the experiment. For typical gratings (4-step gratings) produced
nowadays the efficiency is around 80%.

We decided to not use diffraction gratings, because the generation efficiency is always
less than for refractive axicons (unity efficiency). Furthermore no filtering is necessary
for refractive axicons.

However, diffractive axicons in general have the advantage, that also Bessel beams
of higher orders may be produced. By providing blue-detuned light, this enables for
instance to generate a light tube of macroscopic extent.

2.3. Standing wave potentials

2.3.1. Gaussian beam lattice

One-dimensional standing wave traps are typically formed by two counterpropagating
Gaussian beams with identical waists and focal points. The atoms are trapped close to
the center, where z � zR and r � w0. In this regime the expression for the field of the
Gaussian beam (2.10) may be further simplified

EGauss(r, z) = E0 e
ikz

(
1 − r2

w2
0

)
(2.29)

1All together we got three axicons from Del Mar Photonics. However, only one of those three produced

a beam useable for our experiments. Asymmetries as well as several dots instead of concentric rings

were observed, when illuminating the other two axicons.
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2. The optical lattice

(a)

h

(b) (c)

Figure 2.7.: (a) A circular-symmetric blazed diffraction grating is fully equivalent to
an refractive axicon, in case the laser wavelength λ = 2π/k is a multiple
of nh, where n is the index of refraction of the grating and h the height
as indicated. (b) A circular-symmetric binary diffraction grating. (c) A
circular-symmetric four-step grating.

leading to a standing wave intensity pattern given by

I(r, z) =
∣∣∣
√
I1e

ikz +
√
I2e

−ikz
∣∣∣
2
(

1 − r2

w2
0

)2

=
(
I1 + I2 + 2

√
I1I2 cos 2kz

)(
1 − r2

w2
0

+ O(
r4

w4
)

)
(2.30)

with I1,2 = 2P1,2/(πw
2
0) being the central intensities and P1,2 the total powers of the

two counterpropagating beams. Plugging the intensity distribution (2.30) into equation
(2.4) and substituting cos(2kz) = 1 − 2 sin2(kz) leads to the lattice potential

U(r, z) =
(
−U0 + Ulatt sin2 kz

)(
1 − 2r2

w2
0

)
. (2.31)

where the total trap depth U0 and the modulation depth of the lattice part of the
potential Ulatt are given by

U0 =
πc2

2ω3
0

Γ

∆

(
I1 + I2 + 2

√
I1I2

)
(2.32)

Ulatt =
πc2

2ω3
0

Γ

∆
4
√
I1I2 (2.33)

In the special case, when the two beams have equal intensities I1 = I2 = I0 (when e.g. a
retro-reflecting mirror is used), U0 = Ulatt the potential reads U(r, z) = −U0

(
1 − 2r2/w2

0

)
cos2 kz

with U0 = πc2

2ω3
0

Γ
∆ 4I0.

In order to describe how tight the atoms are confined, the trap frequencies are derived.
By making a quadratic approximation for both directions, we get
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2.3. Standing wave potentials

U

z( )l

U0

Ulatt

0 1 2 3

Figure 2.8.: Illustration of the total trap depth U0 and the modulation depth Ulatt. The
potential U(r = 0, z) is shown as a function of z. Interestingly for a Gaussian
beam lattice the ratio Ulatt/U0 stays the same for r 6= 0, as can be seen from
equation (2.31). For a Bessel-Gauss lattice, however, the situation is more
involved (equation (2.37)) and U0 and Ulatt are indeed only representable
parameters for r = 0.

ωr = 2πνr =

√
4U0

mw2
0

ωz = 2πνz = k

√
2Ulatt

m
(2.34)

2.3.2. Bessel-Gauss lattice

For our long distance transport experiments a standing wave formed by a Bessel beam
and a counterpropagating Gaussian beam (Bessel-Gauss lattice) is used.

The Bessel beam with radius r0 = 4.81/(2α) confines the atoms along the radial
direction and supports them against gravity. For the lattice confinement along the axial
direction a counterpropagating Gaussian beam with a large waist w0 � r0 is used. For
the trapping region r � r0 � w0 we may write

EBessel(r, z) = EB e
ikz

(
1 − (αr)2

8

)

EGauss(r, z) = EG e
ikz (2.35)
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2. The optical lattice

The resulting interference pattern reads

I(r, z) =

∣∣∣∣
√
IB e

ikz

(
1 − (αr)2

8

)
+
√
IG e

−ikz

∣∣∣∣
2

= IB

(
1 − (αr)2

4
+ O(r4)

)
+ IG + 2

√
IBIG

(
1 − (αr)2

8

)
cos(2kz)(2.36)

where IB is the central intensity of the Bessel beam and IG the central intensity of the
Gaussian beam. The resulting potential is given by

U(r, z) = − U0

[
IB(√

IB +
√
IG
)2
(

1 − (αr)2

4

)
+

IG(√
IB +

√
IG
)2

+
2
√
IBIG(√

IB +
√
IG
)2
(

1 − (αr)2

8

)]
+ Ulatt

(
1 − (αr)2

8

)
sin2 kz (2.37)

with the total trap depth U0 and the modulation depth Ulatt being definied analogous
to (2.33)

U0 =
πc2

2ω3
0

Γ

∆

(
IB + IG + 2

√
IBIG

)
(2.38)

Ulatt =
πc2

2ω3
0

Γ

∆
4
√
IBIG. (2.39)

The resulting trap frequencies are

ωr = 2πνr =

√
1

m

(
∂2

∂r2
U(z = 0)

)

r=0

=

√
U0α2

2m

IB +
√
IBIG

(
√
IB +

√
IG)2

ωz = 2πνz =

√
1

m

(
∂2

∂z2
U(r = 0)

)

z=0

= k

√
2Ulatt

m
(2.40)

Again, in the case of equal intensities IB = IG = I0 we have U0 = Ulatt. The potential
may then be written as

U(r, z) = −U0

(
1 − (αr)2

8

)
cos2 kz (2.41)

ωr = 2πνr =

√
U0α2

4m

ωz = 2πνz = k

√
2U0

m
(2.42)

As we have seen in the previous section, the center intensity IB of non-ideal Bessel
beams, such as the axicon beams in our experiment, also varies with the axial position.
However, as mentioned before, IB can be made sufficiently constant over a principally
arbitrary range, assuming, that there is enough power available.
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3. Atoms in moving lattices

In this chapter several ways to understand the behavior of a cold atomic cloud in a
moving optical lattice are presented. A simple classical picture is introduced in the
first section. Within the quantum optics approach presented in the second section the
problem is treated as a two-level atom interacting with two counterpropagating laser
fields of frequencies ω1 and ω2, respectively. Such laser fields describe a moving optical
lattice, whose velocity is proportional to the difference between ω1 and ω2. In this context
Raman transitions to higher momentum states are the explanation for the acceleration
of the atoms [Pei97]. In the third section the more common “solid state - like theory”
of particles in a periodic potential is discussed [Dah96, Pei97, Den02]. First of all the
stationary eigenvalues and eigenfunctions, the so-called Bloch waves are derived. Then
a constant force term is added to the Hamiltonian, representing a constant acceleration
of the lattice. Eventually the problem of instabilities, arising from the combination of
interatomic interactions plus an external lattice potential, is discussed.

3.1. Moving lattices - Classical approach

In a simple classical picture the atoms are viewed as point-like masses. Since they are
sitting in the potential wells of a standing wave potential, they may be dragged along
with such an accelerated lattice. However, they will not stay right in the center of the
standing wave node, but will move slightly backwards, due to their inertia (Fig. 3.1).
More precisely they will move to the axial position z, where the confining force Fz equals

a a   = U   k / mlatt latt latt

Ulatt

l/2

(a) (b) (c)

Figure 3.1.: (a): Particle in a lattice at rest. (b) and (c): Particle in an accelerated
lattice. For alatt > Ulattk/m the atoms do not stay in the initial well and
can therefore not be dragged along with the lattice.
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3. Atoms in moving lattices

malatt, with

Fz = − ∂

∂z
Ulatt cos2(kz) (3.1)

= Ulattk sin(2kz). (3.2)

and alatt being the acceleration of the lattice. This axially confining force has a maximum
value of

Fz,max = Ulattk. (3.3)

In order to keep an atom bound to the lattice, we thus require the acceleration a to be
small enough such that

malatt < Ulattk. (3.4)

As we will see later, this upper limit on the acceleration arising from classical consider-
ations, is appropriate in the case of deep lattices (Ulatt � Er).

3.2. Moving lattices - Quantum optics approach

3.2.1. Transfer between momentum states

The state of an atom may generally be described by its internal state and its total
momentum p. In the case of a two level atom the total energy of this state is then given
by

E = Eg,e +
p2

2m
(3.5)

Thus the energy diagram E(p) consists of two parabolas with an offset given by Eg and
Ee, respectively (Fig. 3.2).

In a proper electromagnetic field the atoms are stimulated to absorb and emit photons.
Through these processes a discrete amount of energy and momentum is transferred to
the atom. For a single photon absorption or photon emission event an energy of ~ω and
a momentum of ~k is exchanged.

Our goal is to accelerate the atoms; that is to transfer them from the zero momentum
state |g, 0〉 to a state |g, 2N~k〉 with a large number N . This goal is achieved by con-
secutively driving Raman transitions between a state |g, 2(n− 1)~k〉 and state |g, 2n~k〉,
where n = 1, 2, ..., N . Assuming that one laser is kept at constant frequency ω1, the n-th
Raman resonance is hit by tuning the second laser to

ω
(n)
2 = ω1 − 4(2n− 1)ωr. (3.6)

where Er = ~ωr = (~k)2

2m is the recoil energy.
One possibility to transfer all the atoms into the state |g, 2N~k〉 is applying N light

pulses (so-called Rabi-π-pulses), where the frequencies of the laser beams are tuned to

ω1 and ω
(n=1,...,N)
2 , respectively. This method, however, is quite demanding, since for a
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3.2. Moving lattices - Quantum optics approach
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Figure 3.2.: Quantum mechanical picture of the acceleration process: The total energy of
the atom is plotted versus momentum. Population transfer into states with
higher momentum is achieved by consecutive ARP. This ARP scheme is
realized by keeping the frequency of the first laser ω1 constant and ramping
the frequency of the second one linearly ω2 = ω1 + ω̇2t with ω̇2 < 0. The
n-th avoided crossing is then hit after a time tn = 4(2n− 1)ωr/ω̇2.

full population transfer both the intensity of the laser and the pulse length have to be
well controlled.

An alternative is the adiabatic rapid passage scheme discussed in the following. It is
advantageous, because on the one hand it is much less sensitive to fluctuations in the
intensity of the light and on the other hand the lasers do not have to be switched.

