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Introduction

Classical statistics: iid experiments. Usually we observe data xy,...,x, as a
realisation of iid random variables X1, ..., X,,.

Time series analysis. We are looking at only one experiment but observe the
outcome over time. We want to unveil the time dependence. The goal is usually to
forecast model outcomes.

EXAMPLE. (See distributed graphs)

(1)
(2)
(3)
(4)

(5)
(6)

(7)
(8)

x(t) = cos(.2t + 7/3).

Plot of 30 draws from U|_5 5. Are these really independent?

Population growth between 1780 and 1980 in the USA.

Monthly Accidental Deaths in the USA (1973-1978). The mean seems to
be almost constant.

Wolfer Sunspot Numbers (1770-1869). This dataset also exhibits time
dependence.

Power generation in Germany. Data are not stable over time. The mean
seems to increase faster than lineraly. The variance is also increasing,
could be a function of the mean. There is also a clear periodicity in the
data.

DAFOX log returns 1993-1996, White Noise, and a GARCH(1,1) model.
Bancruptcies in the US.

Say we observe X7, ..., X,, and want to forecast X, 1. What is the best forecast?
In terms of a Ly-distance its the conditional expectation

E(Xpp1)=p if the X, are iid
E[Xp1| X1, Xn] = 9(X1,..., Xn) otherwise - sample models needed .
—_—

LAt B1X14...+BnXn



CHAPTER 1

Basics

1.1. Stochastic processes, stationarity

DEFINITION 1.1.1. A stochastic process is a family of random variables (X;,t €
T) = (Xi)ter, T some index set, on a probability space (2,%, P). The family
(Xt (w*))ter for some fixed w* € Q is called a realization or path of the stochastic
process (X¢)ier-

REMARK 1.1.2. The most important index sets are 7' = R (as interval) or T' = Z
(or N) for “time discrete” stochastic process.

If we talk about a time series, we mean on the theoretical side a time discrete
stochastic process, if we think of data, it is a realization of such a process, or a
section of such a realization, w.l.o.g. (X;)o<(<r with some T" € N.

EXAMPLE 1.1.3.
(1) Xy = A(w)sin(tv + B(w)), t € Z, v € R, and A and B are random
variables. A realization of this process is given by :
Xi(w*) = asin(tv + %),a* = A(w*), f* = B(w*).
(2) X, iid random variables, t € Ny :

1 p=1/2 d d . .
X = , (e =U_1.1) = Ny ,2 = "white noise".
¢ {_1  =1/2 (et)ten, [—1,1] 0,02

(3) Xy =3Xle,, t € Ny, (et)ten, a white noise.
(4) Xi=aXi1+e, —-l<a<l.

NotaTioN 1.1.4. In the following a stochastic process (X¢),., always has T' = Z
or T'= Nj as time index set.

DEFINITION 1.1.5. Consider a stochastic process (X;),cp with E (X?) < 0oVt € T,
then px : T'— R defined by pux () = E (X;) is called the mean function of (X;),c-
vx : T xT — R defined by vx(s,t) = Cov(X,, X¢) = vx(t,s), s,t € T is called the
autocovariance function of (X¢), 1.

px + T xT — R defined by px(s,t) = Cov(Xs, X¢), s,t € T is called the
autocorrelation function (acf) of (X),.p.

DEFINITION 1.1.6. A stochastic process (Xi),., is called (weakly) stationary if
E (X}?) < oo, Vt € T and

(1) px(t)=p, VLT
(2) vx (s,t) =yx (s +r,t+7r), Vs, t,r €T.

REMARK 1.1.7.
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(1) Stationarity means that there exist functions
vx (k) =vx(h,0) =vx(s+h,s), he Z,s €T
px (h) =px (h,0) =px (s +h,s), h€Z,seT

(2) In particular we have:
Var (X;) = vx (0) is constant over time.
vx (=h) =vx (h) and px (=h) = px (h), h € N.

(3) Strong stationarity means: Fx, ..x,, =Fx, (. X040
T,Vn implies weak stationarity

(4) A time series is called Gaussian if all finite dimensional marginal dis-
tribution functions are normal. In this case the distribution functions
are completely determined if mean and covariance function are given and
strong and weak stationarity coincide.

EXAMPLE 1.1.8.

(1) Let (g¢) be independent (uncorrelated) random variables with F (e;) =
0Vt and E (¢7) = o7, Vt. This process is stationary with px (¢) =0,

o2, h=0 [1 h=0
hy =%t - .
7x (h) {o, heN {0 heN

Such a process is called a “white noise”-process.
(2) With (g¢),c5 as in 1. we consider X; = ¢; 4 f;_; with some 0 € R.
Then px(t) =0,

E (X Xeyn) = E((et +0c4—1) (€140 + et 41-1))
of(1+6%) h=0

Oo? h=+1,
0 |h| >1
1462 h = 1 . . .
and px (h) = 0 b Therefore, this process is stationary.
Et, |t| odd

, t € Z, is nonstationary, since

(3) The process X; =
gtr1  [t] even

E (X, Xi41) = {02 4 odd .

of |t] even

(4) X; = 3! _,eu, t € Np, is nonstationary since Var (X;) = (t+1)0?,
Cov (X4, X¢qn) = (t+1)02, h > 1. But X; — X;_iis stationary.

(5) X¢ = oyet, 02 a stochastic process obeying 07 = o + B¢?_; o, 3 > 0 and
ft =0 (Et—laft) .

E(X;)=F (E (Xt‘]:tfl)) =0.

E (XtXt+h) =F (E (0t5t0t+h5t+h|}—t+h71))
E(c}02) = (a+ Bo})o2 h=0

S

0 h>1

=K (Ut0t+hE (5t5t+h|-7:t+h—1)) = {

New model: 07 = a+ X2 | +v02 ,a,3>0,0<y<1

Xt ts Vii, ..., tp, s €
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PROBLEM. The theory will mainly discuss stationary time series, but the data are
in most cases not stationary, since:

(1) px (t) is not constant, but second moments reflect stationary behaviour.
(2) px (t) is constant, but the second moments are not “OK”.
(3) ux (t) is not constant and second moments are not “OK”.

Ad situation 1: Here we can use regression in order to get a hand on pux (¢):
Estimate px (t), take it out and work with the residuals.
Ad situation 2 and 3: We have no general recipe.
Typically the mean behaviour has two parts.
e continuous and monotone changes in the mean (global trend).

e periodic or cyclic trends (seasonal trends). The length of the periodicity
can be seen from the nature of the data.

Sometimes there are also sudden changes in the mean function (changepoint anal-
ysis).
Our regression model for the time series is

Xt:mt+st+5t,

where m; represents the global trend, s; seasonal trends and e;the residuals,
hopefully a stationary process. Tasks: Estimate my, (s¢,d), (d the period). How
do we do this?

(1) Suggest a model by looking at the data.
(2) Preprocess data to see more.
(a) To see the global trend, do some local smoothing;:

1 1 1 1
W, = E X = E + +
t 2 +1 t+v 2+ 1 Mtty T St4v T Et4v

v="4 v=T4 ~0 ~0
~m(t)+0+0

if m is smooth and ¢ is not too large. Typically one would choose
g such that the periodicity is smoothed out. (Usually polynomial or
exponential regression are suitable for economics data).
(b) To model m (t), apply regression, take i (¢t) out of the data and
attack s(t).
(3) Z; = Xy — my = sy + &;. Periodicity d can be guessed from situation.
e model s; directly.
o or estimate 5. S0 = & S0 o Xoa, 81 = & S0 Xpati-

1.2. Stationary Processes

ASSUMPTION 1.2.1. Now we assume that X, is stationary with existing second mo-
ment. Therefore ux(h) = p and px(h) h > 0, yx(h) = 0% . This is all we have
using the definition of stationarity.

Sometimes it is usefull to consider the same quantities, but in the space of Fourrier
transforms.
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DEFINITION 1.2.2. A { cofr??)}ex } sequence (2,),,y, is called positive semidefinite
if
n ks
n R™ .
Z Wy W2k, —k,) =0 V(wy,),_; € { Cn }, : ez
v,u=1 kn

LEMMA 1.2.3.

(1) Let vx(.) be the autocorrelation function of a stationary process. Then
1x(0) 2 0, |yx(h)| <7x(0), and yx(h) = vx(=h), h € N.

