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Abstract A method of higher-order Laue zone line position measurement in con-

vergent-beam electron diffraction (CBED) is proposed based on Hough

transformation. A thorough analysis of the errors introduced by this

measurement procedure is performed and their influence on the accuracy

of lattice parameter determination is estimated. A criterion is derived

which enables the accuracy to be predicted before experimental measure-

ments are made and, thus, allows the selection of the best CBED geometry

for parameter measurement.
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Introduction

Measurement of the higher-order Laue zone (HOLZ) line posi-

tions in convergent-beam electron diffraction (CBED) pat-

terns of a crystalline material allows precise determination of

the lattice parameters from an area of a few square nanome-

ters. Although the method is well established and a number of

measurement procedures have been suggested [1–8], estima-

tion of the accuracy of the method is still under question.

Three different approaches to estimate the measurement

accuracy have been proposed to date. The first involves multi-

ple measurements by hand on photographic prints of CBED

patterns [8], with subsequent averaging of results, the devia-

tion of results being used as an estimate of the measurement

error. This approach assumes that the principal source of the

error is the measurement itself and, thus, that the final accu-

racy is determined by the measurement procedure. The second

approach is to measure a standard crystal with known lattice

parameter and to state the difference between measured

and tabulated values to be the error of the method [1]. This

assumes that the accuracy is always the same, but this is only

valid for a particular set of experimental conditions. The third

approach utilizes the width and the value of the extremum of

the optimization functional (e.g. the correlation maximum

[1], least square functional minimum [9], etc. [8]), which is

used to describe the similarity between experimental and sim-

ulated patterns. However, the above values only characterize

the quality of the fit of experimental data to some particular

lattice parameter set, i.e. the precision of the fit rather then

the accuracy of the lattice parameter determination. The

approaches mentioned either simply state the accuracy or

determine it post factum in the process of measurement.

In this paper we introduce a method of precise HOLZ line

position measurement in CBED patterns, which combines a

modification of the Hough transform with the previously

developed ratio method [5]. A thorough treatment of the

resulting errors is given, including the influence of the signal-

to-noise ratio (SNR), so that the accuracy of measurement can

now be calculated a priori for each particular CBED pattern.

We will not discuss here the problem of global optimization in

multidimensional space (raised in [3]), as this is described in

more detail in the specialist literature. Instead, we will con-

centrate on the case of determination of a single parameter.

However, all the expressions that will be obtained can be

expanded easily to the multiparameter case.

Methods

Assuming that the CBED pattern has been recorded already at

well-defined experimental conditions and that the theory can

correctly treat all aspects of the experiment, the task of meas-

uring lattice parameters using HOLZ lines can be separated

into two subtasks: (i) measurement of HOLZ line positions on

experimental and simulated CBED patterns and (ii) then their

intercomparison. The latter subtask is not straightforward, as
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it is necessary to deal with camera length calibration and

rotational and geometrical distortions, which differ between

experiment and simulation. Common practice is to compare

experimental and simulated CBED patterns by measuring the

distances between particular HOLZ line intersections. To

exclude the need for camera length calibration and to mini-

mize the influence of geometrical distortions, the ratios

between pairs of distances rather than the distances them-

selves are commonly evaluated [5].

The Hough transformation was suggested [9] as a means to

determine line positions and, thus, to calculate distances

between intersections. The Hough transform [10] is defined

by the integral operator

Thus, each straight line in (x, y) space is projected to a point in

parametric (a, b) space. A line with excess (deficit) intensity

profile in (x, y) space produces an intensity maximum (mini-

mum) in (a, b) space. The position of the maximum (mini-

mum) can then be determined using standard methods and

its coordinates (a0, b0) are the parameters of the equation of

the corresponding line. If a Hough transformation is per-

formed on a discrete data set (digital image), the result is also

discrete and the size of a pixel, (∆a, ∆b), in Hough space deter-
mines the uncertainty (±∆a / 2, ±∆b / 2) of the parameters.