3.2.2. Adiabatic rapid passage

In order to study the adiabatic rapid passage scheme [Lan32, Zen32, Rab57] in more
detail we pick out the first Raman resonance between the state |g, 0~k〉 ≡ |ψ1〉 and the
state |g, 2~k〉 ≡ |ψ2〉 (see Fig. 3.3). The common detuning ∆ is chosen sufficiently large,
so that the excited state |e, ~k〉 is basically unpopulated. Consequently the three level
system shown in Fig. 3.3 may be treated as a quasi-two level system.

In the interaction picture the Hamiltonian of this quasi-two level system may be
written as

H̃ =
~

2

(
δ Ω
Ω −δ

)
(3.7)

where δ = ω1 −ω2 − (E2 −E1) is the detuning from the Raman resonance. The effective
Rabi frequency Ω is given by

Ω =
Ω1Ω2

2∆
(3.8)
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3. Atoms in moving lattices
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Figure 3.3.: The “lambda system”: A Raman transition from |ψ1〉 to |ψ2〉 may be driven
via a virtual state in the vicinity of state |e, 1~k〉. A large ∆ is needed to
avoid spontaneous emission from |e, 1~k〉. For ARP ω2 and consequently δ
is changed adiabatically.

where the Rabi frequencies Ω1 and Ω2 are determined by the intensity of the two beams
as well as the coupling between the internal states of the atom. The two dimensional
unity vectors

(
1
0

)
and

(
0
1

)
correspond to the eigenstates |ψ̃1〉 and |ψ̃2〉 in the interaction

picture, i.e.
(

1

0

)
.
= |ψ̃1〉

(
0

1

)
.
= |ψ̃2〉 (3.9)

As seen from equation (3.7), the total Hamiltonian in this rotating basis (interaction
picture) is time-independent. Therefore stationary eigenvalues and eigenvectors exist

Ẽ± = ±~

2

√
Ω2 + δ2

|ψ̃+〉 = cos θ |ψ̃1〉 + sin θ |ψ̃2〉
|ψ̃−〉 = − sin θ |ψ̃1〉 + cos θ |ψ̃2〉 (3.10)

with the so-called mixing angle given by

cos θ =

√
1

2

(
1 +

δ√
Ω2 + δ2

)

sin θ =

√
1

2

(
1 − δ√

Ω2 + δ2

)
(3.11)

Let us now consider a ground state atom in far blue detuned field (|δ| � Ω, δ > 0).
Thus the state of the system is

|ψ̃+〉 ' |ψ̃1〉 (3.12)
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Figure 3.4.: The energies E± of the dressed states |ψ̃+〉 and |ψ̃−〉 is plotted (solid line):
The dashed line shows the asymptotic limit for vanishing Rabi-frequency.
For a non-zero Rabi frequencies an avoided crossing emerges (arrow). On
resonance (δ = 0) the energy splitting between the two levels is ~Ω. For
large detunings |δ| � ω, the states |ψ̃±〉 coincide with either |ψ̃1〉 or |ψ̃2〉.

If we now slowly change the detuning, the system will adiabatically follow the changes
of the Hamiltonian H̃; i.e. it will stay in it’s eigenstate |ψ̃+〉. The probability for
undesired jumps from the |ψ̃+〉 to |ψ̃−〉 (or vice-versa) is given by the Landau-Zener
formula [Lan32, Zen32]

P±→∓ = e
−π

2
Ω2

dδ/dt . (3.13)

This probability is vanishing for

dδ

dt
� π

2
Ω2 (3.14)

That means, as long as the adiabaticity criteria (3.14) is fulfilled, the system indeed
stays in state |ψ̃+〉. In this adiabatic regime the probability of finding the atom in state
|ψ̃2〉 increases continuously according to

P2 = |〈ψ̃2|ψ̃+〉|2 = sin2θ

=
1

2

(
1 − δ√

δ2 + Ω2

)
. (3.15)

Thus, if the laser frequency is adiabatically swept from the far blue detuned across
resonance to the far red detuned regime (|δ| � Ω, δ < 0), the final state is

|ψ̃+〉 ' |ψ̃2〉 (3.16)

i.e. by adiabatically sweeping across resonance the bare state of the atom may be changed
from |ψ1〉 ≡ |g, 0~k〉 to |ψ2〉 ≡ |g, 2~k〉

This transfer from the ground to the excited state is called “adiabatic rapid passage”.
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Figure 3.5.: Measurement of the population of the first three momentum states for (a) U0

= 4.4Er and (b) U0 = 1.8Er: The frequency of the second laser is ramped
according to (3.17) for a certain time t. Then both lasers are turned off
abruptly and the momentum components are separated by free expansion.
The time t is given in units of the Bloch period tB = 8ωr/ω̇2, which is the
time it takes to increase the mean momentum of the cloud by 2~k.

Consecutive Adiabatic Rapid Passage

We have seen, how the Adiabatic Rapid Passage (ARP) scheme can be used to ac-
celerate the entire BEC to a momentum of 2~k. By sweeping the laser further, more
Raman resonances may be hit and the atoms may be transferred to the |g, 4~k〉 state,
|g, 6~k〉 state, et cetera. For the measurements presented in this chapter, the second
laser is swept linearly (ω̇2 = const. < 0)

ω2(t) = ω1 + ω̇2t (3.17)

with

8~
2ω̇2 � U2

0π (3.18)

in order to avoid Landau-Zener tunneling. Here we have taken equation (3.14), where
we have substituted the Rabi frequency by the potential depth U0 = 2~Ω.

In addition we restrict the discussion for now to lattice depths U0, which are small
enough, that the extension of the crossing zones, given by ∼ Ω = U0/(2~), is much
smaller than the frequency difference between two crossings

Ω =
U0

2~
< 8ωr. (3.19)
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3.2. Moving lattices - Quantum optics approach

In this case the simple model of ARP for a two-level atom given above can be used to
calculate the probability for an atom being in state |g, 2n~k〉, (n = 0, 1, 2, ...). Using
equation 3.15 we get

P2n~k =
1

2


 δn√

δ2n + Ω2
− δn+1√

δ2n+1 + Ω2


 (3.20)

with the detuning from the respective resonances

δn = ω2(t) − ω
(n)
2

= ω2(t) − ω1 + 4ωr(2n− 1)

= ω̇2t+ 4ωr(2n− 1) (3.21)

Thus as a function of time we can write

P2n~k(t) =
1

2

(
ω̇2t+ 4ωr(2n− 1)√

(ω̇2t+ 4ωr(2n− 1))2 + Ω2
− ω̇2t+ 4ωr(2n+ 1)√

(ω̇2t+ 4ωr(2n+ 1))2 + Ω2

)

(3.22)

For a linear frequency ramp, equation (3.22) gives the population of any momentum
state |g, 2n~k〉 as a function of time. By performing time-of-flight measurements of the
cloud after the acceleration process, P2n~k(t) may be measured directly and compared
with the calculation. Since condition (3.18) is fulfilled, the predicted curve is in good
agreement with the measurements.

Here it should be pointed out, that in order to obtain the result shown in Fig. 3.5, that
is to map the state of the atom |ψ(t)〉 onto the momentum eigenstate basis |g, 2n~k〉,
the laser has to be turned off abruptly after acceleration. Otherwise the atoms might
have time to redistribute in momentum space.

Since the majority of the transport measurements, presented in the following are per-
formed at lattice depths of 10Er or less, our model is sufficient to explain the acceleration
kinematics in our experiment. And even though our simple picture of consecutive ARP
is not appropriate for deep lattices, the physics of the acceleration process does not
change significantly.

3.2.3. Mean velocity

For characterizing the movement of the entire cloud the mean velocity is derived.

v̄(t) =
∑

n

2n~k

m
P2n~k(t) (3.23)

For deep lattices (large Rabi frequencies) the atoms are bound very tightly to potential
minima. The mean velocity of the atoms coincides with the speed of the lattice and is
therefore also increasing almost linearly with time. When the Rabi frequency is made
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Figure 3.6.: The mean velocity v̄ of the cloud as a function of time t for lattice depths
of (a) U0 = 4.4Er and (b) U0 = 1.8Er, respectively. The time t is again
given in units of tB = 8ωr/ω̇2.

smaller, the curve v̄(t) starts to departure from the ideal linear shape (Fig. 3.6). The
mean velocity of the atoms in the reference frame of the lattice

v̄′(t) = v̄(t) − vlattice(t) (3.24)

is not zero any longer, but shows an oscillatory behavior. These oscillations of v̄ ′(t) are
called Bloch-oscillations and are well known in solid-state physics. They are discussed
in more detail in the next section.
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3.3. Moving lattices - Solid state physics approach

3.3.1. Band structure

A standing wave formed by two counterpropagating beams with wavelength λ = 2π/k
produces a 1D lattice potential with a periodicity of λ

2 , as we have seen by deriving
equation (2.33) and (2.39). Neglecting the constant off-set potential in those equations,
we can write the Hamiltonian for a particle in such a potential as

H =
p2

2m
− Ulatt cos2 kz (3.25)

Since the dynamics of electrons in solids are also described by a Hamiltonian with a
periodic potential term, a broad discussion of this type of Hamiltonian and the corre-
sponding Schrödinger equation is found in basically all introductory solid state physics
textbooks (see e.g. [Kit87]). Here we want to apply this more general theory to the case
of a sinusoidal potential.

By solving the time-independent Schrödinger equation

Hφn,q(z) = En,qφn,q(z) (3.26)

the eigenvalues En,q and -functions φn,q are obtained. They are characterized by the band
index n = 1, 2, ... and the quasi-momentum −~k ≤ q ≤ ~k. This type of eigenfunctions
are called Bloch waves. According to the Bloch theorem [Kit87], they can be rewritten
as a product of a plane wave with momentum q and a function un,q with periodicity λ

2

φn,q(z) = eiqz/~ un,q(z) (3.27)

This leads to a eigenvalue equation for un,q

(
(p+ q)2

2m
− U0 cos2 kz

)
un,q(x) = En,qun,q(x) (3.28)

Due to the periodicity we may write un,q as a Fourier sum

un,q(x) =
∑

l

cn,q
l eil2kx (3.29)

and the potential as

U(x) = −U0 cos2 kx

= −U0

(
ei2kx + e−i2kx + 2

)

−→ −U0

(
ei2kx + e−i2kx

)
(3.30)

In the last line the constant term was dropped, because it only shifts all the eigenvalues
by the same amount and is therefore physically irrelevant.
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Figure 3.7.: Band structure for different lattice depths U0. For U0 = 0 the En(q) depen-
dence is parabolic - as expected for a free particle. For very deep lattices
on the other hand En(q) becomes very flat; i.e. the energy bands turn into
energy levels - as expected for a well trapped particle.

