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Introduction

Classical statistics: iid experiments. Usually we observe data x1, . . . , xn as a
realisation of iid random variables X1, . . . , Xn.

Time series analysis. We are looking at only one experiment but observe the
outcome over time. We want to unveil the time dependence. The goal is usually to
forecast model outcomes.

Example. (See distributed graphs)

(1) x(t) = cos(.2t+ π/3).
(2) Plot of 30 draws from U[−5,5]. Are these really independent?
(3) Population growth between 1780 and 1980 in the USA.
(4) Monthly Accidental Deaths in the USA (1973-1978). The mean seems to

be almost constant.
(5) Wölfer Sunspot Numbers (1770-1869). This dataset also exhibits time

dependence.
(6) Power generation in Germany. Data are not stable over time. The mean

seems to increase faster than lineraly. The variance is also increasing,
could be a function of the mean. There is also a clear periodicity in the
data.

(7) DAFOX log returns 1993-1996, White Noise, and a GARCH(1,1) model.
(8) Bancruptcies in the US.

Say we observeX1, ..., Xn and want to forecastXn+1.What is the best forecast?
In terms of a L2-distance its the conditional expectation

E[Xn+1|X1, ..., Xn] =


E(Xn+1) = µ if the Xi are iid

g(X1, . . . , Xn)︸ ︷︷ ︸
e.g.
= α+β1X1+...+βnXn

otherwise - sample models needed .

.
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CHAPTER 1

Basics

1.1. Stochastic processes, stationarity

Definition 1.1.1. A stochastic process is a family of random variables (Xt, t ∈
T ) = (Xt)t∈T , T some index set, on a probability space (Ω,Σ, P ). The family
(Xt(ω∗))t∈T for some �xed ω∗ ∈ Ω is called a realization or path of the stochastic
process (Xt)t∈T .

Remark 1.1.2. The most important index sets are T = R (as interval) or T = Z
(or N) for �time discrete� stochastic process.

If we talk about a time series, we mean on the theoretical side a time discrete
stochastic process, if we think of data, it is a realization of such a process, or a
section of such a realization, w.l.o.g. (Xt)0≤t≤T with some T ∈ N.

Example 1.1.3.

(1) Xt = A(ω) sin(tν + B(ω)), t ∈ Z, ν ∈ R, and A and B are random
variables. A realization of this process is given by :
Xt(ω∗) = α sin(tν + β∗),α∗ = A(ω∗), β∗ = B(ω∗).

(2) Xt iid random variables, t ∈ N0 :

Xt =

{
1 p = 1/2
−1 q = 1/2

, (εt)t∈N0

d= U[−1,1]
d= N0,σ2 = "white noise".

(3) Xt = Σtνεν , t ∈ N0, (εt)t∈N0 a white noise.
(4) Xt = αXt−1 + εt, −1 < α < 1.

Notation 1.1.4. In the following a stochastic process (Xt)t∈T always has T = Z
or T = N0 as time index set.

Definition 1.1.5. Consider a stochastic process (Xt)t∈T with E
(
X2
t

)
<∞ ∀t ∈ T ,

then µX : T → R de�ned by µX(t) = E (Xt) is called the mean function of (Xt)t∈T .
γX : T ×T → R de�ned by γX(s, t) = Cov(Xs, Xt) = γX(t, s), s, t ∈ T is called the
autocovariance function of (Xt)t∈T .
ρX : T × T → R de�ned by ρX(s, t) = Cov (Xs, Xt) , s, t ∈ T is called the
autocorrelation function (acf) of (Xt)t∈T .

Definition 1.1.6. A stochastic process (Xt)t∈T is called (weakly) stationary if

E
(
X2
t

)
<∞, ∀t ∈ T and

(1) µX(t) = µ, ∀t ∈ T
(2) γX (s, t) = γX (s+ r, t+ r) , ∀s, t, r ∈ T.

Remark 1.1.7.
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1.1. STOCHASTIC PROCESSES, STATIONARITY 6

(1) Stationarity means that there exist functions
γX(h) = γX(h, 0) = γX(s+ h, s), h ∈ Z, s ∈ T
ρX (h) = ρX (h, 0) = ρX (s+ h, s) , h ∈ Z, s ∈ T

(2) In particular we have:
Var (Xt) = γX (0) is constant over time.
γX (−h) = γX (h) and ρX (−h) = ρX (h) , h ∈ N.

(3) Strong stationarity means: FXt1 ,...Xtn = FXt1+s,Xt2+s,...,Xtn+s ∀t1, . . . , tn, s ∈
T, ∀n implies weak stationarity

(4) A time series is called Gaussian if all �nite dimensional marginal dis-
tribution functions are normal. In this case the distribution functions
are completely determined if mean and covariance function are given and
strong and weak stationarity coincide.

Example 1.1.8.

(1) Let (εt) be independent (uncorrelated) random variables with E (εt) =
0 ∀t and E

(
ε2
t

)
= σ2

t , ∀t. This process is stationary with µX (t) = 0,

γX(h) =

{
σ2
t , h = 0

0, h ∈ N
=

{
1 h = 0
0 h ∈ N

.

Such a process is called a �white noise�-process.
(2) With (εt)t∈Z as in 1. we consider Xt = εt + θεt−1 with some θ ∈ R.

Then µX(t) = 0,

E (Xt ·Xt+h) = E ((εt + θεt−1) (εt+h + θεt+h−1))

=


σ2
t

(
1 + θ2

)
h = 0

θσ2
t h = ±1

0 |h| > 1
,

and ρX (h) =

{
θ

1+θ2 h = 1
0 h ≥ 2

. Therefore, this process is stationary.

(3) The process Xt =

{
εt, |t| odd
εt+1 |t| even

, t ∈ Z, is nonstationary, since

E (Xt, Xt+1) =

{
0 |t| odd
σ2
t |t| even

.

(4) Xt =
∑t
v=0 εv, t ∈ N0, is nonstationary since Var (Xt) = (t+ 1)σ2

t ,
Cov (Xt, Xt+h) = (t+ 1)σ2

t , h ≥ 1. But Xt −Xt−1is stationary.
(5) Xt = σtεt, σ

2
t a stochastic process obeying σ2

t = α + βε2
t−1 α, β > 0 and

Ft = σ (εt−1, εt) .

E (Xt) = E (E (Xt|Ft−1)) = 0.

E (XtXt+h) = E (E (σtεtσt+hεt+h|Ft+h−1))

= E (σtσt+hE (εtεt+h|Ft+h−1)) =

{
E
(
σ2
t σ

2
s

)
=
(
α+ βσ2

t

)
σ2
s h = 0

0 h ≥ 1
.

New model: σ2
t = α+ βX2

t−1 + γσ2
t−1 α, β > 0, 0 < γ < 1
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Problem. The theory will mainly discuss stationary time series, but the data are
in most cases not stationary, since:

(1) µX (t) is not constant, but second moments re�ect stationary behaviour.
(2) µX (t) is constant, but the second moments are not �OK�.
(3) µX (t) is not constant and second moments are not �OK�.

Ad situation 1: Here we can use regression in order to get a hand on µX (t):
Estimate µX (t) , take it out and work with the residuals.

Ad situation 2 and 3: We have no general recipe.

Typically the mean behaviour has two parts.

• continuous and monotone changes in the mean (global trend).
• periodic or cyclic trends (seasonal trends). The length of the periodicity
can be seen from the nature of the data.

Sometimes there are also sudden changes in the mean function (changepoint anal-
ysis).

Our regression model for the time series is

Xt = mt + st + εt,

where mt represents the global trend, st seasonal trends and εtthe residuals,
hopefully a stationary process. Tasks: Estimate mt, (st, d) , (d the period). How
do we do this?

(1) Suggest a model by looking at the data.
(2) Preprocess data to see more.

(a) To see the global trend, do some local smoothing:

Wt =
1

2q + 1

q∑
ν=−q

Xt+ν =
1

2q + 1

q∑
ν=−q

mt+ν + st+ν︸︷︷︸
≈0

+ εt+ν︸︷︷︸
≈0


≈ m (t) + 0 + 0

if m is smooth and q is not too large. Typically one would choose
q such that the periodicity is smoothed out. (Usually polynomial or
exponential regression are suitable for economics data).

(b) To model m (t), apply regression, take m̂ (t) out of the data and
attack s(t).

(3) Zt = Xt − m̂t ≈ st + εt. Periodicity d can be guessed from situation.
• model st directly.

• or estimate st: ŝ0 = 1
N

∑N
ν=0Xνd, ŝ1 = 1

N

∑N
ν=1Xνd+1.

1.2. Stationary Processes

Assumption 1.2.1. Now we assume that Xt is stationary with existing second mo-
ment. Therefore µX(h) = µ and ρX(h) h ≥ 0, γX(h) = σ2

X . This is all we have
using the de�nition of stationarity.

Sometimes it is usefull to consider the same quantities, but in the space of Fourrier
transforms.
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Definition 1.2.2. A

{
real

complex

}
sequence (zν)ν∈Z is called positive semide�nite

if

n∑
ν,µ=1

wνwµz(kν−kµ) ≥ 0 ∀ (wν)nν−1 ∈
{
Rn
Cn

}
,

 k1

...
kn

 ∈ Z
Lemma 1.2.3.

(1) Let γX(.) be the autocorrelation function of a stationary process. Then
γX(0) ≥ 0, |γX(h)| ≤ γX(0), and γX(h) = γX(−h), h ∈ N.

(2) A real sequence (γ(h))h∈Z is an autocorrelation function of some station-
ary process i�
(a) γ(h) = γ(−h) and
(b) γ(h) is positive semide�nite.

Proof.

(1) γX(0) = Var(X) ≥ 0
|γX(h)| ≤ γX(0) is easy to show with Cauchy-Schwartz-Inequality.
Cov(Xt, Xt+h) = Cov(Xt′−h,Xt′)

(2) (⇒)
(a) necessary for stationarity, see remark 1.1.7.
(b) 0 ≤ Var (

∑n
ν=1 wνXkν ) =

∑n
ν,µ=1 wνwµCov(Xkν , Xkµ)

(⇐)
Let (Xt) be a Gaussian process with E (Xt) = 0 and covariance matrix of

Cov

 Xt

...
Xt+h

 =


γ(0) γ(1) · · · γ(h)

γ(1)
. . . γ(h− 1)

...
. . .

...
γ(h) γ(h− 1) · · · γ(0)


This matrix is positive semide�nte, because of b). By the Kolmogorov
existence theorem such a sequence of random variables exist.

�

Theorem 1.2.4. (Herglotz)
A complex sequence (zk)k∈Z is positive semide�nite i� there exists a positive, non-
decreasing function F : [−π, π]→ [0,∞) such that

zk =
ˆ π

−π
eikxdF (x)

Proof. No proof.
Idea: (⇒) integrate a Fourier series.

