Molecular biology of partial D and weak D

Implications for Blood Bank Practice Quote source, if using these slides.

Willy A. Flegel Dept. Transfusion Medicine, University of Ulm DRK Blutspendedienst Baden-Württemberg - Hessen Ulm, Germany http://www.uni-ulm.de/~wflegel/RH/ 2002

Rhesus molecular biology

- Introduction
 - Structure of RH genes and Rh proteins
- partial D (D category)
- weak D

Rh negative and *RHD* heterozygosity
Rh pos. units in Rh neg. donor pool

Relevance of Rhesus

Protein

- Most important blood group system encoded by proteins
- Major cause of HDN
- Group of Rhesuslike proteins are major constituents of RBC membrane

Gene

- Most polymorph blood group system known
- Gene cluster: duplication and deletion
- Multiple gene conversions and mutations
- Complex model system for genotyping

RHD alleles by type of molecular variation

adapted from: The RhesusBase http://www.uni-ulm.de/~fwagner/RH/RB/

Molecular structure of *RH* gene locus

Extended molecular structure of *RH* gene locus

Human *RH* locus compared to mouse genome project data

RHCE: ancestral position **RHD** is the duplicated gene

Blood 99(2002)2272

Differences between RhD and RhCE

Clin Lab 48(2002)53

Rhesus molecular biology

Introduction

partial D (D category)

- RHD/RHCE hybrid alleles

Typically causing "D categories"
 – subset of partial D

• weak D

• Rh negative and *RHD* heterozygosity

• Rh pos. units in Rh neg. donor pool

Examples for RHD-CE-D hybrid alleles

Mechanism of gene conversion

D category VI

Frequency of aberrant RHD					
Aberrant RhD	minimal frequ	ency * anti-D			
DVII	1:900	uncommon			
DVI	1:6,800	common			
DIV	1:10,000	variable			
DV	1:30,000	variable			
DIII-like	1:30,000	uncommon			
DFR	1:60,000	uncommon			
R ₀ ^{Har} (Rh33)	< 1:60,000	uncommon			
* Means, serologic screen of > 60,000 donors					

Transfus Clin Biol 3(1996)10s

Implications for Blood Bank Practice Current D typing in Europe differs between patients and blood donors

- patients, pregnant women and newborns
 - two IgM monoclonal type that do not detect D category VI
 - no antiglobulin test
 - DVI is deliberately typed Rh negative
- donors
 - suitable polyclonal or oligoclonal reagents in indirect antiglobulin test (e.g. gel test)
 DVI, all partial D and very weak D are typed Rh positive

Blood 91(1998)2166 German (since 1996), UK & Dutch guidelines

Rhesus molecular biology

- Introduction
- partial D (D category)
 - Missense mutations
 - If exofacial, typically causing partial D other than D categories
- weak D
 - Missense mutations
 - If non-exofacial, causing weak D types
- Rh negative and *RHD* heterozygosity
- Rh pos. units in Rh neg. donor pool

Distribution of weak D types

among 272 weak D samples excluding DVI Blood 93(1999)385

Quality assurance

- D pos. proband with anti-D
- Registry since 1998
- 60 submissions confirmed
- 13 international submissions
- Several new partial D, like DNB, DOL, DAU-3
- 20 weak D samples:
 - Allo-anti-D among weak D type 4.2 (DAR) & type 15 only
 - No allo-anti-D among prevalent weak D types: they all carried auto-anti-D

http://www.uni-ulm.de/~wflegel/RH/RIR/ accessed Oct 2002

Implications for Blood Bank Practice Does knowledge of partial D and weak D status serve a clinically useful purpose?

- Carriers of most partial D and some weak D types can be anti-D immunized:
 - D typing should avoid their being transfused with Rhesus positive blood
- Carriers of most weak D types cannot be anti-D immunized:
 - transfuse with Rhesus positive blood
 - avoid common practice of wasting Rh neg. blood

Antigen densities of weak D types

Implications for Blood Bank Practice Quality control by molecularly defined weak D types

• weak D type 2

- preferred for quality assurance (sensitivity) of anti-D sera and of D typing methods
- weak D types of lower antigen density, like type 5 or type 15
 - useful for precise cut-off definition and control
- applicable to
 - D typing methods in clinical lab
 - D typing kits by manufacturers

