The industry's perspective: Lessons from previous technology changes

Future of blood grouping

1950

20??

Factors promoting technology changes

- Limited performance of existing diagnostic procedures
- Standardization
- Cost pressure
- Lack of qualified personnel
- Automation
- Regulations

Technology changes in routine blood grouping

<u>Change</u>

Monoclonal reagents

Automation in donor screening

New test formats

Automation in non-donor segment

Objective

Standardization

Cost reduction, throughput

Performance, simple procedures

Reduction of personnel, data safety

?

Utilisation of molecular biology in different diagnostic segments

Actual diagnosis is dominated by classical culture methods Successful use in special applications

Continuous replacement of serology (serology < 50%) Use of molecular biology is limited to special applications (e.g. detection of mycobacteria) where cultural methods reveal poor results.

At present a general replacement of classical procedures is not realistic due to:

- Technical limitations of molecular biology e.g.
 identification of multiple infections
 sample preparation
 identification of unknown or modified bacteria
- Guidelines favor established procedures
- Lower costs of cultural methods

Molecular biology in virology

- A wide range of different diagnostic techniques is used in routine viral diagnosis (culture, antigen detection, DNA/RNA detection, serology, histochemistry)
- Molecular assays have been established very quickly in segments where conventional procedures are not able to reveal comparable results (e.g. viral load, donor screening, strain identification)
- In segments with relevant test volumes commercial systems are available and high prices are established (patent situation)
- Minor applications are dominated by homebrewed tests

Factors promoting shift from serology to molecular typing in HLA-diagnosis

- Limited resolution in serotyping (espec. class 2)
- Lack of reproducibility due to polyclonal reagents
- Some loci are not covered by serology
- No automation available
- Demand for high throughput in registry segment
- HLA community is extremely open for innovative technical solutions

Technology changes in HLA-typing

DATA MANAGEMENT BY SOFTWARE TOOLS

15 years of experience in molecular HLA-typing (1)

Transition to molecular biology is much slower than expected
 → almost stagnant situation in selected countries and segments

15 years of experience in molecular HLA-typing (2)

- Registry segment is dominated by SSO-systems (strips, MT-plates, beads) with different automation levels
- Despite better performance and higher production costs SSO-systems are sold below price level of serology
- SSP-systems are predominantly used in small laboratories mainly in connection with sold organ transplantation
- Biochip projects initiated in molecular HLA-typing failed

General conclusions = Lessons to be learned

- Acceptance of innovative technologies may vary in different diagnostic segments
- Even with proven superior performance replacement of established procedures may be a long lasting process
- End users are in general not willing to accept higher prices for better diagnostic tests
- Fast transition to new technology is possible in segments with corresponding requirements
- Usually regulations or specific guidelines slow down technology changes
- The special demands of diagnostic segments have to be considered

Special aspects of blood grouping

- Erythrocyte as major diagnostic target
- Combination with antibody detection
- Conservative user group
- Highly regulated (IVD-D, FDA) / Guidelines
- Assay time compared to conventional procedures
- Price level of serology
- Sample preparation
- Level of automation expected by different user groups

(LISTING ISN'T COMPLETE)

Conclusions II

 Focus on special applications where classical procedures fail or show poor results

 Generate practical experience and routine data to convince the user community

- Develop a technical platform which considers specific requirements