Inserting (3.29) and (3.30) into (3.28) leads to

∑

l

(2~kl + q)2

2m
· eil2kxcn,q

l +
U0

4

(
ei2kx(l+1) + ei2kx(l−1)

)
cn,q
l

=
∑

l

En,qe
il2kxcn,q

l (3.31)

or equivalently

∑

m

Hlmc
n,q
m = En,qc

n,q
l

Hlm =





(
2l + q

~k

)2
Er if l = m,

−1
4U0 if |l −m| = 1,

0 else

(3.32)

where Er = (~k)2

2m is the recoil energy.
The desired energy eigenvalues are obtained by diagonalizing Hlm. In general the

matrix Hlm is infinitely large. However, due to the fact that Hlm = 0 for |l −m| 6= 0 or
1, and because we are only interested in the lowest bands (i.e. the first few eigenvalues),
the matrix can be truncated and diagonalized.

In Fig. 3.7 the first four energy eigenvalues are plotted versus quasi-momentum q. For
the calculation of the eigenvalues a 6×6 matrix is used, i.e. Hlm is truncated for l,m > 6.
The “band structure” plots show, that for non-zero potential depths the particle’s energy
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3.3. Moving lattices - Solid state physics approach

can not have arbitrary values. Every allowed energy range is called an energy band and
is determined by one of the eigenvalues En,q. The forbidden region in between two bands
is named the band gap and becomes larger for increasing lattice depth.

The state of an atom, initially in state φn,q(z), develops as

ψ(z, t) = e−itEn,q/~ φn,q(z)

= e−itEn,q/~ eiqz/~ un,q(z) (3.33)

3.3.2. Accelerated lattice - Bloch oscillations

If the frequencies of the two lattice beams do not exactly coincide, the lattice will move.
Assuming two beams with the same amplitude E0, the resulting field is

E = E0 [cos(k1z + ω1t) + cos(−k2z + ω2t)]

= 2E0 · cos
(
kz − ∆ω

2
t

)
· cos

(
ωt− ∆k

2
z

)
(3.34)

where k1,2 = k ∓ ∆k/2 are the wavevectors and ω1,2 = ω ∓ ∆ω/2 the frequencies of the
two beams. From the second term we learn, that the oscillation frequency of the field
slightly deviates from ω depending on the axial position z. The first term on the other
hand shows, that the resulting field may be seen as a standing wave with wave vector
k = k1+k2

2 , which is moving at a velocity

vlattice =
∆ω

2k
(3.35)

Again, we want to restrict the treatment to a linear frequency sweep of one beam
relative to the other one

∆ω(t) = ω1 − ω2(t) = ω̇2t (3.36)

with ω̇2 = const., corrsponding to a linearly accelerated lattice. The dynamics of a parti-
cle in such a linearly accelerated lattice potential may also be described by a Hamiltonian
of the following form [Pei97]

H =
p2

2m
− Ulatt cos2 kx− Fx (3.37)

where the constant force F is given by

F = mv̇lattice = m
ω̇2

2k
(3.38)

The Bloch waves are no longer eigenfunctions of the system. However, when F is
weak enough to not induce band transitions, they may still be used to derive the time
evolution of the wave function [Pei97]

ψ(x, t) = e−i
R t
0

dτEn(q(τ))/~ eiq(t)x/~ un,q(t)(x) (3.39)
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3. Atoms in moving lattices

This is the same time evolution as for the non-moving lattice, except that the stationary
quasimomentum q is now substituted by

q(t) = q0 + Ft. (3.40)

In the Bloch band picture this means, that the atoms are swept through momentum
space due to the external force F . The time it takes to scan through one full Brillouin
zone −~k ≤ q ≤ ~k is given by the Bloch period

τB =
2~k

|F | (3.41)

The expression for the Bloch period tB = 8ωr/ω̇2 used in the caption of Fig. 3.5 is then
obtained by plugging (3.38) into (3.41).

When the band structure is known, the mean velocity of the particle in the lattice
frame may be derived [Kit87]

v̄′n(q) =
dEn(q)

dq
(3.42)

In Fig. 3.8 the calculated values for v̄ ′n(q) are compared to the data already shown in
Fig. 3.6 but with the lattice velocity subtracted. Furthermore (3.42) may be plugged
into (3.24) in order to get an expression for the mean velocity in the laboratory frame
v̄(t). The results coincide with the one from the previous section. Thus both approaches
predict indeed the same kinetic behavior for atomic clouds, exposed to an accelerated
lattice potential.

Moreover (3.42) shows, that not only En(q), but also v̄′n(q) is a periodic function of q
- and consequently also periodic in t. The period of these “Bloch oscillations” (BO) is
given by τB (Fig. 3.8). In the 1930’s Bloch and Zener already predicted, that electrons in
solids under the influence of an external electric field should exhibit these BO. However
scattering at lattice defects makes it impossible to observe these oscillations in solids.
An exception are the so-called superlattices. In these artificial lattices with very large
periodicities, the Bloch period is smaller than the typical time between two scattering
processses and the BO become visible [Was93].

For the derivation of v̄′(t) we have made the assumption, that the force F = mv̇latt is
weak enough to not induce transitions into higher bands. It was shown by Zener [Zen32],
that in order to keep the probability for tunneling into higher bands much smaller than
1, the acceleration F has to be

F � m
πU2

0

16~2k
. (3.43)

By setting F = mv̇latt = mω̇2λ/(4π) one can see, that this is exactly the same adiabatic-
ity criteria as the one obtained with the ARP model of the previous section (equation
(3.18)).
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Figure 3.8.: Bloch oscillations: The mean velocity of the atomic sample in the reference
frame of the linearly accelerated lattice as a function of time t for (a) U0

= 4.4Er and (b) U0 = 1.8Er. The time is given in units of the Bloch
period tB . For the deeper lattice shown in figure (a), the oscillations are
less pronounced.

3.3.3. Atomic interactions and instabilities

So far we have discussed non-interacting atomic clouds in optical lattices. In this sub-
section we want to add another term to the Hamiltonian, describing the interaction
between the atoms. For a Bose-condensed samples at ultra-low temperatures the total
Hamiltonian may be written as

H =
p2

2m
− U0 cos2 kx+

4π~
2as

m
|ψ(x, t)|2 (3.44)

where the interactions are described by a single parameter, namely the s-wave scattering
length as. The corresponding Schrödinger equation is non-linear, since the Hamiltonian
itself contains the square of the total wavefunction ψ(x, t). Because of its great impor-
tance in the field of Bose-Einstein condensates [Pet02], this equation got its own name;
it is called the Gross-Pitaevskii equation (GPE).

Landau and dynamical instabilities

Instabilities in superfluid systems, such as BECs, is a wide field of research. However,
since our main focus is not to study those instabilities, but to avoid them, we devote
only a short discussion to them.

A thorough stability analysis of the GPE with the Hamiltonian (3.44) shows, that
BECs with attractive as well as with repulsive interactions (as > 0) may be unstable in
the presence of a periodic potential [Cho99, Wu03, Fal04, Cri04].
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3. Atoms in moving lattices

In general Landau instability occurs, when the overall energy of a superfluid system
may be lowered by the creation of phonons. In free space a superfluid is described by a
plane wave, for which this unstable point is reached, when the speed of the superfluid
reaches the speed of sound. In a periodic potential a BEC may be described by Bloch
waves, for which Landau instability typically occurs near the edge of the Brillouin zone.

Dynamical instabilities exist in free space only for BECs with attractive interactions.
However, in the presence of an external lattice potential, the effective mass of the con-
densate may become negative close to the edge of the Brillouin zone. As a consequence
repulsive interactions turn attractive in this region of the momentum space and the BEC
can decay. For an exact determination of the unstable region, the lattice depth as well
as the interactions energy have to be known.

In our transport experiments we typically have lattice depths on the order of 10Er

and interaction energies of approximately 4π~
2asn/m ≈ 1Er for a background scattering

length as = 100 aBohr and a density of n ≈ 7 × 1013 cm−3. In this case about half of the
Brillouin zone (k/2 ≤ |q| < k) is unstable with respect to both Landau and dynamical
instabilities. The lifetime of a BEC is strongly reduced in this region and is only on
the order of 10ms [Fal04]. In our experiment we observe, that by sweeping through the
Brillouin zone in much less than ∆t = 20ms, the instabilities are suppressed. This value
for ∆t corresponds to the following constraint for the acceleration: a = v̇ � 2vr/∆t '
0.6m/s2. By keeping the acceleration above this value, we find, that BECs may be
transported without loosing coherence and introducing too much heating through these
instabilities. In general it would be interesting to understand further this kind of self-
healing mechanism, that leads to the suppression of the instabilities. However, within
the framework of this thesis, there was not enough time to further investigate the physics
of these instabilities.
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4. Experiments with moving lattices

In the first part of this chapter a short explanation of how to create a Bose-Einstein
condensate and how to load it into a standing wave is provided. Afterwards the main
focus is set on the transport experiments. In various measurements the long distance
transport of ultracold atoms is studied. Eventually it is shown, how the idea of an atom
catapult may be realized.

4.1. Experimental setup

4.1.1. Making a Bose-Einstein Condensate

Ten years after the first observation of Bose-Einstein Condensation (BEC) in dilute
atomic clouds [And95, Dav95], numerous BEC setups exist worldwide. All the experi-
ments rely on laser cooling and trapping techniques [Met99] as well as on evaporative
cooling, which were all developed over the last few decades.

In our experiment (Fig. 4.2) the cycle starts with capturing about 5 × 109 atoms
from a background Rubidium (87Rb) vapor in a magneto-optical trap (MOT) (for a
more detailed description of the BEC setup see [The05]). After a short molasses cooling
stage the sample is spin-polarized into the |F = 1,mF = −1〉 state. The atoms are then
loaded into a magnetic quadrupole trap, formed by the quadrupole coils of the MOT. By
using a magnetic conveyor belt [Gre01] the cloud is then pushed from the MOT chamber
over approximately 40 cm into the glass cell, located at the end of the XUHV region.
Once arrived in the glass cell, the atoms are loaded into a QUIC trap [Ess98] with trap
frequencies of (15Hz, 150Hz, 150Hz). In this magnetic trap evaporative cooling with

Quadrupole coils
for QUIC

Ioffe coil
for QUIC

Tube for
imaging beam

z

x

y

Figure 4.1.: Picture of the glass cell: The BEC is produced in the glass cell, which
is surrounded by the coils for the QUIC-trap. From this point of view, the so-
called Ioffe coil is located behind the cell. It is needed to generate a magnetic
field with a non-zero minimum, as required for BEC-trapping. The imaging
beam for the main camera points along the x-direction, so that high quality
(y, z)-profiles of the condensate are obtained.
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Figure 4.2.: BEC apparatus: Magnetic field are used to transport the atoms from the
MOT section (left) to the XUHV section (right) and eventually into the
glass cell, where the BEC is produced.

initially about 5 × 108 atoms is launched. Eventually all remaining 5 × 105 atoms are
Bose condensed, resulting in a purely parabolic velocity distribution. Since the center
of the QUIC trap and therefore the BEC is located very close to the wall of the cell, the
currents through the QUIC- and the offset-coils are readjusted after evaporation. The
resulting trap is now a fairly shallow “Ioffe-type” trap with trap frequencies of (7Hz,
19Hz, 20Hz). Along the x-direction this trap is now centered with respect to the glass
cell. Therefore the two required laser beams (propagating along the z-direction), which
have to be overlapped with the BEC, can now conveniently be guided through the center
of the glass cell. (Fig. 4.3). This way the beams will less likely hit the corners of the
glass cell and therefore unwanted aperture effects are avoided.

