Analysis of Longitudinal Data

Lecturer: Jan Beyersmann


Time and Venue

Lectures:

Tuesday 10:15-12:00 am, Thursday 8:15-10:00
Helmholtzstr. 18, Room 2.20

ExerciseWednesday: 4:00-5:45 pm, Helmholtzstr. 18, Room 120

General Informations:

Prerequisites:

The level of the course is roughly that of a first year's master course
in Mathematical Biometry. Some basic understanding of linear models is required.

Exam:

Written exam: 16th July, 12:15-14:15, H15
Retake exam: 1st October, 10:00-12:00, Helmholtzstr. 18, Room 220


Contents:

Longitudinal data arise when the same individual/experiment unit is measured at a sequence of observation times. Such data combine aspects of both multivariate data and time series. Specific to longitudinal data is that the temporal interdependence implies a highly structured pattern and that typical data sets consist of a moderate to large number of short series, one from each subject. If time permits, we will also look at joint models for both longitudinal and time-to-event (survival) data.


Exercise Sheets:

Sheet 1
Solution1.R
Sheet 2Solution2.R   (updated 12.05.13)
Sheet 3Solution3.R
Sheet 4Solution4.R
Sheet 5Solution5.R
Sheet 6Solution6.R
Sheet 7Solution7.R (updated (Line 72) 13.09.13)
Sheet 8Solution8.R
Sheet 9Solution9.R
Sheet 10Solution10.R
Sheet 11Solution11.R
Sheet 12Solution12.R

 

Data

 

Lecture notes


Literature:

P Diggle et al., Analysis of Longitudinal Data, Oxford University Press 2002
G Fitzmaurice et al., Applied Longitudinal Analysis, Wiley 2011
D Hedecker and R Gibbons, Longitudinal Data Analysis, Wiley 2006


Aktuelles

Die Klausurergebnisse können persönlich bei Frau Renate Jäger (Raum 161, Helmholtzstr. 18 ) erfragt werden.

Klausureinsicht Nachklausur: 15.10.2013 um 10:00 Uhr (Raum 1.41)

Retake exam

Analysis of Longitudinal Data

Lecturer: Jan Beyersmann


Time and Venue

Lectures:

Tuesday 10:15-12:00 am, Thursday 8:15-10:00
Helmholtzstr. 18, Room 2.20

ExerciseWednesday: 4:00-5:45 pm, Helmholtzstr. 18, Room 120

General Informations:

Prerequisites:

The level of the course is roughly that of a first year's master course
in Mathematical Biometry. Some basic understanding of linear models is required.

Exam:

Written exam: 16th July, 12:15-14:15, H15
Retake exam: 1st October, 10:00-12:00, Helmholtzstr. 18, Room 220


Contents:

Longitudinal data arise when the same individual/experiment unit is measured at a sequence of observation times. Such data combine aspects of both multivariate data and time series. Specific to longitudinal data is that the temporal interdependence implies a highly structured pattern and that typical data sets consist of a moderate to large number of short series, one from each subject. If time permits, we will also look at joint models for both longitudinal and time-to-event (survival) data.


Exercise Sheets:

Sheet 1
Solution1.R
Sheet 2Solution2.R   (updated 12.05.13)
Sheet 3Solution3.R
Sheet 4Solution4.R
Sheet 5Solution5.R
Sheet 6Solution6.R
Sheet 7Solution7.R (updated (Line 72) 13.09.13)
Sheet 8Solution8.R
Sheet 9Solution9.R
Sheet 10Solution10.R
Sheet 11Solution11.R
Sheet 12Solution12.R

 

Data

 

Lecture notes


Literature:

P Diggle et al., Analysis of Longitudinal Data, Oxford University Press 2002
G Fitzmaurice et al., Applied Longitudinal Analysis, Wiley 2011
D Hedecker and R Gibbons, Longitudinal Data Analysis, Wiley 2006


Aktuelles

Die Klausurergebnisse können persönlich bei Frau Renate Jäger (Raum 161, Helmholtzstr. 18 ) erfragt werden.

Klausureinsicht Nachklausur: 15.10.2013 um 10:00 Uhr (Raum 1.41)

Retake exam