(⇐)
∑
wνwµzkνzkµ =

´
|.|2 dF ≥ 0 �

Remark 1.2.5.

(1) If we require F (−π) = 0, F is r.h. continuous then F is unique. (We will
assume this from now on).
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(2) zk is real i� F is symmetric to 0, i.e. zk = 2
´ π

0+
cos(kx)dF (x) + F (0) −

F (0−), if F is absolutely continuous, then zk = 2
´ π

0+
cos(kx)f(x)dx.

Definition 1.2.6. If (γ(h))h∈Z is the autocovariance function of a stationary sto-
chastic process (Xt) , then the distribution function F de�ned through theorem
1.2.4 is called the spectral distribution function, and in the case of existence, its
density f is called the spectral density.

Remark 1.2.7.

(1) A spectral density exists if γ(h) ∈ L2, i.e.
∑
k∈Z |γ(k)|2 < ∞. If γ(h) ∈

L1, then

f(λ) =
1

2π

∞∑
k=−∞

γke
−ikλ =

γ0

2π
+

1
π

∞∑
k=1

γk cos(kλ)

and the convergence is uniform on [−π, π] and f is continuous.
(2) The spectral density explains which frequencies are more or less important

in the stochastic process (Xt) . We will explain this with the following
example:

Example 1.2.8.

(1) Xt =
∑n
j=1Aj cos(λjt) +Bj sin(λjt) with Aj , Bj , 1 ≤ j ≤ n random vari-

ables being pointwise uncorrelated, having mean 0 and variance Var(Aj) =
Var(Bj) = σ2

j , 0 < λ1 < λ2 < . . . < λn < π.

γ(h) =
n∑
j=1

σ2
j (cos(λjt) cos(λj(t+ h)) + sin(λjt) sin(λj(t+ h)))

=
n∑
j=1

σ2
j cos(λjh) =

ˆ π

−π
eihλdF (λ),

with F (λ) = σ2

2 +


0, 0 ≤ λ < λ1

σ2

2 λ1 ≤ λ < λ2

...
σ2
n

2 λn ≤ λ

, σ2 =
∑n
i=1 σ

2
i . Hence the spectral

distribution function reveals which frequencies show up in the process and
how important they are (large variance implies more relevance).

(2) If γ(h) =

{
σ2 h = 0
0 h ≥ 1

, this is white noise and f(λ) = σ2

2π ,−π ≤ λ ≤ π, i.e.

in the white noise, all frequencies occur and have the same importance.

The spectral distribution function contains the same information as the autocorrela-
tion function. Sometimes we will need one more interesting quantity: Given random
variables Y,X1, . . . , Xn ∈ L2(Ω,Σ, P ) we are interested in α∗o, . . . α

∗
n minimizing

E(Y −α0−
∑n
ν=1 ανXν)2 (i.e. the best linear prediction of Y by X1, . . . , Xn in the

L2sense. If E(Y ) = E(Xν) = 0 ∀ν, then α0 = 0, otherwise α0 = µy−
∑n
ν=1 ανµXν .

The quantities α∗1, . . . , α
∗
n depend only on the covariances of the random variables.

The α∗1, . . . , α
∗
n exist, since L2 (X1, . . . , Xn) is a closed subspace of the Hilbert space

L2 (Ω,Σ, P ) .
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Now assume (Xt)t∈Z a stationary process centered at 0.

Definition 1.2.9. The sequence (φ(k))k∈N de�ned through φ(k) = φkk, k ∈
N, where φkk is the coe�cient of Xk, in the best linear prediction of Xk+1 by

X1, . . . , Xk i.e. X̂k+1 =
∑k
j=1 φkjXk+1−j , is called the partial autocorrelation function

(pacf).1

Remark 1.2.10.

(1) φ(1) = ρ(1), E (X2 − αX1)2 = σ2
(
1− 2αρ(1) + α2

)
⇒ α∗ = ρ(1).

(2) The φkj 1 ≤ j ≤ k are the coe�cients of linear regression of Xk+1

on Xk, Xk−1, . . . , X1. These coe�cients are shift invariant and depend
only on ρ(1), . . . , ρ(k). (Variances can be divided out.) The ordering of
Xk, . . . , X1has a reason which we will see later.

(3) Next we look at the regression of X0 on X1, . . . , Xk then we conclude from

the remarks above that X̂0 =
∑n
j=1 φkjXj (note E(X0Xj) = E(XkXk+1−j) =

γ(j)
(4) Furthermore we can derive the following notation:

φ(k + 1) =
E
((
Xk+1 − X̂k+1

)(
X0 − X̂0

))
√
E

((
Xk+1 − X̂k+1

)2
)
E

((
X0 − X̂0

)2
)

i.e. the correlation between Xk+1- best linear prediction of Xk+1 from
X1, . . . Xk and X0 - best linear predictor of X0from X1, . . . Xk.

Lemma 1.2.11. (Yule-Walker equation)
If γ(h)→ 0, k →∞, then for all k ≥ 1 the linear system of equations

γ(0) γ(1) . . . γ(k − 1)

γ(1)
. . .

...
...

. . . γ(1)
γ(k − 1) . . . γ(1) γ(0)

 ~x =


γ(1)
...
...

γ(k − 1)


in short Tk−1~x = γk−1, has the solution ~x

T = (φk1, . . . , φkk).

Remark. The autocovariances may be replaced by autocorrelations.

Proof. Given (Ω,Σ,P), centered random variablesX, E
(
X2
)
<∞, L2 (Ω,Σ,P),

< X,Y >= E(XY ), ‖X‖ =
√
E (X2) a normed linear space.

De�ne Hk := L (X1, . . . , Xk) = span(X1, . . . , Xk) a subspace of L2 (Ω,Σ,P)

1It might be of interest to look at the dependence between X0 and Xk+1. The problem is that

dependence cannot be described by linear expressions, but as soon as one takes into account the

entire dependence structure, things become very complicated. Therefore one considers φ(k) = φkk,
where the φkk are de�ned by

X̂k+1 =
kX
ν=1

φkνXk+1−ν

X̂0 =
kX
ν=1

φkνXν .
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minX∈Hk ‖Y −X‖ for Y ∈ L2 (Ω,Σ, P ) , is given by Y ∗ = PHk · Y , where PHk is
the projection onto the space Hk. Then Y

∗ − Y ∈ H⊥k .

X̂k+1 = PHkXk+1 =
∑k
ν=1 φkνXk+1−ν , and the operator I−PHk projects into H⊥k ,

thus Xk+1 − X̂k+1 ∈ H⊥k .

E
((
Xk+1 − X̂k+1

)
Xk+1−j

)
= 0, 1 ≤ j ≤ k

γ(j)−
∑k
ν=1 φkνE (Xk+1−νXk+1−j) = 0, 1 ≤ j ≤ k

γ(j) =
∑k
ν=1 φkνγ(ν − j) = 0, 1 ≤ j ≤ k

(φk1, . . . , φkk)T is a solution.

Next we show that all Tk are regular.

Assume ∃ k0 : Tk0 is not regular. Tk0 is the covariance matrix of X1, . . . , Xk0 .

With some r < k0 we have X1, . . . Xk0 are with probability 1 in a subspace of Rk0

of dimension r.

e.g.⇒ Xr+1 =
∑r
ν=1 αjXj

Stationarity
=⇒ Xr+l+1 =

∑r
j=1 αjXj+1, ∀l ≥ 0

= . . . =
∑r
j=1 αl,jXj .

∀n :∃an ∈ Rr, Xn = aTn ~Xr, ∀n ≥ r

1 =
Var (Xn)
γ(0)

=
aTnTran
γ(0)

=
aTr U

T
r ΛrUran
γ(0)

≥ ‖an‖
2

γ(0)
λ1,

where Λr =

 λ1

. . .

λr

 and λ1 is the smallest eigenvalue of Tr. This implies

‖an‖ ≤ γ(0)
λ1
, ∀n and

γ(0) = Var (Xn) = E
(
Xna

T
n
~Xr

)
=
∑r
j=1 anj︸︷︷︸

≤c

γ(n− j)︸ ︷︷ ︸
→0

→ 0, n → ∞. This is a

contradiction. �

Algorithm 1.2.12. (Durin-Levinson Algorithm)

For computational purposes, it is more e�cient is to use a recursion:

v0 = γ(0), v1 = v0

(
1− φ2

11

)
= v0(1− ρ(1)2), φ (1) = ρ (1) .

Now for k ≥ 2

• φ(k)=
(
γ(k)−

∑k−1
ν=1 φk−1,νγ (k − ν)

)
/vk−1

• vk = vk−1

(
1− φ(k)2

)(
= Var

(
Xk+1 − X̂k+1

))
•

 φk1

...
φkk−1

 =

 φk−1,1

...
φk−1,k−1

−φkk
 φk−1,k−1

...
φk−1,1

 (cf. Brockwell-Davis)

Example 1.2.13.

(1) White noise (εt) ρ(k) = 0, k 6= 0, φ(k) = 0, ∀k ≥ 1, (Tk = σ2
kIk, ~γk = 0)
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(2) Xt = εt + θεt−1,θ 6= ±1

ρ(k) =


1 k = 0
θ

1+θ2 k = 1
0 k ≥ 2

, φ(k) = − (−θ)k(1−θ2)
1−(θ2)k+1

(
∼ −

(
1− θ2

)
(−θ)k |θ| < 1

)


1 θ
1+θ2

θ
1+θ2

. . .
. . .

. . .
. . .

1

 ~x =


θ

1+θ2

0
...
0

 , θ
1+θ2xν−1 + xν + θ

1+θ2xv+1 =

0, ν = 2, . . . , k− 1, constants from limes 1 and k. Xν = c1 ·Zν1 + c2 ·Zν2 ,
the Z's are zeros of θ

1+θ2Z
2 + Z + θ

1+θ2 .

(3) We look for solutions of Xt − αXt−1 = εt,(εt) given white noise, |α| < 1.
Fk = σ (εk, εk−1, . . .) = σ (Xk, Xk−1, . . .)

E (Xk+1|Fk) = E

Xk+1 − αXk︸ ︷︷ ︸
=εk+1

|Fk

+ αXk = αXk the best prediction

and hence the best linear prediciton of Xk+1from the past.

Xk+1 =
∑k
ν=1 φkνXk+1−ν = αXk + 0 ·Xk−1 + . . .+ 0 ·X1 = αXk.

φ11 = α = φ(1) = ρ(1)
φkk = 0 = φ(k), k ≥ 2.



CHAPTER 2

Linear Processes

2.1. Linear Processes and �lters

Definition 2.1.1. A stochastic process of form Xt =
∑
ν∈Z ανεt−ν , t ∈ Z with a

real sequence (αν) ∈ `1 (i.e.
∑
ν∈Z |αν | < ∞) and a white noise process (εt)t∈Z

with variance σ2
ε is called a two-sided linear process. If αν = 0, ν < 0 the process

is called one-sided or causal.