4.1.2. Loading the standing wave trap

From the magnetic trap the condensate is loaded into a 1D optical lattice formed by
a Bessel beam of radius r0 = 36µm and a counterpropagating Gaussian beam with a
waist of w0 ≈ 85µm (Fig. 4.3 and Fig. 4.4). This rather small value for the waist of the
Gaussian beam was chosen, because the corresponding beam was readily available and
the time to set up the beams was very limited. However, in principle a larger waist and
thus a larger Rayleigh range would of course be advantageous. The power needed for the
Bessel beam to support the atoms against gravity is typically 200mW, since only a few
percent (≈ 10mW) of the total power are stored in the central spot. For the Gaussian
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Figure 4.3.: Setup for the transport: The light for the 1D lattice is obtained from a
Ti:Sapph-laser operated at a wavelength of 830 nm. The two beams are both
sent through acousto-optical modulators to introduce the required detuning.
Then they are sent from the laser table to the experiment table via 10m
long, single mode & polarization maintaining fibers. The aspheric lens of the
fiber coupler #1 is used to generate a Gaussian beam with a focus located
approximately between the XUHV chamber and the glass cell. Fiber coupler
lens #2 is used to generate a collimated beam with waist w0 = 1mm and
2mm, respectively. The axicon is placed about 2 cm in front of the glass
cell.

beam a power of roughly 20mW is chosen, leading to a trapping potential at the center
(r = 0) of U(z) = −U0 + Ulatt cos2(kz), where the lattice depth (effective axial trap
depth) is Ulatt ≈ 10Er and the total trap depth U0 ≈ 11Er. The corresponding trap
frequencies are

ν⊥ =
4.81

2π

√
U0

8mr2
0

= 97Hz

νz =
k

2π

√
2Ulatt

m
= 21kHz. (4.1)

The first main task of the experiment is to load the BEC from the magnetic trap
into the standing wave without exciting it. In the presence of the lattice, the energy
eigenvalues and eigenfunctions of the system are given by the Bloch eigenenergies En,q

and -functions |φn,q〉, which are defined through equation (3.26). The goal is to keep the
atoms in the lowest band n = 0. To not populate any bands with n′ > 0, the adiabaticity
criterion [Sch68] has to be fulfilled

|〈φn=0,q|
dH

dt
|φn′>0,q〉| �

|En=0,q −En′>0,q|2
~

. (4.2)

Since the lattice is at rest during loading (q = 0) we may write for the term on the right
hand side |En=0,q=0 − En′>0,q=0| ≥ 4Er, where the equal sign is for vanishing lattice
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g

2 r0

Bessel beam Gaussian beam

2 w0

n +dn
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0V

Figure 4.4.: Setup for transport experiments: Two counterpropagating beams (a
Gaussian beam with diameter 2w0 and a Bessel beam with diameter 2r0)
are forming a standing wave trap. The atoms are loaded adiabatically into
the nodes of this standing wave. In fact the number of occupied nodes is
on the order of 100. By detuning one of the beams by ∆ν = ∆ω/(2π) the
standing wave starts to move at a velocity v = ∆ω/(2k), where k = 2π/λ.

depth (see also the Band structure shown in Fig. 3.7). Thus the amplitude is ramped
such that

V̇0

Er
� 16

Er

~
(4.3)

In our case (87Rb in a 830nm standing wave) the recoil energy is Er = ~/(2π)× 3.3 kHz,
which leads to a value for the right hand side of (4.3) of 16 Er

~
' 2×105s−1. This means,

one should take up significantly more than 50µs to increase the lattice depths by one
recoil; i.e. to load a 10Er lattice 5ms should be a fair choice for the ramp time.

When (4.2) is fulfilled, the loading is adiabatic with respect to the single particle
states. However, to be adiabatic with respect to an entire cloud of interacting atoms,
one has to ensure, that the chemical potential of the ensemble stays uniform at any
instant of time [Bla04]. In our case of a lattice potential the time needed to compensate
for imbalances in the chemical potential is given by the tunneling time. Thus we choose
a ramp time much larger than the typical tunneling time.

For our lattice parameters the tunneling time is on the order of 10ms. As expected
from the consideration above, we observe, that the ramp time needs to be on the order
of 100ms or larger. Eventually 100ms and 130ms, respectively, was chosen for basically
all experiments presented here.

For the shape of the amplitude ramp A(t), which determines the lattice depth during
the loading process, we pick a polynomial function of third order. With the four con-
straints A(0) = A′(0) = A′(T ) = 0 and A(T ) = 1 the coefficients are well-defined and a
smooth ramp of the following form is obtained.

A(t) = −2

(
t

T

)3

+ 3

(
t

T

)2

(4.4)

where T = 100ms is the ramp time. An analogous function is used to ramp down the
amplitude.
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Figure 4.5.: (a) Test setup for the phase stability measurement: The light at a wave-
length of 830 nm is split into two beams. Then both beams are passed
through acousto-optical modulators (AOMs) operated at slightly different
frequencies of 80MHz and 80.5MHz. The synthesizers generating those
readio-frequency signals are phase-locked, as discussed. After being sent
through 10m long, single mode optical fibers, the two beams are overlapped
again and the beat between them at a frequency of 500 kHz can be detected
using a photo diode. (b) Phase drift of the beat signal: The phase of the
beat is compared to the phase of an ideal sine wave and then plotted as a
function of time. A drift on the order of 360◦ is obeserved.

4.1.3. Setup for acceleration - creating a phase stable moving standing

wave

As mentioned in the previous chapter the two counterpropagating beams have to be
slightly detuned from each other in order to obtain a moving lattice. In the actual ex-
periment this detuning ∆ω is introduced by passing both beams through acousto-optical
modulators (AOMs). The radio frequency (RF) for the first AOM is kept constant at
ω1/(2π) = 80MHz, where as the second one is swept appropriately ω2(t) = ω1 + ∆ω(t).
Both RF signals are generated by digital synthesizers (AD9854), with which we have full
control over amplitude, frequency and phase at any instant of time. Therefore these pro-
grammable RF-sources do not only provide the frequency but also the amplitude ramp
for loading and unloading. For more details about these digital synthesizers the reader
is referred to appendix A. A very important feature of the AD9854 is the possibility to
lock it to an external reference oscillator. This enables us to phase lock the radiowave
signals for the two AOMs.

However, even when the lattice beams are phase locked right after passing the AOM,
their phase may have drifted once they reach the BEC in the glass cell. In particular
the 10m long optical fiber (Fig. 4.3) between the laser table and the experiment table
can be a source for phase and polarization drifts. For this reason, in advance to the
transport experiments the phase drift was estimated with a measurement of the relative
phase between the two fiber-coupled beams.

The beat between the two beams at a frequency of 500 kHz is detected as described in
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Figure 4.6.: (a) Position, (b) velocity and (c) acceleration of the atomic cloud as a
function of time for a typical transport sequence, here a round-trip over a
short distance of 1mm. Piecewise defined cubic polynomials are used for the
acceleration ramp. By integrating over time, velocity, position and frequency
detuning -used to program the synthesizers- are derived. The position ramp
is compared with in-situ measurements of the cloud’s position (circles)

Fig. 4.5(a) and stored using an oscilloscope. The phase of this beat signal is compared
to the phase of an ideal sine wave ϕsine(t) = 2π×500 kHz×t. On the time scale of 50ms,
which is only about a factor of 4 or 5 less then the time scale of our experiments, phase
drifts on the order of 360◦ are observed (Fig. 4.5(b)). This phase drift corresponds to a
position drift on the order of the laser wavelength. As we will see later, this is in good
agreement with the position uncertainty, observed in the transport experiments. The
main reasons for the slow phase drifts are polarization and temperature drifts within the
optical fibers.

4.2. Transport experiments

4.2.1. Basic Transport Kinematics

For the acceleration a piecewise defined cubic polynomial (“cubic spline) is chosen

a(t) =
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4.2. Transport experiments

where D is the covered distance and T the duration. By making this choice a(t) and
its derivative ȧ(t) are zero at the beginning t = 0 and at the end t = T of the transport.
For t = 1/4 and T = 3/4 the acceleration reaches a maximum.

Given the expression for a(t) the velocity v(t) and the position x(t) may be calculated
by integration over time.

v(t) =
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The velocity ramp v(t) is then plugged into equation (3.35), in order to obtain the
appropriate frequency ramp for the synthesizers.

Figure 4.6 shows results of a first experiment, where we have transported atoms over
short distances of 1mm (round trip 2mm). The atoms move perpendicularly to the
direction of observation and never leave the field of view of the CCD camera. In-situ
images of the atomic cloud in the optical lattice were taken at various times during
transport, and the center of mass position of the cloud was determined. By comparing
the theoretically expected position given by equation (4.6) with the position, obtained
from the in-situ images, we verify, that we have full control over the kinematic quantities
(Fig. 4.6(a)).

4.2.2. Transport of ultracold atoms using a Gaussian beam lattice

Even though the data shown in Fig. 4.6(a) were obtained for a Bessel-Gauss lattice,
transport over small distances may also be realized using two counterpropagating Gaus-
sian beams. For this purpose we have performed measurements with Gaussian beams,
both having a Rayleigh range of zR ≈ 2 cm corresponding to a waist of 70 µm. The
laser power of the two beams was ≈ 130mW and ≈ 35mW, respectively. We observe a
sudden drop in atom number when the transport distance exceeds the Rayleigh range
(Fig. 4.7). This is in agreement with the expectations, since for the beam parameters
given above, the atoms are only held against gravity at axial positions z < zR. In the
following we want to show, why the transport of atoms over tens of cm using a Gaussian
lattice is hard to achieve.