The parameterization (a, b) is not the only one that can be

used for Hough transformation. This parameterization has the

disadvantage that for lines parallel to the y-axis, b is undefined

and a is infinity; thus, a finite area of the initial data is pro-

jected onto an infinite region in Hough space. An alternative

parameter set is (α, ρ), where α is the inclination angle of the
line and ρ is the distance from the line to the origin. We used

the latter parameter set, as it is defined without any singular-

ities and a finite area of (x, y) space is projected onto a finite

area of (α, ρ) space.

Precise measurement of a line position requires a Hough

peak maximum position to be known with subpixel accuracy.

Earlier [9] it was suggested to fit the Hough peak by an arbi-

trary analytical function and to assume the maximum of the

above function to be the maximum of the peak. The accuracy

was reported to be ~0.2 pixel. However, such an approach has

a number of drawbacks.

(a) The shape of HOLZ lines (i.e. the shape of a corresponding

Hough peak) is not exactly known, which forces the use

of an empirically chosen fitting function (fourth-order

two-dimensional polynomial in [9]). This in turn will give

rise to a systematic error due to a probable wrong guess of

the peak shape.

(b) The shape of a Hough peak is strongly influenced by the

bending of the HOLZ line due to dynamical interactions

and by the asymmetric background. Masking should be

used to exclude the distorted parts from calculations;

however, the influence of the background is difficult to

eliminate.

Here, we propose achieving subpixel accuracy by subpixela-

tion in (x, y) space (i.e. by interpolation of the original data in-

between the pixels) and by performing the Hough transforma-

tion over this finer graded image. Then, the maximum of the

Hough peak can be determined simply as the (sub-)pixel with

maximum intensity. Local bending of a line only influences

the shape of the corresponding Hough peak, but not the posi-

tion of its maximum. The line position thus defined by the

maximum pixel is insensitive to line bending, because it is

defined in the sense of the most probable position of the tip of the

line profile (i.e. the most extended straight part of the line).

The procedure of line position calculation has been devel-

oped for both speed and accuracy in the following steps.

(I) Line recognition and first approximation: a small rectan-

gular area is selected so that the line of interest crosses

this area. A Hough transformation of this area is per-

formed, the maximum is detected and its position (α1, ρ1)

is used as a first approximation with uncertainty (∆α1,

∆ρ1).

(II) Interpolation of the region of interest: a rectangular

stripe is defined along the line (α1, ρ1) on the CBED

pattern, which covers the whole set of probable lines (α1

± ∆α1 / 2, ρ1 ± ∆ρ1 / 2). The dimensions of the resulting

matrix are defined in order to achieve the desired final

precision (∆α2, ∆ρ2) and the original data are interpolated

into this matrix.

(III) Final accuracy calculation: a modification of the Hough

transformation is performed on this stripe, producing an

N × M matrix, which covers the area [α1 – ∆α1 / 2 < α <
α1 + ∆α1 / 2, ρ1 – ∆ρ1 / 2 < ρ < ρ1 + ∆ρ1 / 2] in (α, ρ)
space. The maximum is detected and its position (α2, ρ2)

is the final value with an uncertainty of (∆α2 = ∆α1 / N,

∆ρ2 = ∆ρ1 / M).

Tests show that for a noise-free line having Gaussian profile

with the width of 8 pixels, length of 600 pixels and 80 grey

levels, an uncertainty (hereafter referred to as the geometrical

error (GErr)) of only ∆α = 4 × 10–6 rad, ∆ρ = 0.002 pixel can

be obtained. To the extent that the matrix dimensions (N, M)

can be set arbitrarily, practically any predefined GErr can be

achieved, limited only by computing time.

Results and discussion

Treatment of the errors

There are two different sources of errors in line position deter-

mination: the measurement procedure, which defines GErr,

and the noise, which is always present in experimental images

due, in particular, to finite electron statistics. Noise cuts the

information content of the image and, thus, defines the prin-

cipal uncertainty in the line’s position. This uncertainty will be

referred to as a statistical error (SErr).