Remark 2.1.2.

(1) The in�nite series converges almost surely, since

E
(∣∣∣∑ανεt−ν

∣∣∣) ≤∑
ν

|αν |E (|εt−ν |)︸ ︷︷ ︸
≤
√
σ2
ε

<∞

converges even absolutely almost surely.
(2) The so-called Wald decomposition theorem says, that all mean zero sta-

tionary processes can be written as a sum of a linear process and a pre-
dictable process.

Lemma 2.1.3. A linear process is stationary and has the following parameters:

(1) µ = E(Xt) = 0
(2) γX(k) = σ2

ε

∑
ν αναν+k, k ∈ Z

(3) It has a spectral density fX (λ) = σ2
ε

2π

∣∣∑
ν∈Z ανe

−iλν
∣∣2 , λ ∈ [−π, π]

Remark 2.1.4.

(1) All quantities exist since (αν) ∈ `1.
(2) fX (λ) = fε (λ) · |Trig series with coe� αν |2 . The function

∑
ν ανe

−iλν

is called the transfer function of the so-called linear �lter
∑
ν∈Z ανB

ν ,
where B is the so-called shift operator: BνYt = Yt−ν . (

∑
ανB

ν) εt =∑
ανεt−v = Xt. The absolute value squared of the transfer function is

called the power function of the linear �lter.

Proof. All series are pointwise absolutely convergent, which allows limits and
sums to be interchanged(Fubini).

(1)

µX(t) = E

(∑
ν

ανεt−ν

)
=
∑
ν

ανE (εt−ν) ≡ 0

13
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(2)

γX(h) = E (XtXt+h)

=
∑
ν

∑
µ

αναµE (εt−νεt+h−µ)︸ ︷︷ ︸
=σ2

εδt−ν,t+h−µ

= σ2
ε

∑
ν

αναν+h

(3)
ˆ π

−π
eiλkfX(λ)dλ =

ˆ π

−π
eiλk

σ2
ε

2π

∑
ν

ανe
−iλν

∑
µ

αµe
iλµdλ

=
σ2
ε

2π

∑
ν,µ

αναµ

ˆ π

−π
eiλ(k+µ−ν)dλ︸ ︷︷ ︸

=2πδ0,k+µ−ν

= σ2
ε

∑
µ

αµαµ+k = γX(k)

�

Remark 2.1.5. The same calculations show more generally:

Given a stationary process (Xt) with spectral distribution function FX and given
a linear �lter

∑
ν∈Z ανB

ν , (αν) ∈ `1, then the process

Yt =

(∑
ν

ανB
ν

)
Xt =

∑
ν∈Z

ανXt−ν

is again stationary with spectral distribution function

FY =
ˆ π

−π
A(ν)dFX(ν), λ ∈ [−π, π]

where A(ν) =
∣∣∑

ν ανe
−iλν

∣∣2 is the power transfer function, the operator B is given

by BXt = Xt−1, BXt = Bj−1 (BXt) = Xt−j , j ∈ N, B0 = id, B−1Xt = Xt+1,
B : L2 → L2, ‖B‖ = 1 on stationary random variables. If fX exists, then fY (λ) =
A(λ)fX (λ).

2.2. ARMA-Models

Many situations in economics can approximatively be described by some di�erence
equation disturbed by some unexpected noise. Thus let a white noise (εt)t, E

(
ε2
t

)
=

σ2
ε be given. We seek stochastic processes which are stationary and satisfy the

following di�erence equation

Xt − α1Xt−1 − α2Xt−2 − . . .− αpXt−p = εt +
q∑

µ=1

βµεt−µ, t ∈ Z, (∗)

q ∈ N, αµ, βµ ∈ R, αp, βq 6= 0.
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Definition 2.2.1. A stationary stochastic process (Xt) satisfying (∗) for t ∈ Z
with a given white noise process with i.i.d. random variables (εj) , E (εj) = 0,
E
(
ε2
j

)
= σ2

ε ∈ [0,∞) is called an ARMA(p,q)-process (Auto Regressive Moving
Average).

Remark 2.2.2.

(1) We are here more restrictive than necessary for many things concering the
white noise.

(2) A stationary stochastic process (Xt) is called an ARMA(p,q)-process with
mean µ if (Xt − µ) is an ARMA(p,q) process.

Notation 2.2.3. We denote the following polynomials

Φ(z) =
∑p
ν=0 aνz

ν , aν =

{
1 ν = 0
−αν 1 ≤ ν ≤ p

,

Ψ (z) =
∑q
µ=0 bµz

µ, bµ =

{
1 µ = 0
βµ 1 ≤ µ ≤ q

and can rewrite equation (∗) as Φ(B)Xt = Ψ(B)εt.

Special cases.

Moving average process of order q (MA(q)). In this case Φ(z) ≡ 1 and equation
(∗) can be written as

Xt = εt +
q∑

µ=1

εt−µβµ.

Lemma 2.2.4. Such a moving average process has the following characteristics:

(1)

µx ≡ 0, γX =

{
σ2
ε

∑q−|k|
µ=0 bµbµ+|k|, 0 ≤ |k| ≤ q

0 |k| > q

(2)

fX (λ) =
σ2
ε

2π

∣∣∣∣∣
q∑

µ=0

bµe
−iλµ

∣∣∣∣∣
2

=
1

2π

q∑
−q

γX(k)e−iλk

(3) The partial autocorrelation function (|φ(k)|) decays exponentially fast to
zero, provided Ψ(z) 6= 0 for |z| = 1.

Example. Consider a MA(1) process Xt = εt + θεt−1, Ψ(z) = 1 + θz, z =

− 1
θ , γX(k) =


(
1 + θ2

)
σ2
ε k = 0

θσ2
ε k = 1

0 k ≥ 2
, φ(k) = − (−θ)k(1−θ2)

1−(θ2)k+1 , |θ| 6= 1, fX(λ) =

σ2
ε

2π

∣∣1 + θe−iλ
∣∣2 = σ2

ε

2π

(
1 + 2θ cosλ+ θ2

)
Proof. Follows directly from Lemma 2.1.3 �
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Autoregressive process of order p (AR(p)). In this case Ψ(z) ≡ 1 and equation
(∗) can be written as

Xt − α1Xt−1 − · · · − αpXt−p = εt.

Example 2.2.5. Consider an AR(1)-process (Xt): Xt−αXt−1 = εt, Φ(z) = 1−αz,
z = − 1

α

Xt = αXt−1 + εt = α2Xt−2 + αεt−1 + εt

= αn+1Xt+n+1 +
n∑
ν=0

ανεt−ν

P a.s.
(n→∞)→ 0 +

∞∑
ν=0

ανεt−ν .

(1− αB)Xt = εt and thereforeXt = (1− αB)−1
εt = (

∑∞
ν=0 α

νBν) εt =
∑∞
ν=0 α

νεt−ν
(v. Neumann series)

To see the uniqueness, consider two solutions z
(1)
t and z

(2)
t . Then

z
(1)
t − z

(2)
t − α

(
z

(1)
t−1 − z

(2)
t−1

)
= 0.

For yt = z
(1)
t − z(2)

t we obtain yt − αyt−1 = 0 ⇒ yt = c · αt µ=0⇒ c = 0 and thus

z
(1)
t = z

(2)
t .

µ = 0, γX(k) = σ2
ε

1−α2α
k, ρX(k) = αk, φ(k) =

{
α, k = 1
0, k ≥ 2

1

fX (λ) = σ2
ε

2π

∣∣∑∞
ν=0 α

νe−iλν
∣∣2 = σ2

ε

2π
1

|1−αe−iλ|2 = σ2
ε

2π
1

|Φ(e−iλ)|2 = σ2
ε

2π
1

(1−2α cosλ+α2) .

In the case that α = ±1 we have no stationary solution. If |α| > 1 then Xt =∑∞
ν=0

(
1
α

)ν
εt+ν which means that the stationary solution is non-causal (since it

depends on future εt), this case is not interesting for us.

General Case.

Theorem 2.2.6. Let be given the di�erence equation (∗) with polynomials Φ(z) and
Ψ(z), having no zero in common.

(1) There exists a stationary and causal solution of (∗) if and only if Φ(z) 6= 0
for |z| ≤ 1.

(2) If Φ(z) 6= 0 on |z| ≤ 1 then the unique solution of (∗) is given by

Xt =
∞∑
j=0

cjεt−j t ∈ Z,

where the coe�cients (cj) are the Taylor coe�cients of Ψ(z)/Φ(z) at z0 = 0.
The radius of convergence is R = min {|z| , Φ(z) = 0} > 1. Hence |cj | ≤
κqq
−j for any q ∈ (1, R) with some κq > 0. Therefore (cj) ∈ `1.

1This is part of the reason that the partial auto-correlation function was introduced. For AR

processes it breaks down at the order of the process.
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(3) In this case we have

γX(k) = σ2
ε

∞∑
j=0

cjcj+k, k ∈ N0

fX(λ) =
σ2
ε

2π

∣∣∣∣∣
∞∑
n=0

cne
−iλn

∣∣∣∣∣
2

=
σ2
ε

2π

∣∣∣∣∣Ψ
(
e−iλ

)
Φ (e−iλ)

∣∣∣∣∣
2

(4) If Ψ(z) = 1, then φ(k) = 0 for k > p, otherwise φ(k) → 0, k → ∞
geometrically fast (φ is the partial autocorrelation function).

Remark.

(1) From (2) it follows that the |ρX (k)| ≤ κ̃qq−k for all q ∈ (1, k) with suitable
κ̃q > 0.

(2) If Φ(z) 6= 0 on |z| = 1, then Xt =
∑∞
j=−∞ djεt−j , where dj are the

coe�cients of the Laurent expansion of Ψ(z)
Φ(z) =

∑∞
j=−∞ djz

j .

Proof. Reminder:

A(z) =
∑∞
ν=0 aνz

ν , B(z) =
∑∞
ν=0 bνz

ν , |z| < R. Then C(z) = A(z)B(z) =∑∞
ρ=0 z

ρ
∑
ν+µ=ρ aνbµ, |z| < R, 1

A(z) =
∑∞
ν=0 a

−
ν z

ν in Uε(0) if A(0) 6= 0. C(z)/A(z) =∑∞
ρ=0 z

ρ
∑
cνa
−
µ .

Necessity:

r = min {|z1| , . . . , |zp|} > 1, zi zero of Φ(z).