As an example, we assume, that we want to transport over a distance of 50 cm. During
transport we require the maximum radial confining force Fmax to be larger than gravity
mg, where m is the atomic mass and g ≈ 9.81m/s2 is the acceleration due to gravity.
For a Gaussian beam this is

Fmax =
3

4π3
√

e

λ3

c

Γ

∆

P0

w(z)3
> mg (4.7)
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Figure 4.7.: Transport in a Gaussian beam lattice: The atom number is plotted
versus transport distance. We estimate, that for distances exceeding 20mm
in the one direction and 10mm in the other direction, respectively, the atoms
are not hold against gravity any more and get lost.

where Γ is the natural linewidth of the relevant atomic transition, ∆ the detuning from
this transition, w(z) the beam radius and P0 the total power of the beam. The strong
dependence on the beam radius w(z) suggests, that w(z) = w0

√
1 + (z/zR)2 should

not vary too much over the transport distance. If we thus require the Rayleigh range
zR = πw2

0/λ to equal the distance of 25 cm, the waist has to be w0 ≈ 260µm. For a
lattice beam wavelength of e.g. 830 nm, the detuning from the D-lines of 87Rb is ∆ ≈
2π × 130THz. To hold the atoms against gravity for all z, where |z| < zR, a total laser
power of P0 ≈ 10W is needed, which is difficult to produce. In addition the spontaneous
photon scattering rate

Γscatt =
3

8π3~

λ3

c

(
Γ

∆

)2 P0

w(z)2
(4.8)

would reach values on the order of Γscatt = 2 s−1. For typical transport times of 200ms
this would mean substantial heating and atomic losses.

4.2.3. Transport of ultracold atoms using a Bessel-Gauss lattice

A better choice for transport are zero order Bessel beams. In our experiments we have
formed a standing light wave by interfering a Bessel beam with a counter-propagating
Gaussian beam, giving rise to an optical lattice which is radially modulated according to
the Bessel beam (see equations (2.35) to (2.37)). Atoms loaded into the tightly confined
inner spot of the Bessel beam can be held against gravity for moderate light intensities,
which minimizes the spontaneous photon scattering rate. In contrast to the transport
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Figure 4.8.: Long distance transports. (a) Shown is the number of remaining atoms
after a round-trip transport (see Fig. 4.6) over various (one way) distances.
The two data sets are obtained with two different Bessel beams which are
created by illuminating an axicon with a Gaussian beam with a waist w in

0

= 1mm and 2mm, respectively. The transport time was kept constant at
T =130ms and T =280ms. The calculated maximum radial trapping force
of these two Besselbeams is shown in (b) in units of mg, where g ≈ 9.81m/s2

denotes the gravitational acceleration. The variation of the trapping force
with distance is an imperfection of the Bessel beam and reflects its creation
from a Gaussian beam. When the maximum radial force drops to below 1 g,
gravity pulls the atoms out of the trap, as can be clearly seen in (a).
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4. Experiments with moving lattices

with a Gaussian beam, the scattering rate in a Bessel beam transport can be kept as
low as 0.05 s−1 by using the beam parameters of our experiment.

With such a lattice the transport scheme presented in Fig. 4.6 can readily be extended
to distances of up to 1m. The distances is limited to this value, due to the finite range
of the Bessel beam (Fig. 4.8(b)). The range, for which the radially confining force is
larger than gravity, depends on the power available. In our case the maximally available
power was approximately 400mW, with which we were able to reach distances of 20 cm
(40 cm round-trip). As shown in Fig. 4.8, the total number of atoms abruptly decreases
at the axial position, where the maximum radial force drops below gravity. It is also
clear from the figure, how the range of the Bessel beam is increased by enlarging the
waist win

0 of the Gaussian laser beam at the location of the axicon. Of course, for a given
total laser power, the maximum radial force decreases as the Bessel beam diameter is
increased. For both transports over 12 cm and 20 cm the total power in the Bessel beam
was approximately 400mW.

Interestingly, the curve corresponding to the Bessel beam with waist w in
0 = 1mm in

Figure 4.8(a) exhibits a pronounced minimum in the number of remaining atoms at
a distance of about 3 cm. The position of this minimum coincides with the position,
where the lattice depth has a maximum (see Figure 4.8(b)). This clearly indicates, that
high light intensities adversely affect atom lifetimes in the lattice. Although we have
not studied in detail the origin of the atomic losses in this work, they should partially
originate from spontaneous photon scattering and 3-body recombination. In the deep
lattice here (60Er) the calculated photon scattering rate is Γscatt = 0.4 s−1. The tight
lattice confinement leads to a high calculated atomic density of n0 ≈ 2 1014 cm−3.
Adopting L = 5.8 × 10−30cm6/s as rate coefficient for the three body recombination
[S9̈9], we expect a corresponding loss rate Ln2

0 =0.3 s−1.

4.2.4. Transport of a BEC over macroscopic distances

In Fig. 4.9 and Fig. 4.10 we have studied the transport of a BEC, which is especially
sensitive to heating and instabilities. The question is to which extent are the atoms still
Bose-condensed after the transport and what is their temperature afterwards? Figure
4.9 shows time-of-flight pictures for various transport distances D, which were obtained
after adiabatic switch-off of the lattice and abrupt switch-off of the magnetic trap. Ad-
ditionally a more quantitative analysis of the momentum distribution is provided in
Fig. 4.10.

Before discussing these results, we point out that loading the BEC adiabatically into
the stationary optical lattice and subsequent holding is already critical. We observe
a strong dependence of the condensate fraction on the lattice depth (Fig. 4.11). For
too low lattice depths most atoms fall out of the lattice trap due to the gravitational
field. For too high lattice depths all atoms are trapped but the condensate fraction
is very small. One explanation for this is that high lattice depths lead to the regime
of 2D pancake shaped condensates where tunnelling between adjacent lattice sites is
suppressed. Relative dephasing of the pancake shaped condensates will then reduce the
condensate fraction after release from the lattice. We obtain the best loading results
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D = 0 cm D = 5 cm

D = 10 cm D = 18 cm

Figure 4.9.: Time-of-flight pictures of the cloud: After transport the atoms
are adiabatically reloaded into the magnetic trap. From there they are
released abruptly and images are taken after 12ms time-of-flight. This way
the momentum distribution of the atoms is measured. For small one-way
transport distances on the order of D = 5 cm the majority of the atoms is
still Bose-condensed (see also Fig. 4.10). However, an increasing momentum
spread is observed for larger transport distances. For 18 cm the sample was
fully thermal. The diffraction rings seen in the upper figures are due to an
imaging problem.

45



4. Experiments with moving lattices

−1 −0.5 0 0.5 1 1.5
0

0.5

1

 

 

−1 −0.5 0 0.5 1 1.5
0

0.5

1

at
om

   
 d

en
si

ty

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

no
rm

al
iz

ed

−1.5 −1 −0.5 0 0.5 1
0

0.5

1

momentum (hk)

D = 18 cm

D = 10 cm

D = 5 cm

D = 0 cm

total (measured)
thermal (fit)
condensed (fit)

Figure 4.10.: Transporting BEC. Shown are the momentum distributions (thin black
lines) of the atoms after a return-trip transport over various one-way dis-
tances D. A bimodal distribution (a blue parabolic distribution for the
condensed fraction and a red Gaussian distribution for the thermal frac-
tion) is fit to the data. For D below 10cm a significant fraction of the
atomic cloud is still condensed. For D =18 cm (≈ the limit in our experi-
ments) only a thermal cloud remains, however, with a temperature below
the recoil limit (T < 0.2Er/kB ≈ 30 nK).
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Figure 4.11.: Holding the BEC in the lattice: The BEC is loaded into the standing
wave within 120ms, held for 500ms and then loaded back into the mag-
netic trap in 100ms. After release from the magnetic trap, (a) the total
number and number of condensed atoms and (b) the condensate fraction
are measured as a function of the lattice depth.

for an approximately 10Er deep trap, where we lose about 65% of the atoms, but
maximize the condensate fraction (see Fig. 4.11). Because high lattice intensities are
detrimental for the BEC, we readjust the power of the lattice during transport, such that
the intensity is kept constant over the transport range. The adjustments are based on the
calculated axial intensity distribution of the Bessel beam. In this way we reach transport
distances for BEC of 10 cm. We believe, that more sophisticated fine tuning of the power
adjustments should increase the transport length considerably. After transport distances
of D = 18 cm (36 cm round trip) the atomic cloud is thermal. Its momentum spread,
however, is merely 0.3 ~k, which corresponds to a temperature of 30 nK. Additionally,
we want to point out, that the loss of atoms due to the transport is negligible (<10%)
compared to the loss through loading and simply holding in such a low lattice potential
(≈ 65%).

4.2.5. Prominent features of the transport

In this section some basic properties of the transport are discussed. We will present
measurements, which show, how fast and how accurately the atoms may be relocated.

Precise Positioning An outstanding feature of the lattice transport scheme is the precise
positioning of the atomic cloud (Fig. 4.12). Aside from uncontrolled phase shifts
due to moving mirrors etc. we have perfect control over the relative phase of
the lattice lasers with our RF / AOM setup. This would in principle result in
an arbitrary accuracy in positioning the optical lattice. We have experimentally
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Figure 4.12.: Accurate Positioning of the cloud: The axial position z of the
cloud is determined by in-situ imaging the atoms before and right after the
transport, respectively. The value z = 0 corresponds to the mean position.
The measured standard deviation from the mean position is 0.4µm, 0.8µm,
0.7µm and 0.6µm for transports over 0mm, 1mm one-way, 1mm round-
trip and 10 cm round-trip, respectively. All four series of measurements
were done independently and therefore there are no correlations between
them.

investigated the positioning capabilities in our setup. For this we measured in
many runs the position of the atomic cloud in the lattice after it had undergone
a return trip with a transport distance of up to D = 10 cm (Fig. 4.12). A slight
increase of the position jitter due to the transport is observed, even though the
order of magnitude of the jitter (∼1µm) stays the same. Here we want to point
out, that this measurement of the position jitter is in nice agreement with the
phase drift measurement presented before (Fig. 4.5).

Small transport durations Another important property of the lattice transport scheme
is its short durations. For example, for a transport over 20 cm (40 cm round trip)
with negligible loss, a total transport time of 200ms is sufficient. This is more
than an order of magnitude faster than in the MIT experiment, where an optical
tweezer was mechanically relocated [Gus02]. The reason for this speed up is the
much higher axial trapping frequency of the lattice as compared to the optical
tweezer, in combination with the fact, that no mechanical relocation of any part
of the experiment is required.

High accelerations In order to determine experimentally the lower limit of transporta-
tion time we have investigated round-trip transports (D = 5mm), where we have
varied the maximum acceleration and the lattice depth (Fig. 4.13 a). The num-
ber of atoms, which still remain in the lattice after transport, is measured. As the
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Figure 4.13.: Critical acceleration in lattice. (a) Every transport over a given
distance D within a given duration T can be associated with a well-defined
maximum acceleration, experienced by the atoms during this transport
process. Therefore the atom number may easily be measured as a function
of maximum acceleration by varying the transport duration T . As the
maximum acceleration exceeds a critical value, the number of atoms starts
to drop. We define a critical acceleration as the maximum acceleration for
transports in which 50% of the atoms still reach their final destination.
This critical acceleration is shown as a function of the lattice depth in
(b). The experimentally determined values are compared with the limit
expected from classical considerations: acrit = Ulattk/m.
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Figure 4.14.: Atom number as a function of the maximum velocity during transport.

maximum acceleration exceeds a critical value, the number of atoms starts to drop.
We define a critical acceleration acrit as the maximum acceleration for transports
in which 50% of the atoms still reach their final destination. Figure 4.13b shows
the critical acceleration acrit as a function of lattice depth. The upper bound on
acceleration can be understood from classical considerations (section 3.1). As seen,
in order to keep an atom bound to the lattice, we require the acceleration a to be
small enough such that

ma < Ulattk. (4.9)

Our data in Fig. 4.13 are in good agreement with this limit.