(2) A real sequence (y(h)),c, is an autocorrelation function of some station-
ary process iff
(a) y(h) =~(=h) and
(b) ~v(h) is positive semidefinite.

PROOF.

(1) 7x(0) = Var(X) > 0
|vx (h)] < vx(0) is easy to show with Cauchy-Schwartz-Inequality.
COV(Xt,Xt+h) = COV(XtI,h,Xt/)
@) (=)
(a) necessary for stationarity, see remark 1.1.7.
(b) 0 < Var (X7, w,Xe,) = S0y wyw,Cov( X, , Xi,)

(<)
Let (X;) be a Gaussian process with FE (X;) = 0 and covariance matrix of
70 @) - A(h)
X .
| | 3k 1)
Xitn : E .
v(h) Ah=1) - ~(0)

This matrix is positive semidefinte, because of b). By the Kolmogorov
existence theorem such a sequence of random variables exist.

O

THEOREM 1.2.4. (Herglotz)
A complex sequence (zi)kez is positive semidefinite iff there exists a positive, non-
decreasing function F' : [—m, 7| — [0,00) such that

2k :/ e*TdF (x)

PRrROOF. No proof.
Idea: (=) integrate a Fourier series.

(<) Swowuzi, 2, = [ 112 dF >0 .
REMARK 1.2.5.

(1) If we require F(—m) =0, F is r.h. continuous then F is unique. (We will
assume this from now on).
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(2) 2z is real iff F is symmetric to 0, i.e. zx = 2 [, cos(kx)dF(z) + F(0) —
F(0-), if F' is absolutely continuous, then z; = 2f07iF cos(kx) f(x)dx.

DEFINITION 1.2.6. If (7(h)), is the autocovariance function of a stationary sto-
chastic process (X;), then the distribution function F' defined through theorem
1.2.4 is called the spectral distribution function, and in the case of existence, its
density f is called the spectral density.

REMARK 1.2.7.

(1) Alspectral density exists if v(h) € L2, ie. >,y Iy(k)]> < oo. If y(h) €
L*, then

o0 oo
fN) = % Z re A = ;7; + % Z% cos(kA)
k=—o00 k=1
and the convergence is uniform on [—m, 7] and f is continuous.
(2) The spectral density explains which frequencies are more or less important
in the stochastic process (X;). We will explain this with the following
example:

EXAMPLE 1.2.8.
(1) X¢ =377, Ajcos(Ajt) + Bjsin(\;t) with Aj, By, 1 < j < n random vari-
ables being pointwise uncorrelated, having mean 0 and variance Var(A4;) =
Var(Bj) =07, 0 <A\ < Xp <... <\, <.

NE

~v(h) = sz- (cos(Ajt) cos(A;(t 4 h)) + sin(A;t) sin(\;(t + h)))
j=1
= o7 cos(\jh) = / "N F(N),
i=1 -
0, 0<A<A
, |2 am<a<n
with F(A) = &+ ¢ . ,02=>3"" o2 Hence the spectral
0_2
= A <A

2
distribution function reveals which frequencies show up in the process and

how important they are (large variance implies more relevance).

02 h=0
2) If v(h) =
(2) TE5(h) .

in the white noise, all frequencies occur and have the same importance.

, this is white noise and f(\) = ‘2’—2 <A<, ie.

T

The spectral distribution function contains the same information as the autocorrela-
tion function. Sometimes we will need one more interesting quantity: Given random
variables Y, X1,..., X, € L2(Q,%, P) we are interested in «f,...«) minimizing
E(Y —ap—Y_, a,X,)? (i.e. the best linear prediction of Y by Xi,..., X, in the
Losense. If E(Y) = E(X,) = 0 Vv, then a = 0, otherwise g = p1y — Y 1y Qupix, -
The quantities o, ..., a} depend only on the covariances of the random variables.
The of, ..., o exist, since Lo (X71,...,X,,) is a closed subspace of the Hilbert space
Ly (Q,%, P).
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Now assume (X¢),., a stationary process centered at 0.

DEFINITION 1.2.9. The sequence (¢(k)),cy defined through é(k) = ¢éwx, k €
N, where ¢y is the coefficient of Xy, in the best linear prediction of Xji1 by

Xi,..., X ie. X’kH = Z?:l Ok Xk+1—j, is called the partial autocorrelation function

(pacf).t
REMARK 1.2.10.

(1) (1) = p(1), E(Xz — aX1)> = 0 (1 - 2ap(1) + a2) = a* = p(1).

(2) The ¢r; 1 < j < k are the coefficients of linear regression of X4
on Xg,Xg_1,...,X1. These coefficients are shift invariant and depend
only on p(1),...,p(k). (Variances can be divided out.) The ordering of
X, ..., X1has a reason which we will see later.

(3) Next we look at the regression of X on Xy, ..., X then we conclude from
the remarks above that Xo = Y7, ¢x; X (note E(XoX;) = E(XxXky1-5) =
V()

(4) Furthermore we can derive the following notation:

£ (5 0) (0 1)

A 2 A\ 2
\/E ((Xk+1 — Xk+1) > E <(X0 - Xo) )
i.e. the correlation between Xy, 1- best linear prediction of Xj,; from

X1q,... X, and Xj - best linear predictor of Xofrom Xy, ... X.

LeMMA 1.2.11. (Yule- Walker equation)
If v(h) — 0, k — oo, then for all k > 1 the linear system of equations

ok +1) =

70) (1) ... v(k-=1) 7(1)
v(1) . 7= :
- ~(1) :
(k=1 ... @) ~(0) v(k—1)
in short Tj,_1Z = Y,_1, has the solution ¥ = (¢g1,. .., Prk)-

REMARK. The autocovariances may be replaced by autocorrelations.

ProoF. Given (2, X, P), centered random variables X, F (Xz) < 00, Lo (2,%,P),
< X,Y >=E(XY), |X|| = /E (X?2) a normed linear space.
Define Hy, := L (X1, ..., Xx) = span(Xy, ..., X) a subspace of Ly (Q2,%,P)

1 might be of interest to look at the dependence between X and Xy 1. The problem is that
dependence cannot be described by linear expressions, but as soon as one takes into account the
entire dependence structure, things become very complicated. Therefore one considers ¢(k) = i,
where the ¢y are defined by

k
Xpg1 = Z Dk Xkt1—v

v=1

k
XO = Z ¢kuX1/-

v=1
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minxeg, |[Y — X|| for Y € Ly (Q, %, P), is given by Y* = Py, - Y, where Py, is
the projection onto the space Hy. Then Y* —Y € Hj-.

X/c+1 = Py, Xpy1 = 25:1 @k Xk+1—1v, and the operator I — Py, projects into HkL,
thus Xk+1 — Xk+1 S I‘Ikl
E ((Xip1 = Xir) Xesa5) =0, 1<) <k

V() = Yony OB (Xp1-Xpp1-5) =0, 1< <k

1(@) =Y v =) =0, 1<j<k

(k1 - (bkk)T is a solution.

Next we show that all T}, are regular.

Assume 3 kg : T, is not regular. T}, is the covariance matrix of Xq,..., Xk, .

With some r < ko we have X1,... X}, are with probability 1 in a subspace of R
of dimension 7.

= Xry1 = 22:1 a; X;
= ... = Z;:l Ozl’ij.
vn :da, € R", X,, = ag;)_(),», Vn >r

Stationarity
= X1 =25 0 X1, V120

L Var (X)) _ apTran _ afUFAUran lan)? N
7(0) 7(0) 70) T (0)
A1
where A, = and )\; is the smallest eigenvalue of 7,.. This implies
A
lan| < %2, vn and

—

v(0) = Var (X,,) = F (Xnaer> = 5y anj Y(n—3j) — 0, n — oo. This is a

<c —0
contradiction. O

ALGORITHM 1.2.12. (Durin-Levinson Algorithm)

For computational purposes, it is more efficient is to use a recursion:
vo = 7(0), v1 = vo (1 — 1) = vo(1 = p(1)%), ¢ (1) = p(1).
Now for k > 2

o o(k)=(7(k) = X2} fn10y (k=) fors

o v = vy (1— 6(k)?) (: Var (Xk+1 - Xk+1))

k1 Pr—1,1 Ok—1,k—1
. = — Ok (¢f. Brockwell-Davis)
Prk—1 Pr—1,k—1 Or—1,1

ExamMPLE 1.2.13.