1
Φ(z)

=
∞∑
n=0

a−n z
n,

|z| < r,
∣∣a−j ∣∣ < κqq

−j , q ∈ (1, r)

Yt := Ψ(B)εt is an MA(q) process Φ(z) =
∏p
j=1(1− αjz) with αj = 1

zj

Zt =
p∏
j=1

(1− αjB)−1
Yt

=
p−1∏
j=1

(1− αjB)−1
(

(1− αpB)−1
Yt

)
︸ ︷︷ ︸
Y

(1)
t =

P∞
ν=0 α

ν
pYt−ν

=
∞∑
n=0

a−nB
n Yt︸︷︷︸

Ψ(B)εt

.

Y
(1)
t =

∑∞
ν=0 α

ν
pYt−ν is a stationary, causal process. (Zt) is a solution of (∗) , since

Φ(B)Zt = Φ (B)
∑∞
n=0 a

−
nB

nYt = Yt =
∑
Bρ
∑
ν+µ=ρ aνa

−
µ .

(2) and (3) follow from (1) and the above.

Su�ciency:
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Xt =
∑∞
j=0 ψjεt−j , (ψj) ∈ `1.

Φ(B)Xt =

 p∑
n=0

anB
n
∞∑
j=0

ψjB
j

 εt

=

( ∞∑
ρ=0

Bρ
∑

ν+µ=ρ

aνψµ

)
εt

!=
q∑
ρ=0

bρB
ρεt,

where we have set bρ =

{∑
v+µ=ρ aνψµ, 0 ≤ ρ ≤ q

0, otherwise
.

With H(z) =
∑∞
n=0 ψnz

n we have Φ(z)H(z) = Ψ(z) and thus H(z) = Ψ(z)/Φ(z) in
Uε(0), since H(z) is a power series converging in |z| ≤ 1. Because Φ and Ψ have
no common zeros, Ψ(z) 6= 0 in |z| ≤ 1.

�

Remark. In case Ψ(z) 6= 0 in |z| ≤ 1 we may write εt =
∑∞
n=0 c̃jXt−j .

2.3. ARIMA and SARIMA-processes

Goal: Extend ARMA-models to cover trends and seasonality e�ects.

Φ(B)Xt = Ψ(B)εt (∗)

2.3.1. ARIMA-processes. Φ(z) = (1− z) Φ̃(z), Φ̃(z) 6= 0 in |z| ≤ 1 of order
p. So

Φ(B)Xt = Φ̃(B) (1−B)Xt︸ ︷︷ ︸
Yt

= Φ̃(B)Yt = Ψ(B)εt,

where (Yt) satis�es an ARMA(p,q) di�erence equation.

Yt = Xt−Xt−1 ↪→ Xt = X0+
∑t
ν=1 Yν for given X0. (Xt) is a nonstationary process

and if Yt has mean µ then Xt has a linear trend. In this case we say that (Xt)
follows an ARIMA(p,q,1) process (Auto Regressive Integrated Moving Average).
One can iterate this, look for example at

Φ(z) = (1− z)2Φ̃(z)

then Yt = Xt − 2Xt−1 + Xt−2 is an ARMA(p,q) process with mean µ. Xt =
X0 + t (X1 −X0) +

∑t
µ=2 Yµ (1− µ+ 1) , t ≥ 0, given X0 and X1, (quadratic

trend, andXt is an ARIMA(p,q,2) process).
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2.3.2. SARIMA-processes. Consider

Φ(z) = (1− zd)Φ̃(z) ↪→ Φ(B)Xt = Ψ(B)εt,

Φ(B)Xt = Φ̃(B) (Xt −Xt−1) = Ψ(B)εt and (Xt −Xt−1) =: Yt. KnowingX0, . . . , Xd−1

we get Xt =
∑m
k=0 Ykd+l, if t = md+l with 0 ≤ l ≤ d. For the (Yt) process we apply

ARMA(p,q). This often leads to large coe�cients p and q. It is more e�cient to
apply

Φ1

(
Bd
) (

1−Bd
)l
Xt = Ψ1

(
Bd
)
Ut ⊕

where Φ1 (z) 6= 0 in |z| ≤ 1 and to then apply an ARIMA(p,q,m) model to (Ut) :

Φ2 (B) (1−B)mUt = Ψ2 (B) εt,

with Φ2 (z) 6= 0 on |z| ≤ 1.

Φ2 (B) Φ1

(
Bd
)︸ ︷︷ ︸

Φ̃(B)

(1−B)m
(
1−Bd

)l
Xt = Ψ1

(
Bd
)

Ψ2 (B) εt

this is a SARIMA(p, q,m)× (p̃, q̃, m̃) model.

2.4. Forecasting

2.4.1. Some theory. In case (Xs)s≤t is known, we are looking for the best

linear forecast2 for Xt+ν , ν ∈ N, denoted by
[
X̂t+ν

]
and put MX

t = L(Xx, s ≤ t).

In case only (Xs)t−m≤s≤t is known, we are looking for the best linear forecast for

Xt+ν , ν ∈ N denoted by
[
X̂t+ν,m

]
and put MX

t = L (Xt−m, . . . Xt) which is a

closed subset of L2 (Ω,Σ, P ).

In the �rst case we have X̂t+ν = argminX̃∈M̄X
t

∥∥∥Xt+ν − X̃t+ν

∥∥∥2

,
∥∥∥Xt+ν − X̂t+ν

∥∥∥ =

σ2
ν , while in the second case X̂t+ν,m = argminX̃∈M̄X

t,m

∥∥∥Xt+ν − X̃
∥∥∥2

,
∥∥∥Xt+ν − X̂t+ν

∥∥∥ =

σ2
ν,m ≥ σ2

ν .

If the processes are stationary, none of the quantities depend on t. Since t is not
important we put t − n , m − n − 1. We know X1, . . . , Xn. Denote by Hn =
L (X1, . . . , Xn). Analogously to the calculations for the partial autocorrelation
function we obtain

X̂n+1 − X̂n+1,1 = PHnXn+1
see PACF=

n∑
ν=1

φn,νXn+1−ν (�)

and σ2
1,n−1 = vn = E

(
Xn+1 − X̂n+1

)2

with coe�cients ~φn = (φn,1, . . . , φn,n)T .

The coe�cients φn,νcan be obtained via Tn · ~φn = ~γn.

Goal:Write Hn = Hn−1⊕Wn, i.e. the orthogonal sum of the span of X1, . . . , Xn−1

and the orthogonal compliment.3

2One could also look for the best L2 approximation, but the term E [Xt+ν | σ (Xs, s ≤ t)] is
usually complicated.

3⊕ represents the orthogonal sum between vector spaces Hn−1⊥Wn
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Let X̂1 = 0 (=mean), and de�ne X̃ν := Xν − X̂ν =
(
id− PHν−1

)︸ ︷︷ ︸
projects into H⊥ν−1

·Xν

X̃ν︸︷︷︸
∈H⊥n−1

X̃µ︸︷︷︸
∈Hn−1

1 ≤ µ ≤ ν − 1

Hn = L
(
X1 − X̂1

)
⊕ L

(
X2 − X̂2

)
⊕ . . .︸ ︷︷ ︸

=Hn−1

⊕L
(
Xn − X̂n

)
︸ ︷︷ ︸

=Wn

Hence X̂n+1 =
∑n
j=1 θnjX̃n+1−j .

Lemma 2.4.1. Assume (Xt) denotes a centered, square integrable process. Further-
more, we assume that its covariance matrix

κ(i, j) = E (Xi ·Xj) , 1 ≤ i, j ≤ n
is not singular for all n ∈ N. Then the quantities from above can be calculated
recursively:

v0 = κ(1, 1) (= γX (0) in the stationary case)

then for n = 1, 2, . . . we do

θn,n−k =

κ (n+ 1, k + 1)−
k−1∑
j=0

θk,k−jθn,n−jvj

 /vk, k = 0, 1, . . . , n− 1

vn = κ(n+ 1, n+ 1)−
n−1∑
j=0

θ2
n,n−jvj Innovation algorithm.

Proof.

X̂n+1 =
n∑
j=1

θn,j

(
Xn+1−j − X̂n+1−j

)
multiplying both sides by (Xk+1 − X̂k+1), 0 ≤ k ≤ n− 1 and taking expectations,
we obtain

E

(X̂n+1 −Xn+1 +Xn+1

)
︸ ︷︷ ︸

X̃n+1

(
Xk+1 − X̂k+1

)
︸ ︷︷ ︸

X̃k+1

 =
n∑
j=1

θn,jE
((
Xn+1−j − X̂n+1−j

)(
Xk+1 − X̂k+1

))

for all 0 ≤ k ≤ n− 1. Observe that

E
((
Xn+1−j − X̂n+1−j

)(
Xk+1 − X̂k+1

))
=

{
vk n+ 1− j = k + 1
0 indices di�erent

.

Now using X̃n+1⊥X̃k+1 and X̂k+1 =
∑k
j=1 θk,j

(
Xk+1−j − X̂k+1−j

)
and↗, we get

κ(n+ 1, k + 1)−
∑k
j=1 θk,j E

(
Xn+1

(
Xk+1−j − X̂k+1−j

))
︸ ︷︷ ︸

θn,n−jvj by (∗)

= θn,n−kvk.

Now put k − j = ν



2.4. FORECASTING 21

κ (n+ 1, k + 1)−
∑k−1
ν=0 θk,k−νE

(
Xn+1

(
Xν+1 − X̂ν+1

))
︸ ︷︷ ︸

θn,n−vvν

vn

∥∥∥Xn+1 − X̂n+1

∥∥∥2

= ‖Xn+1‖2−
∥∥∥X̂n+1

∥∥∥2

= κ(n+1, n+1)−
∑n
j=1 θ

2
n,jv

2
n−j since

Xn+1 − X̂n+1⊥X̂n+1 by Pythagoras. �

2.4.2. Multistep forecast. To forcast X̂
(k)
n+k = PHn ·Xn+k, with k ≥ 1 again

we calculate X̂
(k)
n+k =

∑n
j=1 φ

(k)
n Xn+1−j and the same calculations as for the Yule-

Walker equation lead to

Γn~φ(k)
n =

 γX(k)
...

γX(n+ k − 1)

 .

Another possibility is to use the innovation algorithm.

X̂
(k)
n+k = PHn · Xn+k = PHn · PHn+k−1 · Xn+k = PHn ·

∑n+k−1
j=1 θn+k−1,jX̃n+k−j=∑n+k−1

j=k θn+k−1,j

(
Xn+k−j − X̂n+k−j

)
, since X̃n+k−j =

{
⊥Hn if 1 ≤ j ≤ k − 1
∈ Hn j ≥ k

.