As discussed in the previous chapter one also expects a lower bound on acceleration
a > 0.6m/s2, due to instabilities. However, in our transport experiments we have
not seen any indications of instabilities. The reason is probably, that for the most
part of the transport the acceleration clearly exceeds this value.

High velocities In contrast to acceleration, the transport velocity in our experiment is
only limited due to a technical reason, namely the AOM bandwidth. As discussed
before, the lattice is set in motion by introducing a detuning between the two
beams via AOMs (equation (3.35)). For detunings exceeding the bandwidth of
such an AOM, the diffraction efficiency of the modulator starts to drop signifi-
cantly. Consequently the lattice confinement vanishes and atoms are lost. In our
experiment we can reach velocities of up to v = 6m/s ≈ 1100 vr (see Fig. 4.14),
corresponding to a typical AOM bandwidth of 15MHz. This upper bound actually
limits the transport time for long distance transports (D > 5 cm).
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Figure 4.15.: Stability requirements for transport. Sudden phase jumps are in-
troduced in the relative phase of the two counterpropagating lattice laser
beams. The corresponding abrupt displacements of the optical lattice lead
to heating and loss of the atoms. We measure the number of atoms which
remain in the lattice after transport. (a) Data obtained after a single rel-
ative phase jump of variable magnitude. (b) A phase jitter (200 positive
Poissonian-distributed phase jumps with a variable mean value) is intro-
duced during transport. Mean values on the order of a few degrees already
lead to a severe loss of atoms.

Phase noise As discussed, slow phase drifts of the lattice lead to position drifts of the
atomic cloud. In order to further investigate the influence of phase noise, sudden
phase jumps during transport are introduced to one of the lattice beams. The
timescale for the phase jumps, as given by AOM response time of about 100 ns,
was much smaller than the inverse trapping frequencies. The phase jumps lead
to abrupt displacements of the optical lattice causing heating and loss of atoms.
Figure 4.15 shows two data sets. The first one explores atomic losses due to a
single phase jump during transport. Phase jumps of 60 degrees typically induce a
50 % loss of atoms. For a continuous phase jitter (here: 200 positive Poissonian-
distributed phase jumps with a variable mean value) the sensitivity is obviously
much larger (Fig. 4.15(b)).

4.3. Atom catapult

In addition to transport of ultracold atoms, acceleration of atoms to precisely defined
velocities is another interesting application of the moving optical lattice. For instance,
it could be used to study collisions of BECs with a very high but well defined relative
velocity, similar to the experiments described in [Tho04, Bug04]. As already shown
above, we have precise control to impart a well defined number of up to 1100 photon
recoils to the atoms. This corresponds to a large kinetic energy of kB × 200mK. At the
same time the momentum spread of the atoms is about 1/3 of a recoil (see Figure 4.10).
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Figure 4.16.: Atom catapult. After acceleration in x-direction and subsequent release
from the lattice, the position of the atomic cloud is tracked as it flies
freely through the field of view of the CCD camera. Shown are two data
sets where atoms were accelerated to velocities of either vx = 10 vr or vx

= 290 vr . (a) The horizontal position x as a function of time. (b) For
the slower cloud (vx = 10 vr) a parabolic trajectory y = −g/2(x/vx)2 is
observed as it falls under the influence of gravity.

To illustrate this, we have performed two sets of experiments, where we accelerate a cloud
of atoms to velocities v = 10 vr and v = 290 vr ≈ 1.6m/s. After adiabatic release from
the lattice, we track their position in free flight (see Figure 4.16). Initially the atomic
cloud is placed about 8 cm away from the position of the magnetic trap. It is then
accelerated back towards its original location. Before the atoms pass the camera’s field
of vision, the lattice beams are turned off within about 5 ms, to allow a ballistic flight
of the cloud. Using absorption imaging the position of the atomic cloud as a function of
time is determined. The slope of the straight lines in Figure 4.16(a) corresponds nicely to
the expected velocity. However, due to a time jitter problem, individual measurements
are somewhat less precise than one would expect. We believe that this is linked to the
fact that our clock for the system control is synchronized to the 50 Hz of the power grid,
whereas the clock for the RF synthesizers ar not. We know, that the relative fluctuations
of the 50Hz line frequency are on the order of 10−3. For the atom catapult experiment
with a duration of about 200ms these fluctuations lead to shot to shot variations in the
ballistic flight time of the atoms of about 200µs (see Fig. 4.16(a)).

For v = 10 vr, Figure 4.16(b) shows the trajectory of the ballistic free fall of the atoms
in gravity.
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This diploma thesis describes the first experiment, in which a moveable standing wave
dipole trap is used to transport ultracold atoms over macroscopic distances (exceeding
the cm range). By using a standing wave the momentum of the atoms is controlled on
the quantum level (uncertainty less than 2~k) at any instant of time. The novelty of this
experiment is the utilization of diffraction-free Bessel beam, with which transport over
principally arbitrary distances may be realized. In our case we were able to move BECs
over several cm and ultracold atoms (T < Er/kB) over up to 20 cm. By the use of an
refractive axicon, Bessel beams can be produced in a very simple and efficient way. In
comparison to other schemes, the lattice transport features fast and accurately control-
lable transport speeds (1100(1) vr), high accelerations (2600m/s2) and high positional
accuracy (1µm).

Many limitations are technical and leave large room for improvement. For instance
the maximum speed of 1100 vr could be increased by a factor of 2, in case the detuning
between the two beams is introduced via a double-pass AOM configuration. Another
example is the size and therefore the Rayleigh range of the Gaussian beam, which was
chosen rather small, due to time constraints. Increasing them would be fairly easy and
would help to enlarge the axial range of the lattice. In the end the range of the Bessel
beam and thus the transport range may be extended significantly by providing more
total power.

The presented transport technique is a possible method to separate the place of BEC
production from the location, where the condensate is probed. Furthermore the numer-
ous features described in the text, make this scheme a good candidate for loading BECs
onto atom chips or into high finesse cavities.

In addition to transport, the lattice can also be used as an accelerator to impart a
large but well defined number of photon recoils to the atoms. Such an experiment for
example could be used to study the collision between two BECs.
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A. Digital radio-frequency synthesizers

For our experiment we require two phase-locked radio-frequency sources, which may put
out arbitrary amplitude and frequency ramps. A device, meeting those demands, was
developed and built in our group by Manfred Mark and Gregor Thalhammer. Since
the transport experiment discussed in this thesis is one of the first applications of these
digital synthesizers, I want to use this appendix to explain their functionality in more
detail.

Frequency generator

The heart of this RF source is the frequency generator board AD9854, which may gen-
erate RF signals with a resolution of 1µHz for frequencies up to 150MHz. A functional
block diagram with an explanation of the basic functionality is shown in Fig. A.1. The
synthesizer is based on the DDS principle, which works as follows. The goal is to create
a signal S of the form S = sin(2πf(t)t). The main task is to calculate the phase φ = ft.
This is done via the recursion relation φ(tn+1) = φ(tn) + δφ, where tn = nτ , with the
fixed time increment τ and an integer number n. The phase increment δφ is given by
δφ = fτ and therefore determines the frequency f of the output signal. The recursion
is implemented digitally, using an adder and a couple of registers. A nice picture for a
better understanding of this procedure is the phase wheel shown in Fig. A.2(a). After
performing the recursion, an additional phase-offset ϕ(tn) may be added, leading to a
signal S = sin(2πft+ϕ). This signal S is multiplied with the desired amplitude An and
then sent through a D/A converter. After filtering, the output power of the signal is
about -12 dBm. The signal is amplified by more than 40 dB and then sent to the AOM.

The frequency of the RF signal produced with the DDS technique may be adjusted
very precisely and changed very fast over a wide range. Furthermore the RF wave
does not exhibit unwanted phase jumps, even when the frequency is changed abruptly
(Fig. A.2(b)). Last but not least the AD9854 is synchronized to an external reference
oscillator (X0-105BIC @ 60.000000MHz), which allows to phase lock several AD9854 to
each other.

A clear disadvantage of the chip is the fact, that it only comes with a few working
registers and input buffers and does not have the intelligence to create complex amplitude
or frequency ramps. For this reason we use a micro-controller, on which arbitrary ramps
may be stored.

Micro-controller

The micro-controller used here is a ATMega162 from Atmel. It is equipped with a 8-
bit processor as well as 16 kByte flash-memory, 1 kByte SRAM and 512Byte EEPROM.
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Figure A.1.: Functional block diagram of the AD9854: (1) Loading of the
I/O buffer: The values for amplitude, frequency and phase are stored
in an intermediate memory (the I/O buffer) via a parallel interface. (2)
Loading the register: Triggered by the I/O update signal, the values
are transferred to the main register of the chip. (3) DDS core: The
DDS core is the heart of the entire device (see explanation in the text) (4)
Amplitude control: The signal value S is multiplied with an amplitude
value and then sent through a DA-converter so that we end up with with
an analog output signal.
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lower
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Figure A.2.: (a) Digital phase wheel: The phase wheel represents the recursion formula
modulo 2π. The phase increment δφ determines the frequency of the RF
wave via δφ = fτ . As an example a phase wheel is shown, where the second
half period is run through with twice the frequency as compared to the first
half period. (b) The corresponding RF signal: Even though the frequency
is doubled all of a sudden, the signal stays continuous (no phase jump).

Additionally a 32 kByte external RAM is implemented. The size of the RAM is sufficient
to store ramps with up to N ' 1200 data points (for each amplitude, frequency and
phase) on it. For both, the external RAM as well as the communication with the
synthesizer (AD9854) a parallel interface is used. The speed of the communication
between the µ-controller and the AD9854 is determined by the time to load one data
point (about 20Byte) from the input buffer into the working register. Since this only
takes a few µs, fast communication of more than 2MByte/s is possible.

The ramps are created in Matlab. They are first saved in a *.bin file on the PC
and then stored on the µ-controller using a short Python program (“laden.py”). The
communication between the PC and the micro-controller is established with a RS232
interface. This kind of link consists of a USB plug on the computer side and a serial
port for the connection with the micro-controller.

Frequency and Amplitude ramp

By using Matlab, the desired ramps are generated in the form of vectors. The user puts
in the total ramp time T and vectors for amplitude A, frequency f and an additional
phase shift ϕ. For the transport experiments phase coherence is required and so the
phase shift ϕ is set to zero for all times. In addition to this manually generated vectors,
the m-file itself also creates a time vector t and a frequency difference vector ∆f (=
a vector, whose entries are the difference between neighboring entries of the frequency
vector: ∆fn = fn+1 − fn). These vectors then merge to a single matrix of the form




t1 A1 f1 ∆f1 ϕ1
...