(1) White noise (g;) p(k) =0, k # 0, ¢(k) =0, Vk > 1, (T, = 021, Y = 0)
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(2) Xt =&+ 9615_1,0 7é +1

1 k=0
(-0)*(1-0? k

p(k) = 155 k=1,¢(k)=—w (~—(1—92) (—0)" 19| <1)

0 k>2

0
' o
e~ AN - 0 0 0
146 Tr = s W.’L},,l + Ty —+ warl =
1 0

0, v=2,...,k—1, constants from limes 1 and k. X, =¢1-Z{ +c2-2Z¥,
the Z’s are zeros of HZ%ZQ +Z+ Hi%'
(3) We look for solutions of X; — aX;_1 = &,(e¢) given white noise, |a| < 1.

fk = J(Ek,{-:k,l,. . ) = J(Xk,kal, . )

E (Xigi1|Fr) = E | Xk41 — aXi | Fi | + Xk = aXj the best prediction
—_———
=€k+1
and hence the best linear prediciton of Xy ;from the past.
Xk+1 = 25:1 ¢kuXk+1—u =aXp +0-Xp_1+...+0- X1 =aXy.
$11 =a=¢(1) =p(1)
ok =0=0o(k), k> 2.



CHAPTER 2

Linear Processes

2.1. Linear Processes and filters

DEFINITION 2.1.1. A stochastic process of form X; = ZDGZ Qu€t_y, t € Z with a
real sequence (o) € {1 (ie. Y ;]| < 00) and a white noise process (£¢),c5
with variance o2 is called a two-sided linear process. If o, = 0, v < 0 the process
is called one-sided or causal.

REMARK 2.1.2.

(1) The infinite series converges almost surely, since

E (’Za,,st_l, ) < Z low| E (|er—0]) < o0
<V

converges even absolutely almost surely.

(2) The so-called Wald decomposition theorem says, that all mean zero sta-
tionary processes can be written as a sum of a linear process and a pre-
dictable process.

LEMMA 2.1.3. A linear process is stationary and has the following parameters:

(1) 5= E(X) =0
(2) vx(k) =02, apayik, kEZ
2 .
(3) It has a spectral density fx (A) = 3= |3 ez al,e_“\”|27 A€ [—m, 7]

REMARK 2.1.4.

(1) All quantities exist since (o) € ¢5.

(2) fx (A\) = f-(\) - |Trig series with coeff a,|>. The function S, e
is called the transfer function of the so-called linear filter ZUGZ a, B,
where B is the so-called shift operator: B'Y; = Y;_,. (>_a,B")e; =
> ayer—y = X The absolute value squared of the transfer function is
called the power function of the linear filter.

ProoF. All series are pointwise absolutely convergent, which allows limits and
sums to be interchanged(Fubini).

(1)
ux(t)=FE (Z al,et_u> = ZaDE(st_u) =0

13
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vx (h) = E (X4 Xi4n)

= Z Z ayoy, B (Et—u5t+h—u)
v n —_—

=028t v tth—p

2
o; E Q4
v

T s 2
ixk _ ixk @ —i\v ix
/ e fX(A)dA—[ﬂe 7; EV aye Eﬂ a,e™Md\

—1Tr
o2 T
== E 0y, eMEFR=V) g\
27 -
v
:27T60,k+/_bfu

= ag Z a0y, = vx (k)
m

REMARK 2.1.5. The same calculations show more generally:

Given a stationary process (X;) with spectral distribution function Fx and given
a linear filter ) ., o, B, (a,,) € £1, then the process

Y, = (Z aVB"> Xe=) aXe,

VEZL

is again stationary with spectral distribution function

Fy = ‘/Tr A(V)de<V), A E [—’ﬂ',ﬂ']

—T

where A(v) = |ZV a, e |2 is the power transfer function, the operator B is given
by BXt = thla BXt = Bj_l (BXt) = Xt*jv ] S N, BO = ld, B_lXt = Xt+1,
B: Ly — Lo, ||B|| = 1 on stationary random variables. If fx exists, then fy (\) =

AN fx (N)-

2.2. ARMA-Models

Many situations in economics can approximatively be described by some difference
equation disturbed by some unexpected noise. Thus let a white noise (g¢),, E (¢7) =
o2 be given. We seek stochastic processes which are stationary and satisfy the
following difference equation

q
Xt — alXt,1 — CYQthg — ... apthp =&+ Z ﬁuﬁtf'u’ t e Z, (*)

p=1

geN, o, B €R, ap, By #0.
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DEFINITION 2.2.1. A stationary stochastic process (X;) satisfying (x) for t € Z
with a given white noise process with i.i.d. random variables (¢;), E (¢;) = 0,
E (£3) = 02 € [0,00) is called an ARMA(p.q)-process (Auto Regressive Moving
Average).

REMARK 2.2.2.

(1) We are here more restrictive than necessary for many things concering the
white noise.

(2) A stationary stochastic process (X;) is called an ARMA (p,q)-process with
mean u if (X; — p) is an ARMA(p,q) process.

NoTATION 2.2.3. We denote the following polynomials

1 v=20
D(z) =30 _panz”, ay = {—a 1<v<yp’

H=0 By 1<pu<gq
and can rewrite equation (x) as ®(B)X; = V(B)e;.

1 =0
U(z) =30 b#z“,b#:{ H

Special cases.

Movwing average process of order ¢ (MA(q)). In this case ®(z) = 1 and equation
(%) can be written as

q
Xi=¢e+ th—uﬂ,u'
p=1

LEMMA 2.2.4. Such a moving average process has the following characteristics:

(1)
—|k
e =0, vx = of Zzzl() | bubutie, 0< 1|kl <q
(2)
02 a A 2 1 q ‘
fX (>\) = i Zb‘ue*l)\u — % Z,Yx(k)efz)\k
=0 —q

(3) The partial autocorrelation function (|¢(k)|) decays exponentially fast to
zero, provided U(z) # 0 for |z| = 1.

ExXAMPLE. Consider a MA(1) process X; = &; + fer—1, VU(z) = 1+ 0z, z =

(146202 k=0
—0)k(1-62
0 k>2

== 1—1—96_“\2:0—g 1+ 260 cos A + 62
27

Proor. Follows directly from Lemma 2.1.3 g
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Autoregressive process of order p (AR(p)). In this case ¥(z) = 1 and equation
() can be written as

Xt — OélXt_l — apXt—p = &¢.

EXAMPLE 2.2.5. Consider an AR(1)-process (X;): Xy —aXi_1 =&, ®(2) = 1—az,

z=-1
[0}

X;=aX; 1 +e =X, o+ ag 1 +&

P a.S. o0

n
1 (n—00)
="M Xy g1 + g ‘e, — 0+ E aver_y,.
v=0 v=0

(1 - aB) X; = &, and therefore X; = (1 — aB) ", = (Y00 ja”B¥) e, = Y00 a¥er
(v. Neumann series)

To see the uniqueness, consider two solutions z,gl) and z§2>. Then
zt(l) — z§2) -« (zﬁ)l — zﬁ)l) =0.

For y; = z,gl) — 2,52) we obtain y; —ayi—1 =0 = vy, = c- ot “::>0 ¢ = 0 and thus

zt(l) = z§2>.

_ _ o2 k& _ ok _ o k=1,
/’L_Oa’yX(k)_la2a7pX(k)_a7¢(k)_{0, k22

ZOO Oz”e_i)"/‘Z _ o2 1 _ o2 1 _er 1
v=0 T 27 [l—ae— N2 T 27 |®(e—iM)|2 T 27 (1-2acos Ata?)”

fx(N) =2

In the case that o = £1 we have no stationary solution. If || > 1 then X; =

ZSOZO (i)uetﬂ, which means that the stationary solution is non-causal (since it

depends on future £;), this case is not interesting for us.

General Case.

THEOREM 2.2.6. Let be given the difference equation (x) with polynomials ®(z) and
U(z), having no zero in common.

(1) There exists a stationary and causal solution of (%) if and only if ®(z) #0
for|z| < 1.
(2) If ®(2) # 0 on |z| < 1 then the unique solution of (x) is given by

S
X = chft,j t ez,
=0

where the coefficients (c;) are the Taylor coefficients of Y(2)/a(z) at zy = 0.
The radius of convergence is R = min {|z|, ®(z) = 0} > 1. Hence |c;| <
kqq ™ for any q € (1, R) with some kg, > 0. Therefore (c;) € {;.