Geometrical error

To simplify further discussion, we will use a scalar property ∆L
to describe the GErr of a line, rather than the vector (∆α, ∆ρ).

H a b,( ) f x y,( )δ y ax– b–[ ] xd
( )

yd∫∫=
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∆L is related to the positive quadrant of the rectangular area
(α ± ∆α / 2, ρ ± ∆ρ / 2), which contains all possible estimates

of line positions (see Fig. 1).

∆L = L sin(∆α / 2) + ∆ρ / 2 (1)

where L is the length of the line within the frame of the pat-

tern. This definition is an overestimation as the maximum

error can arise only at the ends of a line (edges of the pattern).

If ∆L is known, the GErr of the position of an intersection
between two lines ∆P (for simplicity assumed to be isotropic)

can be expressed as

(2)

where γ is the angle between two lines. The error ∆R of the
ratio of two distances R = d1 / d2 is then

∆R =

(3)

If all lines are measured to the same precision (i.e. all ∆Li are

equal), then eq. (3) can be simplified as

(4)

To a good approximation there is a linear dependence between

R-values and lattice parameter A (or accelerating voltage of a

transmission electron microscope)

(5)

where D (in nm–1 or kV–1) is the sensitivity of the ratio R to var-

iations in A. The corresponding expression for the error of A is

then

(6)

where

(7)

ℑ is the cumulative criterion, which includes both the geomet-

rical factors (angles and distances) and the sensitivity of the

ratio to the changes of A. It quantifies the influence of HOLZ

line arrangements on the accuracy of the A measurement. The

smaller ℑ, the less is the error of A achievable at one and the
same line position error. Thus, in the case of a noise-free CBED

pattern, ℑ can be used as a criterion to select the incidence
direction (zone axis) for the most accurate A determination.

The ℑ-criterion is not merely restricted to the ratio method,

but can also be derived for other items used for comparison:

areas, distances and angles. It is interesting to note that com-

mon practice [7,11,12] is to choose HOLZ lines crossing at an

acute angle, as the shift of the crossing point (i.e. sensitivity of

the ratio) is proportional to 1 / sin(γ). Equation (7) indicates,
however, that ℑ is also proportional to 1 / sin(γ), i.e. the posi-
tion of a HOLZ line intersection becomes less certain if the

lines cross obliquely rather than at right angles. Thus, no real

improvement in the accuracy can be achieved by choosing

acute crossings.

Fig. 1 Dimensions of the pixel in Hough space (∆α, ∆ρ) determine the uncertainty of the position ∆L of the corresponding line (eq. (1)). Uncer-

tainty of the crossover of two lines will strongly depend on the crossing angle.
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Statistical error

To investigate the effect of noise, histograms of grey levels at

the background region and along the maximum of the partic-

ular line were measured. Mean values µbgr and µline and stand-

ard deviations σbgr and σline were calculated. σbgr and σline were

always observed to be approximately equal, so it was assumed

that the noise σ was independent of the intensity. The SNR for
each particular line was then defined as

(8)

where S is a ‘signal’. In the presence of noise there is a proba-

bility that, due to statistical variations in the pattern intensity,

the Hough maximum is displaced from the ‘true’ position. The

problem can be considered as follows: for given SNR, ∆α, ∆ρ,
width and length of a line, does the probability for the ‘true’

maximum to coincide with the measured one fall into a pre-

defined confidence interval? For our purposes it will be more

practical to solve the inverse task: to determine ∆α, ∆ρ (i.e.
uncertainty of line parameters) for a predefined confidence

interval. Below we will try to make reasonable assumptions

about the form of the expression for noise-defined errors and

then will fit the parameters of this formula by measuring

simulated patterns.