...
...

...
...

tn An fn ∆fn ϕn
...

...
...

...
...

tN AN fN ∆fN ϕN




(A.1)
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PC µC AD9854
t
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Figure A.3.: Basic idea for generating the frequency and amplitude ramps: Amplitude
and frequency ramps are programmed on a PC and stored on a micro-
controller (µC). Upon request they are then sent to the AD9854, which
generates the corresponding RF signal.

where the n−th line of this matrix gives information on amplitude, frequency and phase
at the time tn. The values for amplitude and phase can only be changed stepwise, with
the time increments tn+1− tn being at least 10µs (limited by the time the AD9854 needs
to process one data point). However, the frequency can be interpolated linearly between
fn and fn+1, resulting in extremely smooth frequency ramps. The only requirement for
this is, that ∆fn is also sent to the synthesizer, since it does not know the value fn+1 at
the time tn.

Once the values for the matrix (A.1) are set, the corresponding binary numbers are
calculated (using the Matlab function ’num2bin’). The data point, which is sent to
the µ-controller, then contains two 6 Byte numbers for each the frequency and for the
difference frequency, as well as two 2 Byte numbers for the amplitude and the phase
shift of the signal.
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B. Phase Stabilization of Diode Lasers

B.1. Introduction

This appendix describes a work performed independently from the transport experiment
discussed throughout this thesis. The goal here was to establish a phase-lock between
two diode lasers, whose frequencies may differ by up to 6 GHz. This is achieved by
determining the phase between the two lasers via a beat measurement. After readjusting
its gain, this phase error signal is fed back to the current of one of the lasers. Eventually
more than 90% of the light was phase-locked, corresponding to a residual phase error of
∆φrms ' π

10 .

B.2. Feedback circuitry

In the field of electronics the idea of feedback is a very important tool for the stabilization
of certain parameters such as e.g. the temperature of an oven or the frequency of a laser.
The basic idea [Hor89] of such circuits is shown in Fig. B.1.

YA, YB , YC and YD are the signals in the frequency domain, that is, the Fourier-
Transforms of the respective signals in the time domain.

Yi(ω) =

∫ ∞

0
yi(t)e

−iωtdt (B.1)

The signals are commonly named as following: the output of the system YA, the reference
signal YB , the error signal YC and the input into plant YD. The plant is the device, which
has to be stabilized. It is characterized by the transfer function A(ω). The transfer
function of the controller is labeled B(ω). When the transfer functions are known,

Plant

Controller
B

Y
D

Y

A
Y

C
Y

)(wA

)(wB

+-

Figure B.1.: Basic scheme of a feedback circuit.
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simple relations between the singals Yi exist.

YC(ω) = YB(ω) − YA(ω)

YD(ω) = B(ω)YC(ω)

YA(ω) = A(ω)YD(ω) (B.2)

Thus the transfer function of the whole feedback loop may be written as

H(ω) :=
YA

YB
=

A(ω)B(ω)

1 +A(ω)B(ω)
(B.3)

B.3. Phase locked loops

The feedback idea from above is now applied to the stabilization of an voltage-controlled
oscillator (VCO). The goal of a phase locked loop (PLL) is to stabilize not only the
frequency, but also the phase of the oscillator. Therefore a phase-sensitive signal is
needed. Such a signal is gained by multiplying the signal of the VCO with that of a
stable local oscillator (LO). The signals are given by

Vvco(t) = V1 · sin (ωvco(t)t+ ϕvco(t))

Vlo(t) = V2 · cos (ωlot+ ϕlo) (B.4)

Multiplication leads to

Vvco(t) · Vlo(t) = V1V2 sin (ωvco(t)t+ ϕvco(t)) · cos (ωlot+ ϕlo)

=
V1V2

2
sin ([ωvco(t) + ωlo] t+ ϕvco + ϕlo) +

V1V2

2
sin ([ωvco(t) − ωlo] t+ ϕvco − ϕlo)

' V1V2

2
sin ([ωvco(t) − ωlo] t+ ϕvco − ϕlo) (B.5)

The term in the second line cancels after performing a time average over a cycle of period
T = 2π

ωlo

sin ([ωvco(t) + ωlo(t)] t+ ϕvco + ϕlo) ' sin(2ωlot+ ϕvco + ϕlo)

1

T

∫ T

0
sin(2ωlot+ ϕvco + ϕlo) dt = 0

From equation (B.5) it can be seen, that stabilizing Vvco(t) · Vlo(t) to zero will stabilize
the frequency difference ωvco −ωlo and the phase difference ϕvco −ϕlo to zero. Therefore
Vvco(t) · Vlo(t) could be used as an error signal for the phase stabilization.

A simple realization of a PLL is shown in Fig. B.2. The multiplication is performed
with a mixer. The mixer is followed by a low-pass filter (LP), which averages out the
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Dy

djµAy
VCO LP

Lockbox

Dvco yµdw

Cy By

)(wA

)(wB

+-

LO

0V

+

Figure B.2.: Schematic of a phase locked loop (PLL).

rapid oscillations (at 2ωlo). The VCO is controlled by the voltage V0 plus the input
signal yD. When the system is stabilized, yA = yB and yD = 0. Small perturbations
(e.g. due to the finite phase stability of the VCO) then change the output signal yA

and consequently the input yD. The frequency of the VCO then gets shifted by small
amount δωvco, proportional to yD. Now the integrating behavior of a VCO-type plant
becomes visible: The input yD is proportional to the frequency of the VCO, where as
the output yA is proportional to the phase. We can write

δωvco(t) = C1 · yD(t)

yA(t) = C2 · δϕvco(t) (B.6)

∫ t

0
yD(t)dt =

1

C1

∫ t

0
δωvco(t̄)dt̄

=
1

C1
· δϕvco(t)

=
1

C1C2
· yA(t) =

1

C
· yA(t) (B.7)

Performing a Fourier-Transformation on both sides, leads to

YD(ω)

iω
=

1

C
YA(ω) (B.8)

Thus the transfer function of the plant is given by

A(ω) =
YA(ω)

YD(ω)
=
C

iω
(B.9)

where the constant C characterizes the VCO.
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Lockbox
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PD

2W

1W
PDw

DPD yµdw

Figure B.3.: PLL with two diode lasers: The beat note at frequency ωPD = Ω1 − Ω2

between two diode lasers is detected with a photo diode (PD). This beat
signal is then mixed with a LO, running at the desired frequency difference
between the two lasers. Assuming a stable LO, the output (after the LP)
is then proportional to the phase error between the two lasers.

B.4. Phase locked diode lasers

The PLL scheme from above can readily be applied to the case, where the relative phase
of two lasers is stabilized (Fig. B.3). The input yD is then modulating the current
through one of the laser diodes. Consequently also the frequency of this laser and the
frequency of the beat signal between the lasers changes with the input signal yD. Thus
the two lasers together with the beat-detection are equivalent to the VCO; i.e. the beat
signal is phase stabilized with such a setup. And a phase stable beat signal of course
implies that the relative phase between the two lasers is stable.
However, one has to point out, that lasers are not ideal VCOs. As we will see below
(Fig. B.6 and Fig. B.5), the simple linear relation δωV CO(t) = C1 · yD(t) does not hold
for the high frequency components of yD(t). The response of the laser C1 is not constant,
but drops for frequencies (ω/(2π) ≥ 100 kHz).

B.4.1. Diode lasers

In the experiments discussed here home-built external cavity diode lasers (ECDL) [Har91,
Mac92] are used. The diodes are AlGaAs laser diodes from Laser Components (RLD78PZW2).
The frequency of such an ECDL can be modulated with either the current sent through
the diode, or by tuning the external cavity with a piezo-electric transducer (PZT). In
Fig. B.5 and Fig. B.6 the frequency response to current and PZT modulation, respec-
tively, is shown. To gain this so-called Bode diagram the current is modulated with a
sinusoidal signal Vin = V0,in cosωt. The response of the laser frequency is measured via
a beat with a second laser. This beat frequency f is converted into a voltage using a
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Figure B.4.: (a) Frequency to voltage converter as described in the text. (b) The output
signal Vout of the RF interferometer as a function of frequency ω/(2π) for
two different delay lines. The bandwidth is 1/(2τ) = 50MHz and 1/(2τ) =
30MHz, respectively.

RF interferometer, which consists of a power splitter, a frequency mixer and a low-pass
filter (Fig. B.4(a)) is a fairly simple way to convert a frequency into a voltage. After
splitting, one of the signals goes directly to the mixer, where as the other one has to
travel through a delay line of length L. The output of the mixer is then given by

Vout = 2V0 · cos(ωt) · cos(ω(t+ τ))

= V0 · [cos(ω(2t+ τ)) + cos(ωτ)] (B.10)

with the delay time τ = L
c . After low-passing

Vout(f) = V0 · cosωτ (B.11)

Within the frequency range of BWRFint ' 1
2τ the output voltage is approximately pro-

portional to the frequency f of the input signal (Fig. B.4(b)). Thus for small Vin the
ratio Vout

Vin
reflects the frequency response of our laser.

As can be seen from Fig. B.5, the current of the laser may be easily modulated with
up to a few hundred kHz. For frequencies above 1MHz the gain already drops by a
factor of two and the phase delay already exceeds 90◦. As we will see later, this is one
major reason, why the bandwidth of our entire PLL is limited to about 1MHz.

Fig B.6 on the other hand shows, that the bandwidth of the PZT channel is about
3 kHz. The first large resonance at about 3.6 kHz can be filtered out with a notch filter.
However, this will not increase the bandwidth by orders of magnitudes, since further
resonances follow. The fairly small resonance at about 200Hz does not have a big
influence on the performance of the lock.
Now that the frequency response of the laser is known, one can write down the more
realistic version of the transfer function A(ω) for the phase lock (compare with equation
B.9).

A(ω) =
C

iω
· Vout

Vin
(ω) (B.12)
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Another important property for phase locking is the individual coherence of the two
lasers. A direct measure for the coherence is the spectral width of the laser light. To
determine the linewidth of the ECDLs used here, the beat note between the two lasers,
running independently at similar frequencies, is detected. In Fig. B.7 the spectrum of
this signal is shown. The shape of the power spectrum P (ω) is well described by the
so-called Voigt profile, which is a convolution between a Lorentzian and a Gaussian
profile

P (ω) ∝
∫ ∞

−∞
dω̄ e

−(
ω̄−ω0
∆ωG

)2 1

1 + (ω−ω̄−ω0
∆ωL

)2
(B.13)

where ω0 is the beat frequency and ∆ωG and ∆ωL are the widths of the Gaussian and
the Lorentzian part, respectively. The widths are given by

∆ω2
G = ∆ω2

G,laser1 + ∆ω2
G,laser2

∆ω2
L = ∆ω2

L,laser1 + ∆ω2
L,laser2 (B.14)

with ∆ωG,laser1,2 and ∆ωL,laser1,2 being the widths of the Voigt profiles of the individual
lasers. The relations (B.14) arise from the fact, that the convolution of two Gaus-
sians/Loretzians is again a Gaussian/Lorentzian, with the width given by the quadratic
sum of the original two Gaussians/Lorentzians.