I his is part of the reason that the partial auto-correlation function was introduced. For AR
processes it breaks down at the order of the process.
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(3) In this case we have

’}/)((k) = 0’3 ZCjCj+k, k e Ny
=0

9]
E Cne—z)\n
=0

(4) If U(z) = 1, then ¢(k) = 0 for k > p, otherwise (k) — 0, k — oo
geometrically fast (¢ is the partial autocorrelation function).

2

2
2
= 70-6
T

()
P (e=)

2
Ix() =<

REMARK.

(1) From (2) it follows that the |px (k)| < &,q~ " for all ¢ € (1, k) with suitable
Fig > 0.
(2) If ®(2) # 0 on |z| = 1, then X; = > 7o

]— %)
coefficients of the Laurent expansion of = (I)(Z) =3 o di.

dje;—;, where d; are the

PrOOF. Reminder:
AG) = Zowss BE) = Tob bl < R Then O6) = AG)B() =
Dm0 2" 2oy pimp Wy 2] < R, Az — Yoo a, 2 inUe(0) if A(0) # 0. ¢(=)/az) =
Z;io 2Py cva,
Necessity:

r=min{|z1],..., |2} > 1, 2z zero of ®(z).

=2 an"

n=0

o < rfa; | < kg7, g € (L)

Y: := U(B)e; is an MA(q) process ®(z) = ?Zl(l — a;z) with aj = L

p
]1

ﬁ 1-o;B ((1 —a,B)"! Yt)

v V=3 ganyi

—Za B" Yt

\I/(B)sf

Yt(l) = apYi—, is a statlonary, causal process. (Z;) is a solution of (x), since
®(B)Ze =@ (B) Y5 ga, B"Y, =Y, =3B}, aay

(2) and (3) follow from (1) and the above.

Sufficiency:
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Xo =372 0 i€, (¥5) € 1.

®(B)X,

(i anB" i VB | &
>

B? (Ll,?/J#> Et
v+p=p

, q
= E prpé‘t,
p=0

ZU+HIP au"/}/u 0<p<yq

where we have set b, = {0 therwise
, otherwise

With H(z) = > 07, n2" we have ®(2)H(z) = ¥(z) and thus H(z) = ¥(2)/a(z) in
U:(0), since H(z) is a power series converging in |z| < 1. Because ® and ¥ have
no common zeros, ¥(z) # 0 in |z| < 1.

O

REMARK. In case ¥(z) # 0in |z] <1 we may write g, = >~ (¢ X;—;.

2.3. ARIMA and SARIMA-processes

Goal: Extend ARMA-models to cover trends and seasonality effects.

2.3.1. ARIMA-processes. ®(z) = (1 — 2) ®(2), ®(z) # 0in |z| < 1 of order

®(B)X; = ®(B) (1 — B) X; = ®(B)Y; = ¥(B)ey,

where (Y;) satisfies an ARMA(p,q) difference equation.

Y, =X — X1 — X¢ = X0+Z,tj:1 Y, for given Xj. (X}) is a nonstationary process
and if Y; has mean p then X; has a linear trend. In this case we say that (X;)
follows an ARIMA (p,q,1) process (Auto Regressive Integrated Moving Average).
One can iterate this, look for example at

B(2) = (1 —2)2d(2)

then V; = Xy — 2X;_1 + X;_o is an ARMA(p,q) process with mean p. X; =
Xo +t(X1 — Xo) + EZZQ Y,(1—p+1), t >0, given Xy and X;, (quadratic
trend, andX; is an ARIMA (p,q,2) process).
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2.3.2. SARIMA-processes. Consider
D(2) = (1 — 29)®(2) — ®(B)X; = U(B)e,

®(B)X: =P(B)(X; — Xi—1) = V(B)ey and (Xy — Xi—1) =: Ys. Knowing X, ..., X1
we get Xy = Y 1 Yia+i, if t = md+1 with 0 <1 < d. For the (Y;) process we apply
ARMA(p,q). This often leads to large coefficients p and q. It is more efficient to
apply

® (BY (1-BY) X, =0, (BY) U, &
where @ (z) # 0 in |z| < 1 and to then apply an ARIMA (p,q,m) model to (U;) :
P2 (B) (1= B)"Us = V3 (B)ey,
with @5 (2) #0on |z < 1.
®, (B)®; (BY) (1 - B)™ (1 - BY)' X, = U, (BY) W, (B)e,
®(B)
this is a SARIMA(p, ¢, m) x (p, ¢, m) model.

2.4. Forecasting

2.4.1. Some theory. In case (XS)sgt is known, we are looking for the best
linear forecast® for X;,,, v € N, denoted by [XH,,} and put MY = L(X,, s <1).
In case only (XS)t—mgsgt is known, we are looking for the best linear forecast for
Xivw, v € N denoted by [pru,m} and put MY = £ (X;_m,... X;) which is a

closed subset of Ly (2, %, P).
2

In the first case we have Xt-‘,—y = argminxezﬁtf HXt+V — Xt+y ‘Xt-‘rl/ — Xt-‘,—u =
N ~ 112 N
o2, while in the second case Xitv,m = argmin g g, x HXH” - X’ , ’ Xy — Xigo|| =
t,m
Orm > 05

If the processes are stationary, none of the quantities depend on t. Since t is not
important we put t —n , m —n — 1. We know X;,...,X,,. Denote by H, =
L(X1,...,X,). Analogously to the calculations for the partial autocorrelation
function we obtain

- ; PACF
Xn+1 - Xn+1,1 - PH,,LXnJrl see - Z ¢n,an+17V (0)

v=1

2
N ) ) - T
and ain_l =v, = F (Xn+1 - Xn+1> with coefficients ¢, = (Pn1,--sOnn) -

The coefficients ¢,, ,can be obtained via T}, - q;n = Yn.

Goal: Write H,, = H,,_1 ®W,,, i.e. the orthogonal sum of the span of X1,...,X,,_1
and the orthogonal compliment.3

20ne could also look for the best Ly approximation, but the term E [(Xitv | 0 (Xs, s <Pt)]is
usually complicated.
3@ represents the orthogonal sum between vector spaces H,_1 LW,
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Let X; =0 (~mean), and define X, := X, — X, = (id— Py, ,) X,
—_————
projects into HL |

Xl, X# 1<pu<rv-1

~
€EH._; €Hn s

anc(Xl—Xl)@C(XQ—XQ)@...@£<Xn—Xn)

=H,_1 =Wy
Hence Xy 11 =37, 0nj Xns1.
LeEmMA 2.4.1. Assume (X;) denotes a centered, square integrable process. Further-
more, we assume that its covariance matriz
k(i) = E(Xi- X;5), 1<i,j<n

is not singular for all n € N. Then the quantities from above can be calculated
recursively:

vo = k(1,1) (= vx (0) in the stationary case)
then forn=1,2,... we do

k—1
Onm-t=|rn+1,k+1)— Z Ok k—i0nn—jv; | /U, k=0,1,...,n—1

1

vy, =k(n+1,n+1)— Gim_jvj Innovation algorithm.

3
|

<.
Il
o

Proor.
n
Xn+1 = Z on,j (X7L+1—j - Xn—i—l—j)
j=1

multiplying both sides by (X1 — Xk;+1), 0 <k <n—1 and taking expectations,
we obtain

I (Xn+1 — Xng1+ Xn+1) (Xk+1 - Xk+1) = Zen,jE ((Xn+1—j — X7z+1—j> (Xk+1 — Xk+1))
j=1

Xn+1 Xit1
for all 0 < k <n — 1. Observe that

R N v ntl—j=k+1
B ((Xns1-5 = Xui15) (Ker = X)) = '
+1—j +1-j k1 k+1 0 indices different

Now using Xn+1LX;C+1 and Xk+1 = Z?:l Hk)j (XkJrl,j — XkJrl,j) and /', we get

Kn+Lk+1) =5 6, F (XM1 (X,M,j - X,m,j)) = Ok

Onn—jv; DY (%)
Now put k —j=v
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k(n+1,k+1)— Zﬁ;(l) Op k- B (Xn+1 (Xu+1 - Xu+1>)

Gn‘nfuvu
. 2 . 2
Xnt1 — Xn+1H = | Xna]* - HX”“H =r(n+1,n+1)->"_, 07 ;v since

Xnt+1 — Xn+1LXn+1 by Pythagoras. O

Un

2.4.2. Multistep forecast. To forcast Xflljz

we calculate Xr(zlj,zk = Z;.lzl ¢$f)Xn+1,j and the same calculations as for the Yule-

Walker equation lead to

v = Pr, - Xpnir, with k > 1 again

vx (k)

Tndy) = :
x(n+k—1)

Another possibility is to use the innovation algorithm.