Consider the pixel corresponding to the ‘true’ Hough maxi-

mum to have a signal I0 and an adjacent pixel to have a signal

I1. Then, the null hypothesis for a t-test is ∆I = I0 – I1 = 0 and

the alternative for a ‘one-tailed’ test is that ∆I > 0 (i.e. a ‘true’

pixel has a higher intensity then an adjacent one). The proba-

bility for ∆I can be written as

(9)

where σ∆I is the standard deviation of the statistical event ∆I.
An accurate treatment would need a consideration of proba-

bilities for all pixels within the region of the maximum. For

simplicity, we will merely consider the probability that the

measured maximum is displaced from the ideal position by a

single pixel in either the α or ρ direction

(10)

To determine ∆I we have to make assumptions about the

second derivative at the maximum of a peak in Hough space.

If we assume the HOLZ line to have a Gaussian profile

S · exp , then a cross section of the corresponding

Hough peak through the maximum along the ρ-axis will be
(assuming the origin to be at the peak maximum and expand-

ing to Taylor series)

I(ρ) = 

(11)

where l is the coordinate along the line, measured in pixels.

The cross section of the Hough peak through the maximum

along α-axis will then be, for small α

I(α) =

(12)

Thus, ∆I for points adjacent to the maximum is

, (13)

As the sampling intervals ∆α, ∆ρ for the Hough pattern can be
chosen independently, ∆I(∆α) can be set equal to ∆I(∆ρ),
without loss of generality, by equating two expressions in eq.

(13)

∆ρ2 = L2∆α2 / 12 (14)

Substituting eqs (13) and (14) into eq. (10), we get

(15)

The noise in Hough space σH is related to the noise in the

image space σ by

σH =  · σ (16)

due to the fact that each point in Hough space is the sum of

the image intensity along the line with the length L (in pix-

els), the factor 2 results from bilinear interpolation. Each point

in Hough space corresponds to a slightly different fit to the

line position and orientation and so consists of intersecting

sets of pattern space pixels; thus, the noise in adjacent points

of Hough space will be correlated. This fact means we cannot

simply equate σ
∆I to √2σH as can be done for uncorrelated

statistical values. The exact influence of noise correlation is

difficult to predict. For ∆ρ tending to zero and for finite line
length L, the following approximation can be made

σ
∆I ≈ kσ∆ρaLb (17)

where a, b and k are parameters. Substitution of eq. (17) into

eq. (15) results in

(18)

Applying the inverse erf function to both sides of eq. (18),

shifting all the constants to one side and using the definition

of SNR in eq. (8), we get

SNR  = const (19)
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Using the definitions of ∆L (eq. (1)) and ∆α and ∆ρ (eq. (14)),
∆L can be expressed as

∆L ≈ 0.5L∆α + 0.5∆ρ ≈ 2.2∆ρ (20)

Combining eqs (19) and (20) and making the substitutions

A = 1 / (2 – a) and B = A / (1 – b), we can finally write

for the uncertainty of the line position ∆L
Stat

 caused by the

presence of the noise

∆L
Stat

 = K · W2A · SNR–A · LB (21)

Constant K includes the statistical confidence interval and A

and B reflect the correlation of the noise in Hough space. To fit

these parameters a grid of W, SNR and L data were generated

and a set of 20 noisy images of a line was simulated for each

data point on a grid. The standard deviation of the measured

line position from the true one was used as ∆L
Stat

.

Fitting of eq. (21) to simulated data results in K = 0.66, A =

2/3 and B = –1/3 (Fig. 2 shows the best fit curves for L = 600

pixels). Substituting these values into eq. (21) gives an expres-

sion for the statistical contribution to the error, SErr, in terms

of the standard deviation (i.e. 50% confidence interval) of

measured line position from the true one

∆L
Stat

 = 0.66 · (22)

It should be noted that eq. (22) reflects not the accuracy of the

measurement method we propose, but a property of the line

itself. If the position of a line is defined as the most probable

position of its tip (which is the meaning of the Hough maxi-

mum), then ∆L
Stat

 in eq. (22) describes the uncertainty of a

line position due to the noise by definition. By no means can the

line be measured more accurately from a single image. The

accuracy can be increased either by multiple measurements on

different images (i.e. with different noise) or by assuming a line

shape and fitting the whole profile.