Since both ECDL are of the same type and are operated with the same laser diode, we
assume approximately the same spectral width for both lasers ∆ωG,laser1 ≈ ∆ωG,laser2 =
∆ωG,laser. Then the laser linewidth may be derived from the width of the beat signal
(Fig. B.7)

(∆ωG,laser,∆ωL,laser) =
1√
2
(∆ωG,∆ωL) = 2π(420 kHz, 20 kHz) (B.15)

One major reason, why we reach linewidths in the sub-MHz range is the use of an
external cavity diode laser (ECDL). Both, the internal (= the facets of diode itself) and
the external resonator (grating) have a finesse of about 3. However, since the length
of the external cavity is more than a factor of ten larger than the internal one, the
corresponding linewidth is reduced by more than an an order of magnitude.
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determined by
Lorentzian

determined by
Gaussian

Figure B.7.: Beat between two free-running external cavity diode lasers. The beat fre-
quency here is 1 GHz, however, the frequency axis is shifted such that
the peak appears at zero frequency. A convolution between a Gauss with
∆ωG = 2π×600 kHz and a Lorentz with ∆ωL = 2π×33 kHz is fitted to the
data. As indicated, the Gaussian part is responsible for the initial drop of
the signal close to the center, whereas the long-range wings are due to the
Lorentzian part.
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B.4.2. Lockbox

At the input of the lockbox (Fig. B.8) the error signal is split into two channels: The
PZT channel (lower part in Fig. B.8) is basically a simple PI controller (IC’s 1, 2 and
3) plus an optional inverter (IC4). The notchfilter at the output filters out the lowest
mechanical resonance of the PZT, so that the overall gain of this channel can be further
increased. Similarly there is a PI controller for the current channel (IC’s 5 and 6). In
between these two chips the signal is split into a medium fast and a very fast branch.
The medium fast one is simply a low pass filter with a cut-off frequency of 170 kHz. For
frequencies above this cut-off the frequency response of the laser is not instantaneous
any more; i.e. the phase shift exceeds 90◦ (Fig.B.5). The low pass filter is installed
to avoid significant feedback at frequencies, where the phase shift reaches 180◦. If we
just had the medium fast branch for our current channel, the bandwidth of the phase
locked loop would approximately given by the cut-off of 170 kHz. This is on the same
order (or even lower) than the laser linewidth and thus insufficient for phase locking.
(Rule of thumb: The bandwidth of the PLL should be at least four times larger than
the linewidth of the laser.) For this reason an additional high-speed branch is added.
The idea here is to have a passive loop filter that shifts the phase forward. This shift
forward can then compensate for the low pass like behavior of the laser diode itself. In
this way the phase shift stays below 90◦ for frequencies up to the MHz region, which
makes feedback up to this frequencies possible.

B.4.3. Experimental setup

In Fig. B.9 the details of the setup are shown. The beams of the two ECDL are over-
lapped with a 50/50 beamsplitter and the beat is detected with a Metal-Semiconductor-
Metal (MSM) photo-detector (PD) from Hamamatsu (model G4176). This signal is
amplified (A1) with two microwave amplifiers from Minicircuits (ZJL-6G) and then
mixed with a stable tunable microwave source (HP 8341A). M1 is a frequency mixer
from Minicircuits (model ZEM-4300 or ZMX-7GR, depending on the desired beat fre-
quency). The output from M1 at about 25 MHz is lowpass filtered and again amplified.
Then the signal is split with a directional coupler (Minicircuits PDC-10-1). The main
output is mixed again (with a stable 25MHz source) and serves as the error signal for
our PLL. The coupling output on the other hand is amplified up to 10dBm and then
sent through a frequency-to-voltage converter (section (B.4.1)). The length of the cable
is chosen to be 3 m, such that the output signal crosses zero for 25 MHz input frequency.
This signal may be used to frequency-lock the lasers, i.e. to stabilize the frequency of
the beat. Due to the fact, that the bandwidth of the PLL is on the order of a few MHz,
the beat signal must not deviate from the desired value (= fLO1 + fLO2) by more than
a (few) MHz. In practice, however, the laser frequency may jump by more than that,
mainly because of acoustic noise. Thus a frequency lock with a bandwidth of 50 MHz
(Fig. B.4) becomes useful. Such a frequency lock can bring the beat frequency back to
the desired value and enable relocking of the PLL.
Both, the phase and the frequency error signal are fed into the lockbox, where the gain
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Figure B.8.: Schematic of the servo electronics: As discussed in the following section,
the PZT channel may either be used for frequency locking or also for phase
locking (Jumper 1).
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Figure B.9.: Setup for a PLL between two diode lasers

can be adjusted properly. The output of the box is connected to the current driver and
the high voltage amplifier for the PZT, respectively.

B.5. Results

B.5.1. The spectrum

In the previous section the spectrum of the beat signal between two independent ECDL
was shown. A finite linewidth, due to mechanical noise, was observed. But even in the
case, that external noise could have been avoided, the linewidth would have been finite,
because of intrinsic random phase fluctuations of the laser. This fundamental limit of
the laser linewidth is known as the Schawlow-Townes limit [Sch58] and may be ascribed
to spontaneous emission processes.

However, once the phase locked loop is closed, laser 1 is forced to exhibit the same
phase fluctuations as laser 2. So the relative phase between laser 1 and 2 stays fixed and
the beat between those two is in principle infinitely narrow.

In the actual setup the phase stability is of course not perfect, resulting in a beat
signal with a narrow central peak and a broad background (Fig. B.10). The width of
the central peak is smaller than the resolution of our spectrum analyzer (100Hz). For
this reason we cannot characterize our PLL by the width of this peak. Instead the ratio
of the power in the central peak to the total power is used to quantify the quality of the
PLL. For the measurement shown in Fig. B.10 this is

η :=
Ppeak

Ptotal
≈ 90%. (B.16)

This value for η is reached for basically any beat frequency between 0 and 6GHz.
In the background of the power spectrum at frequencies of about 1MHz and 200 kHz

from the center two broad peaks are detected. These frequencies of these servo bumps
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RF pick-up

servo bumps central peak

Figure B.10.: Typical beat signal of two phase locked lasers: Below a MHz the noise
of the relative phase is suppressed by more than 40 dB. But due to the
finite bandwidth of the PLL, the phase noise increases with frequency and
reaches maxima (“servo bumps”) at about ±1MHz. Beyond the MHz
range the signal decreases again, because of the finite laser linewidth (see
Fig.B.7).

correspond to the bandwidths of the two channels of our PLL. These values for the
bandwidth may be increased a little bit, but not tremendously. The reason is, that
feedback beyond a few MHz is very difficult, in particular because modulation of the
diode current does not directly translate into a frequency modulation of the laser light
any more at such high frequencies.

because many electronic parts as well as the laser diode itself start to respond non-
linear at such fast modulations (Fig. B.5).

The other narrow peaks in the background are coming from electronic pick up through
the lockbox. They are undesired, however, as long as they are strongly suppressed, the
may be neglected.

B.5.2. Phase error

Finally it is shown, how the root-mean-square error of the phase can be derived from
the spectrum.
The power spectrum is defined as the square of the Fourier-Transform of the electric
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field

P (ω) = lim
T→∞

1

2T
|
∫ T

−T
dtE(t)e−iωt|2 (B.17)

This may be written as

P (ω) = lim
T→∞

1

2T

∫ T

−T
dt

∫ T

−T
dt′E(t)∗E(t′)eiωte−iωt′ (B.18)

We introduce τ = t′ − t

P (ω) = lim
T→∞

1

2T

∫ T

−T
dt

∫ T

−T
dτE(t)∗E(τ + t)e−iωτ

=

∫ ∞

−∞
dτ RE(τ)e−iωτ (B.19)

where

RE(τ) = lim
T→∞

1

2T

∫ T

−T
dt E(t)∗E(τ + t) (B.20)

is the autocorrelation function for the electric field. Thus the power spectrum can be
written as the Fourier-Transform of the autocorrelation function of the field.
For a laser or for the beat between two lasers the field is given by

E(t) = E0 e
iω0t+iφ(t) (B.21)

where φ is a random but stationary phase; i.e.

〈φ(t)〉 = 0

〈φ(t)2〉 =: ∆φ2
rms (B.22)

Plugging (B.21) into (B.20) leads to

RE(τ) = E2
0 e

iω0τ · lim
T→∞

1

2T

∫ T

−T
dt ei(φ(t)−φ(t+τ))

= E2
0 e

iω0τ · 〈ei(φ(t)−φ(t+τ))〉 (B.23)

At this point we want to make use of the Gaussian-moment-theorem [Man95], which
states

〈ei(φ(t)−φ(t+τ))〉 = e−
1
2
〈(φ(t)−φ(t+τ))2 〉 (B.24)

Using this theorem, (B.23) writes

RE(τ) = E2
0 e

iω0τ e−
1
2
〈(φ(t)−φ(t+τ))2〉

= E2
0 e

iω0τe−
1
2
[〈φ(t)2〉+〈φ(t+τ)2〉−2〈φ(t)φ(t+τ)〉]

= E2
0 e

iω0τe−∆φ2
rms−

1
2
Rφ(τ) (B.25)
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where Rφ(τ) = 〈φ(t)φ(t+ τ)〉t is the autocorrelation function of the phase. For a closed
PLL we may assume a small phase error (φ(t) � 1) and consequently we can approximate
(B.25)

RE(τ) ' E2
0 e

iω0τ

(
1 − ∆φ2

rms −
1

2
Rφ(τ)

)
(B.26)

Now we can Fourier-transform RE(τ) to get P (ω)

P (ω) =

∫ ∞

−∞
dτ E2

0 e
i(ω0−ω)τ

(
1 − ∆φ2

rms +Rφ(τ)
)

= E2
0 · 2π · δ(ω0 − ω) · (1 − ∆φ2

rms) + Pφ(ω0 − ω) (B.27)

with Pφ(ω) =
∫∞
−∞ dτ Rφ(τ)e−iωτ representing the spectrum of the residual phase

fluctuations. Integrating (B.27) over the whole spectrum shows that

1 − ∆φ2
rms =

Ppeak

Ptotal
= η (B.28)

That means the root-mean-square of the phase error can easily be estimated, when the
relative amount of power in the phase locked peak is known.
Our measured value for η of about 90% therefore leads to

∆φrms '
π

10
(B.29)

which is well below a full cycle of 2π.
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