¢ (F) n+k—1 e
Xn+k = PHn : XTLJrk = PHn .PHn+k71 : XnJrk = PH,L 'ijl 9n+k71,an+k7j:

. ~ 1H, if1<j<k-1
n+k—1 . _ n >7] >
diimk  Ontk-1, (Xn+/c—j - Xn+k_j), since Xnx—j = {e H, j>k :

Then we just calculate 6, ; for 1 <m < n 4k — 1 by the innovation algorithm.

k ORI ntk—1
viﬁk = HXan - Xr(LJzkH =r(n+kn+k)— Z]ik 972L+k_1,jvn+k—1—j

2.4.3. ARMA process.
®(B)- Xy =¥(B)-er ()

(1) MA(q)
(a) =1 Xy =¢ct+ P41, tEZ
o2(1+p8%), li—jl=0
K(i,j) = { Boz, li—jl=1
0 otherwise
vo = 02(1+ (%), ro = ;’—%

2
011 :/’i<2,1)/'[}0 = (14&#25)03 = %,
v = K(2,2) — 0% o= ...
g2

7”1:’{‘0—%

029 = 0,031 = (r(3,2)=01102201) /py; = %, o =10 — E—f
by induction:
On1 = O =0, k<2< n,r, =79 —
(exponentially fast), v, — o2
B=0, %= LX), % = 2 (XN-%) = £(XN-Lx) .
X = 2 (X, - X)),

(b) g > 1. Since vx (k) =0, k > ¢ we have 0,,, =0, ¢+ 1 < v <n, Vn.
Consequently:

Xns1 =251 0n,; (XnJrlfj - XnJrlfj)

2

n>3r, —1

Tn—1’ rp—17
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A~

Xr(zli)l = i Ontk—1j (XnJrkfj - XnJrkfj) =40 ifk>gq

(2) General ARMA(p.q)
Reduces essentially to a MA-process by the following procedure: With

m = pV q define

X t=1,...
Wyi= 40 T ’m<:\I/(B)€t).
o' ®(B)X; ,t>m+1

We have H,, = L(X1,...,X,) = L(Wy,...,W,), as usual we put X, =
W1 = 0. (W,) is a nonstationary with mean zero and covariances

o yx (i = j) A<ij<m
K (i,§) = o2 (yx (i —4) = 2P yauyx (v —(i—3))) ,min{s,j} <m < max{i,j} <2m
7 20 buburli—ji ,m+1<min{i,j}
0 ,otherwise
Apply innovation algorithm to (W;) ~ 97‘%7 oW, v(‘)’V — “thxifg)
Wiy = S 0 (Wagrj =Wagaj) ,1<n<m-—1
n+l — R
10 (Waprj = Waga—j) ,n>m
AL Z?i/fil gmkq,j (Wn+k—j -0 n+k—j) JA<n+k-1<m-1
n+k ~
ik O k1 (WnJrkfj - n+k7j) n+k—1>m
PHt—l (J;lXt):Ungt ,1<t<m
W, = Py, - W, ={ Pu,_, (02'®(B) X) gt>m+1
oo (X=X o X )
we thus have (Xt = le/:l ath_y + O'th, t> 1), Xt—Xt = 0¢ (Wt — Wt> s
for all t > 1.
Finally:
X Z?:l 9%‘,/3' (Xn+1—j - Xn+17j) 1< n<m-—1
n+l — R
E§:1 @ Xpp1—5 + 23:1 97% (Xn+1—j - n+1—j) =
vX =vWo? and
n+k—1 ~
0 _ St O (Xn+kfj - XnJrkfj) n<m—k
ntk k—1 5 R
25':1 " g X + 25 @ Xtk ok Ol (Xn+k—j - Xn+k—j> n>m-—k+1

Special case: ¢ =0, i.e. we have an AR(p). Then

P
Xny1 = Z a;jXny1-j, n2>p
j=1
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and
- (k—Dnp P
Xr(lJr)l = Z ann+k—j+Zann+k—ja n>p+k—1
j=1 j=k

(Handouts distributed)

2.5. Kalman Filter

In software tools, forecasting is very often accomplished by Kalman filters. Kalman
filters apply to a more general situation of dynamic processes described by linear
equations for t > 1. These system depend on two equations, namely the “system
equation”

L1 = Ay Zy + By,

with given matrices A, € RP*P B, € RP*™ and random vectors (&) with E (§,) = 0,
Cov (&) = Q € R™*™. However it is possible that one cannot observe Z; directly,
but only a relate variable Y; (Z; can be interpreted as a state space variable and Y}
as an observation varaible), which is given by the so-called “observation equation’

Yy = CiZy + 1y,

with matrices C; € R?*P and random vectors 7; with F (n;) = 0, Cov () = R; €
R4 n, and 7445 are uncorrelated for h # 0, n, & are independent and also
independent of Z;.

EXAMPLE.

(1) AR(p) process

al e e ap
Xt 1 0 €t41
Zy = : A=A = &= 0
Kiopia 1 0
o2 0 0
0 0
Qr = : , Y; = (1,0,...,0)Z; = X;, thus Gy = C =
0 0
(1,0,...,0), ;e =0, Ry = 0. System equation X1 =Y b_, apXip1-0 +
€¢+1, Observation equation Y; = X;. Searching for X;; from Y7,...,Y;.

If all matrices are constant we are in the stationary case. Interesting for
us is the stable case, where we have a limit behaviour (eigenvalues of A
are all || < 1, (=®(z) # 0 in |z| < lin the example), that means the
influence of the earlier values diminishes over time and we get

Ziy1 = Z AV .

v=0

(2) MA(q) process
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E¢ Et+1
7y = ; cRItl ¢, = 0 cRItl A = 1
€t—q 0

RO )= 7, ) = AZy + &, Vi = (1, By, -, By) Ze = Xo.
(3) ARMA(p,q) process
Zt = (Xt,Xt_l, e ;Xt—pvgta e ,€t_q+1)T, §t = (5,5_;,.1, O, ey O)T, A =

al ... ap /31 ... ﬂq
10

,Y; =(1,0,...,0) Zy = X;. This repre-

1 0
sentation is not unique.
(4) Missing values
If one observes only X;,,..., X, with1 <t <ty < ... <t, <nfrom
all n values. The system equation describes the process and Y; = C;Z;,
where C;pickes the non-missing values.

Goal: Best linear approximation in the Ls-sense for Zy, 1

(1) from Y7,..., Y “filtering problem”
(2) from Y7,...,Y; “prediction problem”
(3) from Yy, ...,Y, “smoothing problem” (missing values)

We concentrate on the prediction problem (the others are slightly different but

follow the same arguments). We know that Zt+1 is the best linear prediction based
on Yy,..., Y, for Z; 4 iff

Cov (Zt+1 - Zt+1,}/;) =0 1 é S S t,

since Zy41 — Zt+1L£ (Y1,...,Y,). If we assume that Zt is the best linear prediction
for Z; from Y7,...,Y; 1 how do we get Ztﬂ?
(1) Predictor Step:
Zt+1 = Ay best linear predition of Z; ;7 from Y7,...,Y; if Z,is the best
linear prediction of Z; from Y7,...,Y; 4. Y, = C,Z; best linear predition
of Y; from Yi,...,Y; 1. = Y, — Y; is the new information, knowing Y;
(LL(Yh,...,Yi0)).
(2) Corrector Step:

Zt+1 = Zt+1 + K, (Yt - ﬁ) = AtZt + K, <Y£ - CtZt) = AtZt +
K, C, (Zt — Zt) with a suitable matirx K to be chosen subject to Cov(Z;41—
Zt+1, Ys) L 0,1 < s < t (the optimality condition ZtH—ZtHJ_ﬁ(Yl, oY)
which in turn is Cov (Zt+1 T - K (Yt — fft) Y, — Ys) Lo 1<s<

t, where we have subtracted Y, from thr right term of the covariance,
which does not alter the validity of the equation. Now Z; 11 — Z;11 as well
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as Y; — Y, is in £ (Y1,.. .,Yt_l)l, so that the only equation which adds
any information is where s = ¢. This evaluates to

Cov (Zt+1 ~Zy41, Yy — f/t) — K;Cov (Y ~Y.,Y; - f/t) £ 0.