The effect of only a finite number of gray levels was also

studied and it was found that for the range of the conditions

described (range of SNR, line width and length) sampling of a

Fig. 2 Mean square deviations of the measured line position from the ‘true’ one plotted vs SNR (squares, circles and triangles represent different

line-widths). The curves show the best-fit lines for eq. (21) for each line width. Curves represented are for L = 600.

Fig. 3 Set of simulated CBED patterns with different amounts of applied noise. Patterns are background subtracted and inverted in contrast.

Numbers mark lines involved in the measurement. The SNR value listed above each pattern is calculated for the line 1. A–C indicate crossing

points used for the measurement.

W
4

SNR2L
-----------------3
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continuous intensity distribution to 16 grey levels and higher

does not significantly influence the accuracy of the measure-

ments.

Simulation test

To check the applicability of eq. (22), CBED patterns of [332]

zone of Si for a high-tension range (150–151 kV) were simu-

lated. Full dynamical Bloch wave calculations were performed

with the program MBFIT [13]. Atomic scattering factors were

calculated according to Doyle and Turner [14]. Lines of zeroth-

to fourth-order Laue zones with g-values of <40 nm–1 were

included and 113 beams were excited with maximum excita-

tion error of 0.015 g. The radius of the CBED disc in reciprocal

space was set to 10 nm–1 and the size of the simulated picture

to 401 × 401 pixels.

The image with U = 150.5 kV was selected for a test. Ran-

dom noise with Gaussian distribution was added to each pixel

in the simulated pattern and the standard measurement pro-

cedure (ratio method) was applied to determine U. Figure 3

shows a row of such images with different SNRs (images are

reversed in contrast and background subtracted). The lines

used for the measurements are marked with numbers 1–6.

The ratio R = |AB| / |BC| was used to determine U. A calibra-

tion curve (Fig. 4) was obtained from noise-free simulated

images. The GErr of the line positions was set to 0.025 pixels,

which yields a GErr of the ratio (R) of 0.003. The standard

deviation of measured R-values was 0.0035, which agrees well

with the preset value of GErr. Taking the latter value as the

error at a single point and using the slope of the calibration

curve, –0.392 kV–1, the accuracy of the calibration can be esti-

mated to be ±3 V.

Figure 5 shows the plot of the deviations of the measured

values U (squares) from the ‘true’ 150.5 kV vs SNR. The devia-

tions were averaged over 20 images for each SNR value and

each of the images for a given SNR had a different simulated

noise pattern. The SNR values indicated in Fig. 5 are the

values for line 1. To check the validity of eq. (22) it was

modified to

∆L
Stat

 = ∆L
Sens

(23)

where ∆L
Sens

 includes only the parameters of the line and

reflects the sensitivity of position of the particular line to the

noise. Substituting ∆L
Stat

 for each line to eq. (3), we get for

SErr of the high-tension determination

Fig. 4 Calibration curve measured with the use of noise-free simu-

lated CBED patterns.

Fig. 5 Errors of high-tension measurement on simulated CBED

patterns with different SNR (squares). The line presents the error

prediction on the basis of eq. (24).

Fig. 6 Experimental CBED patterns of [332] zone of Si obtained with different exposure times at the nominal 150 kV. The SNR indicated is for

the line 1, as in Fig. 3. A 1 K × 1 K CCD camera (Gatan) was used to acquire the patterns.
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∆U
Stat

 = ∆A
Stat

 = ∆R
Sens

 = ℜ (24)

Here, ℜ includes the geometry of the line arrangement as well

as line intensities and widths, and reflects the robustness of

particular HOLZ line arrangement to the noise. For each line

(lines 1–6, Fig. 3) its intensity, width and length were meas-

ured and ℜ was calculated for the ratio |AB| / |BC|. The

resulting curve for the calculated SErr of U measurement (eq.

(24)) is plotted as Fig. 5. It is seen that the measured standard

deviation of U is in good agreement with ∆U
Stat

 predicted by eq.