Then we just calculate θm,j for 1 ≤ m ≤ n+ k − 1 by the innovation algorithm.

v
(k)
n+k =

∥∥∥Xn+k − X̂(k)
n+k

∥∥∥2

= κ(n+ k, n+ k)−
∑n+k−1
j=k θ2

n+k−1,jvn+k−1−j

2.4.3. ARMA process.

Φ(B) ·Xt = Ψ(B) · εt (∗)

(1) MA(q)
(a) q = 1 Xt = εt + βεt−1, t ∈ Z

κ(i, j) =


σ2
ε(1 + β2), |i− j| = 0
βσ2

ε , |i− j| = 1
0 otherwise

v0 = σ2
ε(1 + β2), r0 = v0

σ2
ε

θ11 = κ(2, 1)/v0 = βσ2
ε

(1+β2)σ2
ε

= β
r0
,

v1 = κ(2, 2)− θ2
1,1v0 = . . .

r1 = r0 − β2

r0

θ2,2 = 0,θ2,1 = (κ(3,2)−θ11θ22v1)/v1 = β
r1
, r2 = r0 − β2

r1
by induction:

θn,1 = β
rn−1

, θn,k = 0, k ≤ 2 ≤ n, rn = r0 − β2

rn−1 , n ≥ 3. rn → 1
(exponentially fast), vn → σ2

ε

X̂1 = 0, X̂2 = β
r0
X1, X̂3 = β

r1

(
X2 − X̂2

)
= β

r1

(
X2 − β

r0
X1

)
...

X̂n+1 = β
rn−1

(
Xn − X̂n

)
.

(b) q > 1. Since γX (k) = 0, k > q we have θnν = 0, q + 1 ≤ ν ≤ n, ∀n.
Consequently:

X̂n+1 =
∑q
j=1 θn,j

(
Xn+1−j − X̂n+1−j

)
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X̂
(k)
n+1 =

∑q
j=k θn+k−1,j

(
Xn+k−j − X̂n+k−j

)
=

0 if k > q

(2) General ARMA(p,q)
Reduces essentially to a MA-process by the following procedure: With

m = p ∨ q de�ne

Wt :=

{
σ−1
ε Xt , t = 1, . . . ,m
σ−1
ε Φ (B)Xt , t ≥ m+ 1

(
= Ψ (B)

εt
σε

)
.

We have Hn = L (X1, . . . , Xn) = L (W1, . . . ,Wn), as usual we put X̂1 =
Ŵ1 = 0. (Wt) is a nonstationary with mean zero and covariances

κ (i, j) =


σ−2
ε γX (i− j) , 1 ≤ i, j ≤ m
σ−2
ε (γX (i− j)−

∑p
ν=1 ανγX (ν − (i− j))) ,min {i, j} ≤ m ≤ max {i, j} ≤ 2m∑q

ν=0 bνbv+|i−j| ,m+ 1 ≤ min {i, j}
0 , otherwise

Apply innovation algorithm to (Wt) y θWn,j , v
W
n , vW0 = γX(0)

σ−2
ε

Ŵn+1 =


∑n
j=1 θ

W
n,j

(
Wn+1−j − Ŵn+1−j

)
, 1 ≤ n ≤ m− 1∑q

j=1 θ
W
n,j

(
Wn+1−j − Ŵn+1−j

)
, n ≥ m

Ŵ
(k)
n+k =


∑n+k−1
j=k θWn+k−1,j

(
Wn+k−j − Ŵn+k−j

)
, 1 ≤ n+ k − 1 ≤ m− 1∑q

j=k θ
W
n+k−1,j

(
Wn+k−j − Ŵn+k−j

)
, n+ k − 1 ≥ m

Ŵt = PHt−1 ·Wt =


PHt−1

(
σ−1
t Xt

)
= σ−1

ε X̂t , 1 ≤ t ≤ m
PHt−1

(
σ−1
ε Φ (B)Xt

)︸ ︷︷ ︸
σ−1
ε (X̂t−

Pp
j=1 αjXt−j)

, t ≥ m+ 1

we thus have (Xt =
∑p
ν=1 ανXt−ν + σεWt, t ≥ 1),Xt−X̂t = σε

(
Wt − Ŵt

)
,

for all t ≥ 1.
Finally:

X̂n+1 =


∑n
j=1 θ

W
n,j

(
Xn+1−j − X̂n+1−j

)
, 1 ≤ n ≤ m− 1∑p

j=1 αjXn+1−j +
∑q
j=1 θ

W
n,j

(
Xn+1−j − X̂n+1−j

)
, n ≥ m

vXn = vWn σ
2
ε and

X̂
(k)
n+k =


∑n+k−1
j=k θWn+k−1

(
Xn+k−j − X̂n+k−j

)
n ≤ m− k∑(k−1)∧p

j=1 αjX̂n+k−j +
∑p
j=k ajXn+k−j +

∑q
j=k θ

W
n+k−1,j

(
Xn+k−j − X̂n+k−j

)
n ≥ m− k + 1

Special case: q = 0, i.e. we have an AR(p). Then

X̂n+1 =
p∑
j=1

αjXn+1−j , n ≥ p
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and

X̂
(k)
n+1 =

(k−1)∧p∑
j=1

αjX̂n+k−j +
p∑
j=k

αjXn+k−j , n ≥ p+ k − 1

(Handouts distributed)

2.5. Kalman Filter

In software tools, forecasting is very often accomplished by Kalman �lters. Kalman
�lters apply to a more general situation of dynamic processes described by linear
equations for t ≥ 1. These system depend on two equations, namely the �system
equation�

Zt+1 = AtZt +Btξt,

with given matrices At ∈ Rp×p, Bt ∈ Rp×m and random vectors (ξt) with E (ξt) ≡ 0,
Cov (ξt) = Qt ∈ Rm×m. However it is possible that one cannot observe Zt directly,
but only a relate variable Yt (Zt can be interpreted as a state space variable and Yt
as an observation varaible), which is given by the so-called �observation equation�:

Yt = CtZt + ηt,

with matrices Ct ∈ Rq×p and random vectors ηt with E (ηt) ≡ 0, Cov (ηt) = Rt ∈
Rq×q, ηt and ηt+h are uncorrelated for h 6= 0, ηt, ξt are independent and also
independent of Z1.

Example.

(1) AR(p) process

Zt =

 Xt

...
Xt−p+1

 , At = A =


α1 · · · · · · αp
1 0

. . .
. . .

1 0

 , ξt =

 εt+1

0

 ,

Qt =


σ2
ε 0 · · · 0

0 0
...

. . .

0 0

 Yt = (1, 0, . . . , 0)Zt = Xt, thus Ct = C =

(1, 0, . . . , 0) , ηt = 0, Rt = 0. System equation Xt+1 =
∑p
ν=1 ανXt+1−ν +

εt+1, observation equation Yt = Xt. Searching for X̂t+1 from Y1, . . . , Yt.
If all matrices are constant we are in the stationary case. Interesting for
us is the stable case, where we have a limit behaviour (eigenvalues of A
are all |.| < 1, (=̂Φ (z) 6= 0 in |z| ≤ 1in the example), that means the
in�uence of the earlier values diminishes over time and we get

Zt+1 =
∞∑
ν=0

Aνξt−ν .

(2) MA(q) process
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Zt =

 εt
...

εt−q

 ∈ Rq+1 ξt =


εt+1

0

0

 ∈ Rq+1 A =


0

1
. . .

. . .
. . .

1 0

 ∈
R(q+1)×(q+1)⇒ Zt+1 = AZt + ξt, Yt = (1, β1, . . . , βq)Zt = Xt.

(3) ARMA(p,q) process

Zt = (Xt, Xt−1, . . . , Xt−p, εt, . . . , εt−q+1)T , ξt = (εt+1, 0, . . . , 0)T , A =

α1 · · · αp β1 · · · βq
1 0

. . .
. . .

. . .
. . .

. . .
. . .

1 0


, Yt = (1, 0, . . . , 0)Zt = Xt. This repre-

sentation is not unique.
(4) Missing values

If one observes only Xt1 , . . . , Xtr with 1 ≤ t1 < t2 < . . . < tr ≤ n from
all n values. The system equation describes the process and Yt = CtZt,
where Ctpickes the non-missing values.

Goal: Best linear approximation in the L2-sense for Zt+1

(1) from Y1, . . . , Yt+1 ��ltering problem�
(2) from Y1, . . . , Yt �prediction problem�
(3) from Y0, . . . , Yn �smoothing problem� (missing values)

We concentrate on the prediction problem (the others are slightly di�erent but

follow the same arguments). We know that Ẑt+1 is the best linear prediction based
on Y1, . . . , Yt for Zt+1 i�

Cov
(
Zt+1 − Ẑt+1, Ys

)
= 0 1 ≤ s ≤ t,

since Zt+1− Ẑt+1⊥L (Y1, . . . , Yt). If we assume that Ẑt is the best linear prediction
for Zt from Y1, . . . , Yt−1 how do we get Ẑt+1?

(1) Predictor Step:

Z̃t+1 = At best linear predition of Zt+1 from Y1, . . . , Yt if Ẑtis the best

linear prediction of Zt from Y1, . . . , Yt−1. Ỹt = CtẐt best linear predition

of Yt from Y1, . . . , Yt−1. ⇒ Yt − Ỹt is the new information, knowing Yt
(⊥L(Y1, . . . , Yt−1)).

(2) Corrector Step:

Ẑt+1 = Z̃t+1 + Kt

(
Yt − Ỹt

)
= AtẐt + Kt

(
Yt − CtẐt

)
= AtẐt +

KtCt

(
Zt − Ẑt

)
with a suitable matirxKt to be chosen subject to Cov(Zt+1−

Z̃t+1, Ys)
!= 0, 1 ≤ s ≤ t (the optimality condition Zt+1−Z̃t+1⊥L(Y1, . . . , Yt))

which in turn is Cov
(
Zt+1 − Z̃t+1 −K

(
Yt − Ỹt

)
, Ys − Ỹs

)
!= 0, 1 ≤ s ≤

t, where we have subtracted Ỹs from thr right term of the covariance,
which does not alter the validity of the equation. Now Zt+1− Z̃t+1 as well
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as Yt − Ỹt is in L (Y1, . . . , Yt−1)⊥, so that the only equation which adds
any information is where s = t. This evaluates to

Cov
(
Zt+1 − Z̃t+1, Yt − Ỹt

)
−KtCov

(
Y − Ỹt, Yt − Ỹt

)
!= 0.

With P̂t = Cov
(
Zt+1 − Ẑt+1, Zt+1 − Ẑt+1

)
(the �predition error�) and

P̃t+1 = Cov
(
Zt+1 − Z̃t+1, Zt+1 − Z̃t+1

)
= AtP̂tA

T
t +Qt we �nd

Cov
(
Zt+1 − Z̃t+1, Ct

(
Zt+1 − Ẑt+1

)
+ ηt

)
−KtCov

(
Ct

(
Zt − Z̃t

)
+ ηt, ...