With P, = Cov (Zt+1 — Zt+17Zt+1 — Zt+1) (the “predition error”) and
pt—‘,—l = Cov (Zt+1 - Zt-‘,—la Zt+1 - Zt+1) = AtptA,tT + Qt we find

Cov (Zt+1 71, Cy (Zt+1 - Zm) + m) ~ K,Cov (ct (Zt - Zt) + s ) —0
& Cov (At (Zt - Z}) &, C (Zt _ Z}) n m) _ K, (ctPtctT + Rt) ~0

AtPtCt:F - Kt (CtPtCtT + Rt) = 0

N ~ —1
= Kt = AtprtT (OtPfCtT + Rt)

if the inverse does not exist, the Moore-Penrose inverse (fulfilling A~ AA™ =
A7) will do the job.

To find P,y not that
P,y = Cov (Zt+1 — Zor1, Zoy1 — Zt+1)
= Cov (Zt+1 — Zyy1 — K, (Yt - YQ) Zii1 — Zypr — Ky (Y{s - YQ))
= Cov (Zt+1 ~Zi1, Zega — Zt+1) — 2Cov (Zt+1 ~ Zi1, Ky (Yt - th))
+ K Cov (Vi = Y, Y, - Vi) KT
— Py — 2A,P,CTKT + K, (Ctﬁtcf + Rt) K,
=Py — ABCTKT
In total we get an recursive algorithm in two steps. Given Zt7pt, ]5t:
(1) Predition step: from Zt, P, Zt+1 = AtZt, Y, = C,Z,, 15t+1 = AtptAf+Qt.
(2) Correction step: K; = A, P.C, (C’tptCt + Rt>_ , Zt+1 = Zt+1+Kt (Yt — fft)
Py =Py — APCTKT,

with starting values Zl =0, 151 = ol = P, where o2 refelcts the uncertainty in the
model.

If we start with XtHin the algorithm for the AR(p) process, we see that we are in
2

a fixed point, as it should be (Pt = ( Te ) ,f/} = Yt> Simulation and theoretical
results show that (under certain assumptions) the influence of the starting value
diminishes quickly and the algorithm converges to the desired solution.

Multistep prediciton is also possible: Zt+h = At+h_1Zt+h_1 =Ap1-...- A7y
and Z; = Z;. The prediciton error can also be calculated.

REMARK.

(1) Another approach shows the above via the Gauss Markov theorem.
(2) Tt is also possible to include control variables U.



CHAPTER 3

Statistical Analysis

3.1. Estimation in the Time Domain

Given is a stationary time series (X;) with mean pu, autocovariance function vx (.)

and partial autocorrelation function ¢x (.). Assume we have observed X1,..., X,
(data xr1 = Xl (w) ooy Ly = Xn (w))
Statistics:

(1) ﬂ = 7n = % ?:1 X]

2) Ax (h) = X" (X5 = X) (X — X), 0<h<n—1

These are the classical estimates from statistics. However, we are no longer dealing
with independent observations. Will this work in a dependend case?

for the partial autocorrelation function we have the Yule-Walker equation

Crdr = Y,
for estimation we solve [',# = 'y:;; , lemma, 1.3 says this is uniquely solvable, so
q;k = f,:l:?k. We find 5]« 5 Q;k, n — 0o, since :Yk — Vg, N — 00, f‘k L Ty for
n — oo and the same holds for F,;l.

Furthermore

vn (ng - ¢_;c) = /nl'}! (’Vk - fkégk)
i | 40) () - T G =)~ ) b

= VAl A (%= 7

0 k2 - o Prk
by 0 o o 0 _
: . : $r3 c Dkk
withd=| 0 I, |-| %2 om0 o+ :
bk o g O 0 ¢ O
0o -

jaR - d
Vn (¢k - ¢k) - NO,F;IAVATF;I

26
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3.2. Estimation in ARMA-Models

Our goal here is to estimate the unknown parameers as, ..., ap, B, ..., 34, 02.

3.2.1. AR(p)-process.
Xt — OZlthl — ... Oépthp =& (*)

with iid white noise (;) ,E (g1) = 0, Var (1) = 02. ®(2) # 0in |z| < 1. Multiplying
by X; and taking expectations in (x) we obtain

vx (0) —a1yx (1) — ... — apyx (p) = E (64Xy) = 02 ()

(Since Xt = Zl(jo:() Cv€t—p, CO = 1)

Yule-Walker equation for k = p:

Lpdp =% (B)
Hence we obtain: &, = I','%, = R;'f,,62 = 4x (0) — 0_, d,4x (v)

REMARK. One can show that ® (z) # 0,|z| < 1 and hence the &; generate again a
stationary process.

THEOREM 3.2.1. Under the additional assumption E (8‘11) < oo we find for p’ > p
and dj, = (a1, ...,05,0,...,0)

\/> o) = i
n Oép Q! 07031—\;’1

ProoOF. Follows from above for & = p’ and the fact that
-1 -1 _ _2p—1
I AVAL " =0l

et p

in particular o2 (I"l)p, = 1for p > p. O

€

We could use least square principle ot estimate a’s.

n 2
3 R e

X4 X,
. Xo Xy . - L
A= X = ,o‘Z:(A A) ATX
Xn-1 Xn_p n—1Xp Xn

~ w N (are (ATA N
\/ﬁ(o_‘"@')Z(AA> x| )& =<AA> AT<M>:F;1<M>

NG

AN,

Tpo?
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What about MLE? Assume &; ~ N 42

fxipx, (Z) = an\anh oL Xq (@Tn [ Tp—1, o 21) X0, X0
N——————
Xn—1:-Xn—p

n
= H XX X S X X0

Jj=p+1
n p
= 1] nowz (25 =D i | fx,..x,
j=p+1 v=1
1 1 & o ’
= L(X1,7Xn) = Wexp _ﬁ <X] _ZaVXJV> prw“
\/ 2mof € j=p+1 v=1
— max

(For details see Procter and Davis)

THEOREM 3.2.2. If m > p then we have provided that E (5‘11) < 00
Vn ((;.m - 5m) 4 No,r;}ag

and in particular for m > p \/n (qﬁ(m) - qb(m)) < Noa.

REMARK.

(1) This yields an asymptotic test on Hq,, : ¢(m) = 0. If \/ﬁ‘(ﬁ(m)) >

NO_,ll (1 - %) then reject the hypothesis. (This explains the bounds seen
when plotting the partial autocovariance function for example in R).

(2) The quatities ém,,, can be calculated using the Durbin-Levinson algorithm
using 4x (.) instead of vx (.).

(3) "(3*&)TFP(&TL*5)/U§ < Xf, , by Slutzky’s theorem, we may replace I', and
o2 by their estimates.

3.2.2. MA(q)-process.

q
Xi=ei+ Y Buery, tEL (%)

v=1

1 v=20
as before b, = {ﬁ L<v<d To estimate the b,’s Jg we have
v SV>q

q
vx (0) = blo?
v=0

qg—1
rx (1) = Z byby 107
v=0

YXx ((I) = bObqO—g,
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q + 1 nonlinear equations for ¢ + 1 parameters. Is this solvable and is the solution
unique? Is there an algorithm?

Instead the following asymptotic procedure is used:

Xerl - Zemu (qutlfu - Xm%»lfu)
v=1

remt1—o if m is large.

m q
!
~ § 9mu£m+17u: § bu£m+171/,
v=1 v=1

vm & 02 if m is large. In the innovation algorithm 6,,,, v, were calculated from
VxS O, O from Ax () = by, = Oy 0.

Let us consider a causal linear process X; = Z;io ci€i—j, co =1, (¢;) € {1, (g¢) iid

2

white noise, E (1) = 0, Var (e1) = 02.

THEOREM 3.2.3. Assume that we have in addition E (5‘11) < 00, then we have for
any sequence of integers m(n) with

m(n) 1 oo, m(n)/n'?* =0, n—oo

and any integer k € N that

T
\/ﬁ(em(n),l _Clw--aem(n),k _Ck) i}NO,A

. iNG .. N D
with a;; = >0 ¢i_yej_y,1 <i,j <k. and b, — 02, n — .