(24) for a reasonable range of SNR. For SNR less than unity,

SErr is strongly underestimated due to simplifications of the

statistical model. However, the absolute values of the errors for

this SNR range are too high to consider such noisy images to

be of practical value.

Experimental example

Experimental CBED patterns of [332] zone of Si were recorded

with JEM-3010 (LaB
6
) at nominal high-tension of 150 kV at

room temperature. Variation of the exposure time from 1 to

16 s allowed the creation of patterns with different SNRs. A

row of such images (contrast inverted and background sub-

tracted) is presented in Fig. 6; the SNR for line 1 (compare

with Fig. 3) is indicated. As for the case of the simulated CBED

patterns, the ratio R = |AB| / |BC| was measured and the

high tension was determined by using the calibration curve

shown in Fig. 4. Table 1 gives the summary of the measured

and calculated quantities for each pattern. Figure 7 represents

the measured accelerating voltage with the corresponding

calculated (eq. (24)) SErrs for each pattern. As can be seen, all

measurements have overlapping error intervals. The weighted

mean of the measurements was calculated to be 150.772 kV.

This value falls within the error intervals of all the measure-

ments. The estimated error of weighted mean is as low as 14 V.

Concluding remarks

We have analyzed thoroughly the accuracy limitations of the

lattice parameter determination by CBED, which are related to

the procedure of HOLZ line position measurement. A method

of line position measurement based on Hough transformation

was introduced, which permits the measurement errors to

be reduced to arbitrarily small values. However, it has been

shown that the presence of the noise on experimental images

sets the principal limit for the accuracy. A formula for the

noise-limited uncertainty of a line position has been derived.

Furthermore, this approach has been extended for the full

set of HOLZ lines, used for lattice parameter determination,

resulting in a cumulative ℜ-criterion. This criterion reflects

the robustness of a particular HOLZ line geometry to the noise

in the sense of the final measurement accuracy. It can be used

σ
2

3
----

D
------- σ

2

3
-----

Fig. 7 Measured accelerating voltage for different patterns (Fig. 6) with corresponding calculated statistical errors. The dashed line represents

the weighted mean of all five measurements and the corresponding error.

...............................................................................................................................................................................................................................................................................

Table 1. Measured and calculated quantities for each pattern

Exposure time [s] Signal (line 1) [a.u.] Noise [a.u.] SNR (line 1) ∆L
Stat 

(line 1) [pixel] Calculated ∆U [kV] Determined U [kV]

..........................................

1
.............................................

40.4
.............................

27.0
..............................

1.5
.............................................

0.37
............................................

0.064
......................................

150.826

..........................................

2
.............................................

81.9
.............................

40.7
..............................

2.0
.............................................

0.34
............................................

0.059
......................................

150.832

..........................................

4
.............................................

155.8
.............................

55.0
..............................

2.8
.............................................

0.27
............................................

0.045
......................................

150.756

..........................................

8
.............................................

314.4
.............................

85.8
..............................

3.7
.............................................

0.22
............................................

0.038
......................................

150.766

16 647.7 138.1 4.7 0.18 0.030 150.757
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for a priori estimation of the best accuracy obtainable for each

particular CBED pattern as well as for the selection of the best

experimental parameters (incidence direction, HOLZ lines

involved).

The approach has been evaluated with the use of simulated

and experimental CBED patterns, demonstrating a good esti-

mation for the error of the measured value in the range of

experimentally reasonable SNRs. It was shown that even for

the case of a CBED pattern recorded with a LaB
6
 cathode, at

room temperature and without energy filtering, the relative

precision of 2 × 10–4 can be obtained from a single measure-

ment. The use of a cooling stage as well as an energy filter to

remove inelastic background should result in much better

accuracy. However, in these cases other limiting factors than

the noise may occur, which then should be considered as well.

The a priori knowledge of the measurement error permits an

increase in the precision by a factor of about √N, by averaging
a number of N-values obtained with different ratios from one

and the same CBED pattern, if (and only if) all these values

are within the measurement error. If not, then it must be con-

cluded that the model of strain used in the simulations is not

correct.
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