)
= 0

⇔ Cov
(
At

(
Zt − Ẑt

)
+ ξt, Ct

(
Zt − Ẑt

)
+ ηt

)
−Kt

(
CtP̃tC

T
t +Rt

)
= 0

AtP̂tC
T
t −Kt

(
CtP̃tC

T
t +Rt

)
= 0

⇒ Kt = AtP̂tC
T
t

(
CtP̃tC

T
t +Rt

)−1

if the inverse does not exist, the Moore-Penrose inverse (ful�llingA−AA− =
A−) will do the job.

To �nd P̂t+1 not that

P̂t+1 = Cov
(
Zt+1 − Ẑt+1, Zt+1 − Ẑt+1

)
= Cov

(
Zt+1 − Z̃t+1 −Kt

(
Yt − Ỹt

)
, Zt+1 − Z̃t+1 −Kt

(
Yt − Ỹt

))
= Cov

(
Zt+1 − Z̃t+1, Zt+1 − Z̃t+1

)
− 2Cov

(
Zt+1 − Z̃t+1,Kt

(
Yt − Ỹt

))
+KtCov

(
Yt − Ỹt, Yt − Ỹt

)
KT
t

= P̃t+1 − 2AtP̂tCTt K
T
t +Kt

(
CtP̂tC

T
t +Rt

)
Kt

= P̃t+1 −AtP̂tCTt KT
t

In total we get an recursive algorithm in two steps. Given Ẑt,P̂t, P̃t:

(1) Predition step: from Ẑt, P̂t Z̃t+1 = AtẐt, Ỹt = CtẐt, P̃t+1 = AtP̂tA
T
t +Qt.

(2) Correction step: Kt = AtP̂tCt

(
CtP̃tCt +Rt

)−
, Ẑt+1 = Z̃t+1+Kt

(
Yt − Ỹt

)
P̂t+1 = P̃t+1 −AtP̂tCTt KT

t ,

with starting values Ẑ1 = 0, P̂1 = σI = P̃1 where σ2 refelcts the uncertainty in the
model.

If we start with X̂t+1in the algorithm for the AR(p) process, we see that we are in

a �xed point, as it should be

(
P̂t =

(
σ2
ε

)
, Ỹt = Yt

)
. Simulation and theoretical

results show that (under certain assumptions) the in�uence of the starting value
diminishes quickly and the algorithm converges to the desired solution.

Multistep prediciton is also possible: Z̃t+h = At+h−1Z̃t+h−1 = At+h−1 · . . . · AtZ̃t
and Z̃t = Ẑt. The prediciton error can also be calculated.

Remark.

(1) Another approach shows the above via the Gauss Markov theorem.
(2) It is also possible to include control variables U .



CHAPTER 3

Statistical Analysis

3.1. Estimation in the Time Domain

Given is a stationary time series (Xt) with mean µ, autocovariance function γX (.)
and partial autocorrelation function φX (.). Assume we have observed X1, . . . , Xn

(data x1 = X1 (ω) , . . . , xn = Xn (ω)).

Statistics:

(1) µ̂ = X̄n = 1
n

∑n
j=1Xj

(2) γ̂X (h) = 1
n

∑n−|h|
j=1

(
Xj − X̄

) (
Xj+|h| − X̄

)
, 0 ≤ h ≤ n− 1

(3) ρ̂ (h) = γ̂X(h)
γ̂X(0)

These are the classical estimates from statistics. However, we are no longer dealing
with independent observations. Will this work in a dependend case?

for the partial autocorrelation function we have the Yule-Walker equation

Γk~φk = ~γk,

for estimation we solve Γ̂k~x = ~̂γk , lemma 1.3 says this is uniquely solvable, so

~̂φk = Γ̂−1
k ~̂γk. We �nd ~̂φk

P→ ~φk, n → ∞, since ~̂γk → ~γk, n → ∞, Γ̂k
P→ Γk for

n→∞ and the same holds for Γ−1
k .

Furthermore

√
n
(
~̂φk − ~φk

)
=
√
nΓ̂−1

k

(
~̂γk − Γ̂k~φk

)

=
√
nΓ̂−1

k


...

γ̂ (j)− γ (j)−
∑k
ν=1 (γ̂ (j − ν)− γ (j − ν))φkν

...


=
√
nΓ̂−1

k A
(
~̂γk − ~γk

)

withA =


...
0 Ik
...

−



φk1 0 · · · · · · 0

φk2 φk1
. . .

...
...

. . .
. . .

...
φkk · · · · · · φk1 0

+



0 φk2 · · · · · · φkk 0
... φk3 · · · φkk 0

...
...

...
...

...

0 φkk 0
...

...
0 · · · · · · 0 0




√
n
(
~̂φk − ~φk

)
d→ N0,Γ−1

k AV ATΓ−1
k

26
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3.2. Estimation in ARMA-Models

Our goal here is to estimate the unknown parameers α1, . . . , αp, β1, . . . , βq, σ
2
ε .

3.2.1. AR(p)-process.

Xt − α1Xt−1 − . . .− αpXt−p = εt (∗)

with iid white noise (εt) ,E (ε1) = 0,Var (ε1) = σ2
ε . Φ(z) 6= 0 in |z| ≤ 1. Multiplying

by Xt and taking expectations in (∗) we obtain

γX (0)− α1γX (1)− . . .− αpγX (p) = E (εtXt) = σ2
ε (α)

(since Xt =
∑∞
ν=0 cνεt−ν , c0 = 1).

Yule-Walker equation for k = p:

Γp~αp = ~γp (β)

Hence we obtain: ~̂αp = Γ̂−1
p ~̂γp = R̂−1

p ~̂ρp, σ̂
2
ε = γ̂X (0)−

∑p
ν=1 α̂ν γ̂X (ν)

Remark. One can show that Φ̂ (z) 6= 0, |z| ≤ 1 and hence the α̂i generate again a
stationary process.

Theorem 3.2.1. Under the additional assumption E
(
ε4

1

)
< ∞ we �nd for p′ ≥ p

and ~α′p = (α1, . . . , αp, 0, . . . , 0)

√
n
(
~̂α′p − ~αp′

)
d→ N0,σ2

εΓ−1
p′

Proof. Follows from above for k = p′ and the fact that

Γ−1
p′ AV AΓ−1

p′ = σ2
εΓ−1

p′ ,

in particular σ2
ε

(
Γ−1

)
p′,p′

= 1 for p′ > p. �

We could use least square principle ot estimate α's.

n∑
t=2

(
Xt −

p∑
ν=1

ανXt−ν

)2

=
∥∥∥ ~X − Ã~α∥∥∥2

→ min
~α

Ã =


X1

X2 X1

...
. . .

Xn−1 · · · · · · Xn−p


n−1×p

, ~X =


X2

Xn

 , ~̃α =
(
ÃT Ã

)−1

ÃT ~X

√
n
(
~̃α− ~α

)
=

(
ÃT Ã

n

)−1
 ÃT ~X√

n
−

(
ÃT Ã

)
√
n

~α

 =

(
ÃT Ã

n

)−1

ÃT

(
~X − Ã~x√

n

)
= Γ̂−1

p

(∑n
j=k+1Xj−kεj√

n

)
︸ ︷︷ ︸

d→N0,Γpσ2
ε

d→ N0,σ2
εΓ−1
p
.
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What about MLE? Assume εt ∼ N0,σ2
ε

fX1,...,Xn (~x) = fXn|Xn−1, . . . , X1︸ ︷︷ ︸
Xn−1,...,Xn−p

(xn | xn−1, . . . , x1)fXn−1,...,X1

=
n∏

j=p+1

fXj |Xj−1,...,Xj−pfXp,...,X1

=
n∏

j=p+1

nθ,σ2
ε

(
xj −

p∑
ν=1

ανxj−ν

)
fXp,...,X1

⇒ L(X1, . . . , Xn) =
1√

2πσ2
ε

n−p exp

− 1
2σ2

ε

n∑
j=p+1

(
Xj −

p∑
ν=1

ανXj−ν

)2
 fXp,...,X1 .

→ max

(For details see Procter and Davis)

Theorem 3.2.2. If m > p then we have provided that E
(
ε4

1

)
<∞

√
n
(
~̂φm − ~φm

)
d→ N0,Γ−1

m σ2
ε

and in particular for m > p
√
n
(
φ̂(m)− φ(m)

)
d→ N0,1.

Remark.

(1) This yields an asymptotic test on H0,m : φ(m) = 0. If
√
n
∣∣∣φ̂ (m)

∣∣∣ >
N−1

0,1

(
1− α

2

)
then reject the hypothesis. (This explains the bounds seen

when plotting the partial autocovariance function for example in R).

(2) The quatities φ̂m,ν can be calculated using the Durbin-Levinson algorithm
using γ̂X (.) instead of γX (.) .

(3) n(~̂α−~α)TΓp(~̂αn−~α)/σ2
ε

d→ χ2
p , by Slutzky's theorem, we may replace Γp and

σ2
ε by their estimates.

3.2.2. MA(q)-process.

Xt = εt +
q∑

ν=1

βνεt−ν , t ∈ Z (∗)

as before bν =

{
1 ν = 0
βν 1 ≤ ν ≤ q

. To estimate the bν 's σ
2
ε we have

γX (0) =
q∑

ν=0

b2νσ
2
ε

γX (1) =
q−1∑
v=0

bvbν+1σ
2
ε

γX (q) = b0bqσ
2
ε ,
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q + 1 nonlinear equations for q + 1 parameters. Is this solvable and is the solution
unique? Is there an algorithm?

Instead the following asymptotic procedure is used:

X̂m+1 =
m∑
ν=1

θmν

(
Xm+1−ν − X̂m+1−ν

)
︸ ︷︷ ︸
≈εm+1−ν if m is large.

≈
m∑
ν=1

θmνεm+1−ν
!=

q∑
ν=1

bνεm+1−ν,

vm ≈ σ2
ε if m is large. In the innovation algorithm θmν , vm were calculated from

γX 's. θ̂m,ν v̂m from γ̂X (.) ↪→ b̂ν = θ̂m,ν .

Let us consider a causal linear process Xt =
∑∞
j=0 cjεt−j , c0 = 1, (cj) ∈ `1, (εt) iid

white noise, E (ε1) = 0, Var (ε1) = σ2
ε .

Theorem 3.2.3. Assume that we have in addition E
(
ε4

1

)
< ∞, then we have for

any sequence of integers m(n) with

m(n) ↑ ∞, m (n) /n1/3 → 0, n→∞

and any integer k ∈ N that

√
n
(
θ̂m(n),1 − c1, . . . , θ̂m(n),k − ck

)T d→ N0,A

with aij =
∑i∧j
ν=1 ci−νcj−ν ,1 ≤ i, j ≤ k. and v̂m

p→ σ2
ε , n→∞.

Remark.

(1) In case of MA(q), choose k = q, cν = bν , 1 ≤ ν ≤ k,

θ̂m(n),ν
P→ bν ,

1 ≤ ν ≤ q but θ̂l,ν � bν for some �xed l. If m is small we have a strong
bias, if m is very large we get a large variance.