REMARK.
(1) In case of MA(q), choose k =¢q, ¢, =b,, 1 <v <k,
ém(n),u E) bua

1 <v <qbut él,,, 2 b, for some fixed [. If m is small we have a strong
bias, if m is very large we get a large variance.
(2) Recipe: Start with the calculations of 6,,, m = 1,2,... and stop after

0n,,does not change much when m is increased.

3.2.3. General ARMA (p,q) process.
P
O SIS s
v=1
w

X = Zi’f:o CnEt—n, o = 1, c’s are the Taylor coefficients of % at zg = 0.

oo q p 00
E ey =Xy =61+ 5 Buer—y + E ayp E Ci€t—p—j
v=0 v=1 7=0

pn=1
PAp

q o]
=&+ § ﬁugt—u + E Et—p E ApEp—p-
v=1 p=1 =1

Comparing coefficients (all coefficents are zero if indices are out of their domain)
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Cq+1 Cq Cg—1 " Cg—ptl a1
Cq+2 Cq+1 Cq 1 Cg—p42
. = . . , Co= 1
Cq+p Cq+p—1 Cq oy
C1 ﬁl 1 0 s 0 (&3]
&1
= +
1 0
Cq By Cg=1 *° Cg—p+1 Cq-p p
For the estimation of &, use the system
Om.,q+1 Om.q Omag-1 - Omg-14p
g o Ogip—1 o o g
51 Om 1 1 0 e 0
_ _ 9m71
1 0
ﬁq em,q emaqfl e em,quﬂ am,qu

) is normal under some assumptions.

eyl

with ém,r is as above. Asymptotically (

Are there MLE if ¢ ~ N(0,02) iid?

The Maximum Likelihood function

— o = 1 1 b _ d
Ly, (Xn; a, g, U?) I VY exp (—X,{Fn 1Xn)
((2m)" detT,,) 2
j—1
Xj = E(Xj | X17 e 7Xj,1) = Zgjfl,r(Xjfr;Xjfr) _] 2 1,X1 =0

v—1 v

M

a

X \T
<Xn::(Xh.”,Xﬁ) .
The calculation of T',,! can be avoided by

ij j=1,.0i,i=1,2,3, ...
6={1 4j=0,i=0,1,2,..
0 j>i,i=0,1,2,..
C = (0:)! 72 D = diag (vo, -, v 1)
Then X; =37, (‘gjfl,j*u - 523#) (Xu - Xu)
=X =(C-DI)(X-X)
X=X-X+X=0X-X)
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By the definition of v;_; = Var(X,; — X ;) and independence of the innovations, we
find
Cov(X — X) =D, T, = Cov(X) = E(X, )Z'T) — CCov(X — X)CT = CDCT.
detT,, =det C-det D-det CT = 1-[[/Z5 v; - 1=[]/Zg v;
—log Ly (X,; 8, 5,02) = Zlog 2 + §log(vo - ... - vn—1) + 5 201 (X — X;)2/vj1
r; = Z—é = —log Lp,(X,;..) = 2 Jog 27+ 2 log 02+ 1 log(ro-. . ..rn,l)—k% Z?:l(X
X;)/rj_1 Minimize with respect to &, (3,52
62=1%" (X, — X;)?/rj_1. Equivalently we have to minimize wrt &, 3
Kn(Xn,oz,ﬁ) = glog&g + %log(ro Cee i Tpeq)

Start with @, 8 < calculate Xj, rj — Uy (Xn, @, ). In case of an AR(p) process, it
is simple:

_ _ep
IXa X = IX0 X0t Xy S X i1 | X X0 X000 X fH- 1S X 1 X Xyt

1 2
fX17-~~>Xp and fmn«}»lfj‘Xn—jw--anfpfj#»l - W exp{ 202 (X Z =1 a, X l/)
€

3.3. Model Choice and Model Checks

A choice of a suitable ARMA (p,q) model
Check ACF, PACF (Assume that we have a stationary model

(1) If ACF has a clear cutoff point at ¢, meaning p(q) # 0, p(h) =0 for h > ¢

then choose a MA(q) model (Actual test on p(q + ) plg+2),...=0).
(2) If PACF has a clear cutoff point at p, meaning ¢(p) # 0, ¢p(h) =0 for h>p
then choose an AR(p) model (Actual test on ¢(p + 1) o(p+2),...=0).

(3) If neither the ACF nor the PACF have a clear cutoff point, think of an
ARMA (p,q) model. But which p, g have to be chosen? If we fit a model,
maximize the log-likelihood function (depending on p and q) is likely to
have a very large order.

REMARK.

(1) If p and q are “large”, then the model fits the data, but we have estimates

of &, ﬁ with large “variance”.
(2) If p and q are “small”, then the model fit may not be great, but our
estimates have less variance.

So look for a criterion to minimize wrt &, 3. For AR(p) we would like to choose p.
Our first idea is to minimize 62 (p = 1,2, ..., P)
- u ’
A2 ~
O = E Z (Xj - ZaVXjV> s
j=p+1 v=1

where the &; are the ML-estimates. This quantity will be decreasing (in general)
in p. So this quantity is not a suitable approximation of my total MSE.



3.3. MODEL CHOICE AND MODEL CHECKS 32

(Akaike '69) Let (Y;) be an independent copy of (X;)

P P
(¥ - Z Yo ) | Xipoo X | = B (Y= D ag%iy)?

# (ap — ap)Tp(a)p — dp) + O
mixed terms (YW-equations)

We can estimate this quantity by

(=" (xj Zau

Jj=p+1

1 & .
:E ZX z::oz

Jj=p+1

Vil = @) = N0, 020, 1), 25— 2, B

»YEeTp 0-2

—p

Finite Predictor Eror FPE(p) = 67 (p)(l + %”) —minimize wrt p — p (does not
tend in general to p) (AIC - Akaike Information Criterion)

REMARK.

(1) logFPE(p) = —% log L, + 2 + C,

(2) For ARMA(p,q) model AIC(p, q) = —2 log L,,+2 ptatl

- +C,
—_——
"punishment term"

AIC(p,q) = —% log Ln()?n,c:i, @ %) + 27’4';#“ — min, 4.
Further criteria:
AICC(p,q) = —21log L, (X, &, 3,62) + 2% — miny, .

BIC(p, q) = —% log Ly (X, &, 5, 62) +2logn - %‘H‘l — miny, ,
After choosing a model, one should check whether it is appropriate. We may look

at empirical residuals é; and check whether they have the white noise property.

How to get &7

X — Xt(&, ﬁ) =¢é t=1,...,n (works for large t), where X, is the best linear
predictor for X;.

¢ = @_1(B)¢(B)Xt, where U1 has to be approxmiated. In an autoregressive
model AR(p) & = (X, —> P _ & X)), t=p+1,...,n

Portmanteau-Test:
T,=n>"" pv) <, X72nfp7q7 reject if the test statistic exceeds the 1 —a quantile.

m pE(v) d
v=1 n—v

(modified test statistic:Tf = n(n +2)>_
Test is very conservative.

= X2_p_q )» the Portmanteau-
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3.4. Some Remarks on the Estimation of the Spectral Density

ASSUMPTION. (vyx(h)) € 1 < then f € C|—m, 7], symmetric
f (>‘) = Zkez FYX(k)eiik)\’ A€ [Oa ﬂ-]'

Idea: Get an estimate by vx(.)||9x(.) (based on the sample X7, ..., X,)
This leads to the so-called centered Periodogram:

Lox(N) =Y Ax(k)e ™

|k|<n
Note that the frequencies \; = 222, j = — [252] ..., —=1,0,1,..., [2] are special,
the vectors Ej = ﬁ (e’“‘fl, e~ N2 e*i’\in) eCj=- [”7_1] see,—1,0,1,. .0, [g],

form an orthonormal basis on C".
Xe= = Zgi]_[%—l] e, t=1,2,...,n,¢; = =3 Xye~ ™A (FFT)

A simple calculation shows:
2

L, x(\j) =

1 = v —iA v
T2 (X, = X) e
v=1
2

jio = In(/\j)

1 - X 14

Now it can be shown:
2 .
nu® +2r7f(0)+o0(1) j=0
E(I,()\)) = ) 5
2rf(A;) +o(1), Jj#0
So %In (A) is asymptotically unbiased, however, if X; = ¢; &; an iid white noise
with E (e}) = pa, E(e3) = 0,then

n — oo

208+ L(py—30%) Aj=0o0r £

o + L(pus —30")  otherwise

W%MF{

2
I

Even in this simple case (X; = ¢, f(A) = 5=) we do not have a consistent estimator.
Way out: Tapering: use a weight sequence wy, , weighting the 4x (k) down for large
k.
k
wkvn = ( - 7!n7|71> 1[_m7117"‘n](k)
fn(A]) = Z wk:,n’?X(k‘)e_ikAja j = ..
|k|<n

asymptotically consistent if e.g. m,, — 00, my/n — 0, “smoothing parameter”.