Blood 95(2000)2706 & Transfusion 40(2000)433

Rhesus molecular biology

- Introduction
- partial D (D category)
- weak D
- Rh negative and *RHD* heterozygosity
 Rh pos. units in Rh neg. donor pool

D positive and **D** negative

RHD deletion

Blood 95(2000)2272

Detection of *RHD* **heterozygous status in fathers**

Rhesus molecular biology

- Introduction
- partial D (D category)
- weak D
- Rh negative and *RHD* heterozygosity
- Rh pos. units in Rh neg. donor pool

D+/- chimera causing anti-D immunizations

- Donor carries two RBC populations:
 – 95% Rh neg.
 - 5% Rh pos.
- total of 13 donations
 - caused anti-D in the latest 2 eligible transfusion recipients

BMC Genet 2(2001)10

Implications for Blood Bank Practice Quality control by molecular typing of serologic Rh neg. donors

- among 8,442 Rh neg. donors
 - 1 donor with D+/- chimerism
 - 4 donors with very weak positive antigen D
- If representative
 - about 1 anti-D immunization per 50,000 donations (4 per 200,000 donations in 1 year)
 - cost-efficiency of molecular typing would be proven
- Established practice since 1-1-2002

Implications for Blood Bank Practice Why RHD genotyping?

- Superior sensitivity
 - uncover (many?) weak D in the "Rhesus negative" donor pool of blood centers
- Superior specificity
 - as genotyping becomes routine, clinical implications of known and new *RHD* alleles will be recognized

DNB: a partial D with anti-D				
trequent in Central Europe				
Population	Phenotype frequency			
Swiss (Lugano)	1:292			
Swiss (Bern)	1:538			
German (Ulm)	1:1,644			
Dane (Aarhus)	< 1:798 *			

* upper limit of 95% confidence interval (Poisson distribution) most frequent partial D known so far

Blood 100(2002)2253

Routine application of PCR

DNA isolation30 minPCR set up10 min/45 minPCR (cycling)90 minGel separation30 minGel dyeing30 minEvaluation10 min3.5 - 4 h

Recommended RHD PCR

positive predictive value > 0.9999

Specificity of *RHD* genotyping: expected rates of false positives in published assays

	Positive predictive		
PCR strategy	Rate of false positives	value of positive result	Polymorphism tested (n)
Exon 10 only	1:1,276	0.999216	1
Intron 4/exon 7	1:4,081	0.999755	2
Intron 4/exon 7/RHD Ψ	1:4,700	0.999787	3
Exons 3, 4, 5, 6, 7, 9	1:6,051	0.999835	6
Exons 2, 3, 4, 5, 6, 7, 9, 10	1:6,051	0.999835	8
Intron 4/exon 7/ intron7/W16X/RHD Ψ	1:12,533	0.999920	5

Established indications for blood group genotyping

- First choice in prenatal diagnosis
 - from amniotic fluid or trophoblastic cells
 - from mother's peripheral blood
- Poly-transfused patients
 - if standard serology failed
- Auto- and allo-immunohemolytic anemia
 - if standard serology failed
- RHD genotyping in fathers
- weak D types and other aberrant RH alleles
 - for decision on anti-D prophylaxis and anti-D prophylaxis

Transfus Med 8(1998)281 & Vox Sang 78 suppl 2(2000)109

Implication for Blood Bank Practice

- Type *patients* with two monoclonal anti D that do not react with DVI
 - no antiglobulin, but sensitive methods
 - no slide tests for Rh neg.!
 - patients, including pregnant women & newborns
- Type *donors* with oligoclonal anti-D
 plus antiglobulin *and* sensitive methods
- Use weak D for quality assurance
 - molecularly defined weak D type 2

Implication for Blood Bank Practice

- Transfuse weak D with Rh positive blood
 - don't waste Rh negative blood

. . .

- Transfuse DVI with Rh negative blood
 and other partial D, if known
- Utilize RH genotyping for established applications

Current problems in Rhesus

• Molecular biology

- Frequency and types of aberrant *RH* haplotypes in various populations
- 3D structure of RhD
- Composition of Rh complex

Clinical aspects

- Immunization caused by partial D, weak D & D+/- chimera
- Immunization in recipients carrying partial D or weak D
- Rendering genotyping practical & cost-efficient in the routine lab

Universität Ulm