(2) Recipe: Start with the calculations of θ̂m,ν m = 1, 2, ... and stop after

θ̂m,νdoes not change much when m is increased.

3.2.3. General ARMA(p,q) process.

Xt −
p∑
ν=1

ανXt−ν = 1 +
∑

Xt =
∑∞
n=0 cnεt−n, c0 = 1, c's are the Taylor coe�cients of Ψ(z)

Φ(z) at z0 = 0.

∞∑
ν=0

cνεt−ν = Xt = εt +
q∑

ν=1

βνεt−ν +
p∑

µ=1

αp

∞∑
j=0

cjεt−µ−j

= εt +
q∑

ν=1

βνεt−ν +
∞∑
ρ=1

εt−ρ

p∧ρ∑
l=1

ανερ−ν .

Comparing coe�cients (all coe�cents are zero if indices are out of their domain)
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
cq+1

cq+2

...
cq+p

 =


cq cq−1 · · · cq−p+1

cq+1 cq · · · cq−p+2

...
. . .

...
cq+p−1 cq




α1

...

...
αp

 , c0 = 1


c1
...
...
cq

 =


β1

...

...
βq

+


1 0 · · · 0

c1
. . .

. . .
...

...
. . . 1 0

cq−1 · · · cq−p+1 cq−p




α1

...

...
αp


For the estimation of ᾱp use the system θ̂m,q+1

...

θ̂m,q+p

 =

 θ̂m,q θ̂m,q−1 · · · θ̂m,q−1+p

...

θ̂m,q+p−1 · · · · · · θ̂m,q

 ~̂αp


β̂1

...

...

β̂q

 =


θ̂m,1
...
...

θ̂m,q

−


1 0 · · · 0

θ̂m,1
. . .

. . .
...

...
. . . 1 0

θ̂m,q−1 · · · θ̂m,q−p+1 θ̂m,q−p


with θ̂m,r is as above. Asymptotically

(
~α
~β

)
is normal under some assumptions.

Are there MLE if ε ∼ N (0, σ2
ε) iid?

The Maximum Likelihood function

Ln

(
~Xn; ~α, ~β, σ2

ε

)
=

1

((2π)n det Γn)
1/2

exp
(
−1

2
~XT
n Γ−1

n
~Xn

)

X̂j = E (Xj | X1, . . . , Xj−1) =
j−1∑
ν=1

θj−1,r(Xj−r; X̂j−r︸ ︷︷ ︸
M

) j ≥ 1, X̂1 = 0

~̂Xn =
(
X̂1, . . . , X̂n

)T
.

The calculation of Γ−1
n can be avoided by

θ̃ =


θij j = 1, ..., i, i = 1, 2, 3, ...
1 j = 0, i = 0, 1, 2, ...
0 j > i, i = 0, 1, 2, ...

C = (θi,j)
n−1
i,j=0 D = diag (v0, ..., vn−1)

Then X̂j =
∑j
µ=1

(
θ̃j−1,j−µ − δi,µ

)(
Xµ − X̂µ

)
↪→ ~̂X = (C − I)( ~X − ~̂X)

~̂X = ~X − ~̂X + ~̂X = C( ~X − ~̂X)
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By the de�nition of vj−1 = Var(Xj − X̂j) and independence of the innovations, we
�nd

Cov( ~X − ~̂X) = D, Γn = Cov( ~X) = E( ~Xn
~XT
n ) = CCov( ~X − ~̂X)CT = CDCT .

det Γn = detC · detD · detCT = 1 ·
∏n−1
j=0 vj · 1 =

∏n−1
j=0 vj

− logLn( ~Xn; ~α, ~β, σ2
ε) = n

2 log 2π + 1
2 log(v0 · . . . · vn−1) + 1

2

∑n
j=1(Xj − X̂j)2/vj−1

rj = vj
σ2
ε
⇒ − logLn( ~Xn; ...) = n

2 log 2π+n
2 log σ2

ε+ 1
2 log(r0·. . .·rn−1)+ 1

2σ2
ε

∑n
j=1(Xj−

X̂j)/rj−1 Minimize with respect to α̂, β̂, σ̂2
ε

σ̂2
ε = 1

n

∑n
j=1(Xj − X̂j)2/rj−1. Equivalently we have to minimize wrt α̂, β̂

`n( ~Xn, ~α, ~β) = n
2 log σ̂2

ε + 1
2 log(r0 · . . . · rn−1)

Start with ~α, β̂ ↪→ calculate X̂j , rj ↪→ `n( ~Xn, ~α, ~β). In case of an AR(p) process, it
is simple:

fX1,...,Xn = fXn|Xn−1,...,Xn−p ·. . .·fXp+1|Xp,...,X1 ·fX1,...,Xp =
∏n−p
j=1 fXn+1−j |Xn−j ,...,Xn−j−p+1 ·

fX1,...,Xp and fxn+1−j |Xn−j ,...,Xn−p−j+1 = 1√
2πσ2

ε

exp
{
− 1

2σ2
ε

(Xj −
∑p
ν=1 ανXj−ν)2

}

3.3. Model Choice and Model Checks

A choice of a suitable ARMA(p,q) model

Check ACF, PACF (Assume that we have a stationary model

(1) If ACF has a clear cuto� point at q, meaning ρ(q) 6= 0, ρ(h) = 0 for h > q
then choose a MA(q) model (Actual test on ρ(q + 1), ρ(q + 2), . . . = 0).

(2) If PACF has a clear cuto� point at p, meaning φ(p) 6= 0, φ(h) = 0 for h > p
then choose an AR(p) model (Actual test on φ(p+ 1), φ(p+ 2), . . . = 0).

(3) If neither the ACF nor the PACF have a clear cuto� point, think of an
ARMA(p,q) model. But which p, q have to be chosen? If we �t a model,
maximize the log-likelihood function (depending on p and q) is likely to
have a very large order.

Remark.

(1) If p and q are �large�, then the model �ts the data, but we have estimates

of ~α, ~β with large �variance�.
(2) If p and q are �small�, then the model �t may not be great, but our

estimates have less variance.

So look for a criterion to minimize wrt ~α, ~β. For AR(p) we would like to choose p.
Our �rst idea is to minimize σ̂2

ε (p = 1, 2, ..., P )

σ̂2
ε =

1
n

n∑
j=p+1

(
Xj −

p∑
ν=1

α̂νXj−ν

)2

,

where the α̂j are the ML-estimates. This quantity will be decreasing (in general)
in p. So this quantity is not a suitable approximation of my total MSE.
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(Akaike '69) Let (Yt) be an independent copy of (Xt)

E

(Yt −
p∑
j=1

α̂jYt−j)2 | X1, . . . , Xn

 = E

(Yt −
p∑
j=1

αjYt−j)2


6= (~̂αp − ~αp)Γp(~̂αp − ~αp) + 0︸︷︷︸

mixed terms (YW-equations)

We can estimate this quantity by

(∗̂) =
1
n

n∑
j=p+1

(
Xj −

p∑
ν=1

ανXj−ν

)2

+Q1

=
1
n

 n∑
j=p+1

Xj −
p∑
ν=1

α̂νXj−ν

2

+Q1 + (~̂α− ~α)T Γ̂p(~̂α− ~α)

√
n(~̂α− α̂)→ N (0, σ2

εΓ−1
p ), nQ1

σ2
ε
→ χ2

p, E(Q1
σ2
ε
· n)→ p

Finite Predictor Eror FPE(p) = σ̂2
ε(p)(1 + 2p

n ) →minimize wrt p → p̂ (does not
tend in general to p) (AIC - Akaike Information Criterion)

Remark.

(1) logFPE(p) = − 2
n logLn + p

n + Cn

(2) For ARMA(p,q) model AIC(p, q) = − 2
n logLn+2

p+ q + 1
n︸ ︷︷ ︸

"punishment term"

+Cn

AIC(p, q) = − 2
n logLn( ~Xn, ~̂α, ~̂β, σ̂

2
ε) + 2p+q+1

n → minp,q .

Further criteria:

AICC(p, q) = − 2
n logLn( ~Xn, ~̂α, ~̂β, σ̂

2
ε) + 2 p+q+1

n−p−q−2 → minp,q.

BIC(p, q) = − 2
n logLn( ~Xn, ~̂α, ~̂β, σ̂

2
ε) + 2 log n · p+q+1

n → minp,q
After choosing a model, one should check whether it is appropriate. We may look
at empirical residuals ε̂t and check whether they have the white noise property.

How to get ε̂t?

Xt − X̂t(~̂α, ~̂β) = ε̂t t = 1, . . . , n (works for large t), where X̂t is the best linear
predictor for Xt.

ε̂t = Ψ̂−1(B)Φ(B)Xt, where Ψ̂−1 has to be approxmiated. In an autoregressive
model AR(p) ε̂t = (Xt −

∑p
ν=1 α̂νXt−ν) , t = p+ 1, . . . , n

Portmanteau-Test:

Tn = n·
∑m
ν=1 ρ̂

2
ε̂(ν) d→ χ2

m−p−q, reject if the test statistic exceeds the 1−α quantile.

(modi�ed test statistic:T ∗n = n(n + 2)
∑m
ν=1

ρ̂2
ε̂(ν)
n−ν

d→ χ2
m−p−q ), the Portmanteau-

Test is very conservative.
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3.4. Some Remarks on the Estimation of the Spectral Density

Assumption. (γX(h)) ∈ `1 ↪→ then f ∈ C[−π, π], symmetric
f (λ) =

∑
k∈Z γX(k)e−ikλ, λ ∈ [0, π].

Idea: Get an estimate by γX(.)||γ̂X(.) (based on the sample X1, . . . , Xn)

This leads to the so-called centered Periodogram:

In,X̄ (λ) =
∑
|k|<n

γ̂X(k)e−ikλ

Note that the frequencies λj = 2πj
n , j = −

[
n−1

2

]
, . . . ,−1, 0, 1, . . . ,

[
n
2

]
are special,

the vectors~bj = 1√
n

(
e−iλj1, e−iλj2, . . . , e−iλjn

)
∈ Cn, j = −

[
n−1

2

]
, . . . ,−1, 0, 1, . . . ,

[
n
2

]
,

form an orthonormal basis on Cn.
Xt = 1√

n

∑[n2 ]
j=−[n−1

2 ] cje
itλj , t = 1, 2, . . . , n, cj = 1√

n

∑n
ν=1Xνe

−iνλj (FFT)

A simple calculation shows:

In,X̄(λj) =

∣∣∣∣∣ 1√
n

n∑
ν=1

(
Xν − X̄

)
e−iλjν

∣∣∣∣∣
2

j 6=0
=

∣∣∣∣∣ 1√
n

n∑
ν=1

Xνe
−iλjν

∣∣∣∣∣
2

= In(λj)

Now it can be shown:

E(In(λj)) =

{
nµ2 + 2πf(0) + o(1) j = 0
2πf(λj) + o(1), j 6= 0

, n→∞

So 1
2π In (λ) is asymptotically unbiased, however, if Xt = εt,εt an iid white noise

with E
(
ε4

1

)
= µ4, E(ε3

1) = 0,then

Var(In(λj)) =

{
2σ4

ε + 1
n (µ4 − 3σ4) λj = 0 or ± π

σ4
ε + 1

n (µ4 − 3σ4) otherwise

Even in this simple case (Xt = εt, f(λ) = σ2
ε

2π ) we do not have a consistent estimator.
Way out: Tapering: use a weight sequence wk,n weighting the γ̂X(k) down for large
k.

wk,n =
(

1− |k|
mn

)
1[−mn,mn](k)

f̂n(λj) =
∑
|k|<n

wk,nγ̂X(k)e−ikλj , j = ...

asymptotically consistent if e.g. mn →∞, mn/n→ 0, �smoothing parameter�.