CHAPTER 4

ARCH- and GARCH-Processes

4.1. ARCH- and GARCH-Processes

Process W, price of a stock, stock-index of a currency rate (here US §/UK pound)

log returns: X; = log vail = log (1 + Wt_Wt‘l) o W Wi

Wtfl Wt—l

Looking at data sets, we find that the ACF looks like one for iid random vari-
ables. But the ACF’s for (X?) of (|X;|)do not look like they should for iid random
variables. = ARMA models are not suitable. We have to look for a new class of
models, which should allow the following patterns we observed in the data.

(1) The data themselves show practically no correlation, but the modulus and
the squares show significant correlation.

(2) The variance (the volatility) shows periods of larger and smaller values.

(3) The data look heavy tailed (look at QQ-plots comparing with exponential
distribution)

(4) The time points where data are above a high threshold come in clusters.

ACF of X} looks like an AR(p) process that led Engle '82 (Nobel price laureate)
to introduce the following model (most simple case)

X; = o4& with a white noise iid random variables (¢;) ,E(e1) = 0, E(¢3) = 1 (often

even N071).
02 =B+ X2, B,\>0.

Generalizing this idea we come to

DEFINITION. (GARCH(p,q), ARCH(p) time series)

Let be given p,q > 0. A real time series (X;) being defined by X; = oye; with iid
random variables (g;) having moments E (1) = 0 and E(¢?) = 1 and a stochastic
process (07) satisfying with coefficients aq, ..., ap,B1,...8; 2 0, s.t. o - By > 0

the difference equation
p q
of = a0+ Xi i+ Boi,
Jj=1 v=1

is called an GARCH(p,q) process (Generalized Auto-Regressive Conditionally Het-
eroskedastic). (o) is called the volatility process. In case ¢ = 0 (X;) is called an

ARCH(p) process.

ASSUMPTION. We denote by F; = o (g5, <t), t € Z and we will assume from now
on that 0,52 is Fy_11s measurable for all t.

34
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REMARK. We will be interested in processes (o) being strongly stationary (i.e.

the entire distribution function is time-shift independent) and the -as we will see-
our assumption can be verified. The also the proces (X;) will be strongly stationary

F0t7€t ({E) = /FUt (LC : l/)dFEt (V) = th+h75t+h (iE) = /FUH-h (iE : V)dFEH-h(V)

4.2. Some Properties of the GARCH-Processes

Let us consider the process (X7)

Xp = oe=0+oi(ef — 1)
= =X2—0?
P q
=  ap+ Z a, X2, + Z ﬂﬂaf,u + 0
v=1 pn=1
o= X2, pVg q
= ap + Z(O‘u +B,)X7, — Z Butie—p + e
v=1 pn=1

Putting p = pV ¢ then X? follows an ARMA (p, q) process with mean, provided the
(n:) are an uncorrelated white noise.

E(n:) = E(E(of (] = 1) | Fir) = E(07E(e} = 1| F1-1)) =0 Wt
For s <t

E(nsm) = E(B(03(e3 = 1)oy (e} = 1) | Fee1))

_J0 s<t
| EO!E((el - 1Y) = E(chE(e} - 1)) s=t

If E(0}) < 00, E(e}) < 00, then (1;) form a white noise, note that if (¢7) is strongly
stationary, E(n?) is constant.

Next: E(Xt) = E(O’t€t) = 0, Vt.

0 s <t
E(g?) -1 s=t
(X})is uncorrelated and weakly stationary if E(o?) = const.

For s <t E(X, - X:) = E(0se50t6¢) = { . If E(0?) < oo, then

Important: To have a parameter constellation such that (o?) is strictly stationary
and has some moments.

For simplicity we restrict ourselves to GARCH(1,1) processes for a moment.

(1) Xt =0t "€t

(2) of = ap + a1 Xiy + frop

THEOREM 4.2.1. Then both (1) and (2) have a strongly stationary solution iff
(*) E(log(a1€? + p1)) < 0.
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Then

oo J
(+H) o} = ag 1+ZH aigf_, +61) |
j=1v=1

hence o? is Fi_1 measurable and the only strongly stationary solution of (2). Fur-
thermore, if a1 + 51 < 1 then (*) holds and

Qo

REMARK.

(1) (X:) will have much less existing moments than (e).
(2) Iteration of (2) leads to

k v k+1
0 (1 + 3 (e + ﬁl)) + [T (eaeiey + 8o iy

v=1p=1 v=1

(3) (Repetition) D z, = ag + a1Zp_1 Dy : Ty = a1Tp_1 n €N
Dy, has set of solutions = = caf, c € R.
D has set of solutions z,, = x%o) +cal ceR :1:7(10) some solution of Dy,.

If a; # 1 then x(o) 15‘—31 is the only stationary solution.

Stability: If |aq| < 1 then then z, "=~ 2o

For us:

(Dgp) Yi = (uei_q + B1)Yio1 (Dg) 07 = ao + (ugi_y + Br)oi_y
a.s.

Y, = H;:l(algg_j + 31)Ys — 0 “Perpetuties”.
*)

170(1 :

PROOF. Assuming that (+) holds and a; + 51 < 1 then

Jensen
E(log(alsf +61)) < log E(alsf + 01) =loglag + 1) <0

which implies (¥*).

(+) oo v
E(X))=E(? = a1+ E(one? + 1)
' ' Tonelli ’ uz_:lul:[l\%a:fml_l/
_ - v _ @o
= ap <;0(a1 +51) ) T A

There exists some p > 1 such that log p + E(log(ae? + 31)) < 0

n—1 a.s.

1

- E (logp +log(aie2 4+ 31)) —  logp+ E(log(aie?d + 31)) <0
v=0 SLLN

iid
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ie. j=n-v
1 n a.s.
-~ > (logp+log(aser_;+8) — logp+ E(log(ansi + 1)) <0
i1 SLLN

n a.s.
log | p" Halan J—l—ﬂl — —00

ie. pt H;:l(alsf_j + 1) “3 0,t — oo and this implies that H;Zl(alftf_j + 1) <

c,p~t so the product converges to 0 exponentially fast. Hence Y; “3 0 t — oo for
any Y; and the formula (+) makes sense. also solves (2) which can be checked by
plugging it in. It is a strongly stationary solution. The reason is that the €, are iid
and the distribution is not changed by changing their index.

Assume that 02 and 62 are two strongly stationary solutions. Then o2 — 57 statisfy

a.s. ~ . . . ~
Dg p, hence =5 0 t — oo 07 — G7are strictly stationary i.e. 07 — 67 =0 a.s.

Now assume that (*) is violated. Remark (2) shows that

k

J
o > ag 1+ZH are;_, + b1)

If E(log(ae2+ 1)) > 0 then the arguments from above show that the r.h.s. “3" cc.
A more detailed analysis with random walk theory the l.h.s. has limsup,_,(.) =
0. g

4.2.1. Two special processes.
42.1.1. ARCH(1)

. Xt = O¢Et E¢ NNOJ (].)

o=+ a1 X2, (2)

and equation (*) reads now

4 > —t2
log(a €2 :loa—i——/ logte ™2 dt
(log(aie7)) = log e oz ), e

=loga; — (¢ +1og2),

where ¢ = 0.5772... the Euler Mascharorie Constant. (%) < 0<= 0 < a1 <
2¢“Then we get strongly stationary solutiosn of (1) and (2) with E(X?2) < oo,
E(0}) < o0.

What else can we say about the distribution function of X7

h(u,a1) = E((a1e)*) = ot E(e*W),W = log £2.

h(0,a1) = 1, h is convex, h'(0,;) < 0 if a; € (0,2e%)

h(u,a1) — oo if ag > 0.

>1 a1 € (O, 1)
kla)=<=1 a;=1
<1 o €(1,2eY)
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P(Xo > z) ~ dz=2(21) 2 — oo with some d > 0. BE(X? | Fi_1) = o7.

38