CHAPTER 4

ARCH- and GARCH-Processes

4.1. ARCH- and GARCH-Processes

Process Wt price of a stock, stock-index of a currency rate (here US $/UK pound)

log returns: Xt = log Wt

Wt−1
= log

(
1 + Wt−Wt−1

Wt−1

)
≈ Wt−Wt−1

Wt−1

Looking at data sets, we �nd that the ACF looks like one for iid random vari-
ables. But the ACF's for

(
X2
t

)
of (|Xt|)do not look like they should for iid random

variables. ⇒ ARMA models are not suitable. We have to look for a new class of
models, which should allow the following patterns we observed in the data.

(1) The data themselves show practically no correlation, but the modulus and
the squares show signi�cant correlation.

(2) The variance (the volatility) shows periods of larger and smaller values.
(3) The data look heavy tailed (look at QQ-plots comparing with exponential

distribution)
(4) The time points where data are above a high threshold come in clusters.

ACF of X2
t looks like an AR(p) process that led Engle '82 (Nobel price laureate)

to introduce the following model (most simple case)

Xt = σtεt with a white noise iid random variables (εt) ,E(ε1) = 0, E(ε2
1) = 1 (often

even N0,1).

σ2
t = β + λX2

t−1, β, λ > 0.

Generalizing this idea we come to

Definition. (GARCH(p,q), ARCH(p) time series)

Let be given p, q ≥ 0. A real time series (Xt) being de�ned by Xt = σtεt with iid
random variables (εt) having moments E (ε1) = 0 and E(ε2

1) = 1 and a stochastic
process

(
σ2
t

)
satisfying with coe�cients α0, . . . , αp, β1, . . . βq ≥ 0, s.t. αp · βq > 0

the di�erence equation

σ2
t = α0 +

p∑
j=1

αjX
2
t−j +

q∑
ν=1

βνσ
2
t−ν

is called an GARCH(p,q) process (Generalized Auto-Regressive Conditionally Het-
eroskedastic).

(
σ2
t

)
is called the volatility process. In case q = 0 (Xt) is called an

ARCH(p) process.

Assumption. We denote by Ft = σ (εs, s ≤ t) , t ∈ Z and we will assume from now
on that σ2

t is Ft−1is measurable for all t.

34
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Remark. We will be interested in processes
(
σ2
t

)
being strongly stationary (i.e.

the entire distribution function is time-shift independent) and the -as we will see-
our assumption can be veri�ed. The also the proces (Xt) will be strongly stationary

Fσt,εt(x) =
ˆ
Fσt(x · ν)dFεt(ν) = Fσt+h,εt+h(x) =

ˆ
Fσt+h(x · ν)dFεt+h(ν)

4.2. Some Properties of the GARCH-Processes

Let us consider the process (X2
t )

X2
t = σ2

t ε
2
t = σ2

t + σ2
t (ε2

t − 1)︸ ︷︷ ︸
=:ηt=X2

t−σ2
t

= α0 +
p∑
ν=1

ανX
2
t−ν +

q∑
µ=1

βµσ
2
t−µ + ηt

σ2
t=X2

t−ηt= α0 +
p∨q∑
ν=1

(αν + βν)X2
t−ν −

q∑
µ=1

βµηt−µ + ηt

Putting p̃ = p∨ q then X2
t follows an ARMA(p̃, q) process with mean, provided the

(ηt) are an uncorrelated white noise.

E (ηt) = E(E(σ2
t (ε2

t − 1) | Ft−1) = E(σ2
tE(ε2

t − 1 | Ft−1)) = 0 ∀t

For s ≤ t

E(ηsηt) = E(E(σ2
s(ε2

s − 1)σ2
t (ε2

t − 1) | Ft−1))

=

{
0 s < t

E(σ4
tE((ε2

t − 1)2) = E(σ4
t )E((ε2

t − 1)2) s = t

If E(σ4
t ) <∞, E(ε4

t ) <∞, then (ηt) form a white noise, note that if (σ2
t ) is strongly

stationary, E(η2
t ) is constant.

Next: E(Xt) = E(σtεt) = 0, ∀t.

For s ≤ t E(Xs · Xt) = E(σsεsσtεt) =

{
0 s < t

E(σ2
t ) · 1 s = t

. If E(σ2
t ) < ∞, then

(Xt)is uncorrelated and weakly stationary if E(σ2
t ) ≡ const.

Important: To have a parameter constellation such that (σ2
t ) is strictly stationary

and has some moments.

For simplicity we restrict ourselves to GARCH(1,1) processes for a moment.

Xt = σt · εt(1)

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1(2)

Theorem 4.2.1. Then both (1) and (2) have a strongly stationary solution i�

(*) E(log(α1ε
2
1 + β1)) < 0.
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Then

(+) σ2
t = α0

1 +
∞∑
j=1

j∏
ν=1

(α1ε
2
t−ν + β1)

 ,

hence σ2
t is Ft−1 measurable and the only strongly stationary solution of (2). Fur-

thermore, if α1 + β1 < 1 then (*) holds and

E(X2
t ) = E(σ2

t ) =
α0

1− α1 − β1
<∞.

Remark.

(1) (Xt) will have much less existing moments than (εt).
(2) Iteration of (2) leads to

σ2
t = α0

(
1 +

k∑
ν=1

ν∏
µ=1

(α1εt−µ + β1)

)
+
k+1∏
ν=1

(α1ε
2
t−ν + β1)σ2

t−k−1.

(3) (Repetition) D xn = α0 + α1xn−1 Dh : xn = α1xn−1 n ∈ N
Dh has set of solutions x = cαn1 , c ∈ R.
D has set of solutions xn = x

(0)
n +cαn1 c ∈ R x

(0)
n some solution of Dh.

If α1 6= 1 then x
(0)
n = α0

1−α1
is the only stationary solution.

Stability: If |α1| < 1 then then xn
n→∞→ α0

1−α1
.

For us:
(DG,h) Yt = (α1ε

2
t−1 + β1)Yt−1 (DG) σ2

t = α0 + (α1ε
2
t−1 + β1)σ2

t−1

Yt =
∏t
j=1(α1ε

2
t−j + β1)Y0

a.s.
→
(*)

0 �Perpetuties�.

Proof. Assuming that (+) holds and α1 + β1 < 1 then

E(log(α1ε
2
1 + β1))

Jensen
≤ logE(α1ε

2
1 + β1) = log(α1 + β1) < 0

which implies (*).

E(X2
t ) = E(σ2

t )
(+)
=

Tonelli
α0

1 +
∞∑
ν=1

ν∏
µ=1

E(α1ε
2
1 + β1)︸ ︷︷ ︸

=α1+β1


= α0

( ∞∑
ν=0

(α1 + β1)ν
)

=
α0

1− (α1 + β1)
.

There exists some ρ > 1 such that log ρ+ E(log(α1ε
2
1 + β1)) < 0

1
n

n−1∑
ν=0

(log ρ+ log(α1ε
2
ν + β1))︸ ︷︷ ︸

iid

a.s.
→

SLLN
log ρ+ E(log(α1ε

2
1 + β1)) < 0.
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i.e. j=n-v

1
n

n∑
j−1

(log ρ+ log(α1ε
2
n−j + β))

a.s.
→

SLLN
log ρ+ E(log(α1ε

2
1 + β1)) < 0.

log

ρn n∏
j=1

(α1ε
2
n−j + β1)

 a.s.
→ −∞

i.e. ρt
∏t
j=1(α1ε

2
t−j + β1) a.s.→ 0,t → ∞ and this implies that

∏t
j=1(α1ε

2
t−j + β1) ≤

cωρ
−t so the product converges to 0 exponentially fast. Hence Yt

a.s.→ 0 t → ∞ for
any Y0 and the formula (+) makes sense. also solves (2) which can be checked by
plugging it in. It is a strongly stationary solution. The reason is that the εt are iid
and the distribution is not changed by changing their index.

Assume that σ2
t and σ̃

2
t are two strongly stationary solutions. Then σ

2
t − σ̃2

t statisfy

DG,h, hence
a.s.→ 0 t→∞ σ2

t − σ̃2
t are strictly stationary i.e. σ2

t − σ̃2
t = 0 a.s.

Now assume that (*) is violated. Remark (2) shows that

σ2
t ≥ α0

1 +
k∑
j=1

j∏
ν=1

(α1ε
2
t−ν + β1)


If E(log(α1ε

2
1 +β1)) > 0 then the arguments from above show that the r.h.s.

a.s.→ ∞.
A more detailed analysis with random walk theory the l.h.s. has lim supt→∞(.) =
∞. �

4.2.1. Two special processes.

4.2.1.1. ARCH(1)
. Xt = σtεt εt ∼ N0,1 (1)

σ2
t = α0 + α1X

2
t−1 (2)

and equation (*) reads now

(log(α1ε
2
1)) = logα1 +

4√
2π

ˆ ∞
0

log te
−t2

2 dt

= logα1 − (c+ log 2),

where c = 0.5772... the Euler Mascharorie Constant. (∗) < 0⇐⇒ 0 < α1 <
2eCThen we get strongly stationary solutiosn of (1) and (2) with E(X2

t ) < ∞,
E(σ2

t ) <∞.

What else can we say about the distribution function of X0?
h(u, α1) = E((α1ε

2
1)u) = αu1E(euW ),W = log ε2

1.

h(0, α1) = 1, h is convex, h′(0, α1) < 0 if α1 ∈ (0, 2eC)
h(u, α1)→∞ if α1 > 0.

κ(α1) =


> 1 α1 ∈ (0, 1)
= 1 α1 = 1
< 1 α1 ∈ (1, 2eC)
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P (X0 > x) ∼ dx−2κ(α1), x→∞ with some d > 0. E(X2
t | Ft−1) = σ2

t .


