Accessing the local three-dimensional structure of carbon materials sensitive to an electron beam

J. Leschner*, J. Biskupek, A. Chuvilin1, U. Kaiser

Central Facility of Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany

ARTICLE INFO

Article history:
Received 11 April 2010
Accepted 6 July 2010
Available online 11 August 2010

ABSTRACT

The local three-dimensional (3D) structure of a broad variety of carbon materials cannot be accessed by electron tomography in the sub-nanometre range because the materials are beam-sensitive. We have modified existing tomographic approaches in bright-field transmission electron microscopy with respect to minimization of electron beam damage and optimized alignment. In the case of Vulcan XC72 carbon soot containing catalytically active platinum nanoparticles we demonstrate the applicability of our approach to study the internal arrangement of graphic layers in 3D characterized by interplanar spacing, length and tortuosity. This approach will allow access to the 3D structure of other graphite-like carbon nanomaterials with sub-nanometre resolution.

1. Introduction

Electron tomography in the transmission electron microscope (TEM) is the method of choice to reveal three-dimensional information in the nanometre regime in biology and materials science [1]. It is frequently used to clarify or provide new information on the structure of materials in three dimensions not accessible from two-dimensional observations. In addition a growing demand persists to obtain atomic resolution in all three dimensions, however, only a resolution of 1 nm³ is achievable in electron tomography on a routine basis nowadays [2]. Atomic resolution tomography has been shown feasible on pure crystalline gold-nanoparticles incorporating a priori knowledge of regularly arranged atoms on the crystal grid [3]; however, this approach is not directly applicable to more complex sample morphologies like layered structures. Moreover, research in catalysis requires studies about the interaction of catalytically active nanoparticles with their support; e.g. carbon soot, due to its outstanding physico-chemical nature preventing nanoparticles from agglomerating within operation cycles in fuel-cell applications [4,5].

The nature of the carbon allotropes diamond, graphite, nanotubes and fullerenes has been investigated by high-resolution (HR) TEM 2D imaging during the last decades (cf. reviews of Terrones and Terrones [6] and Harris [7]) and recently by aberration corrected HRTEM imaging with sub-Ångström resolution (cf. for example [8–10]). Whereas graphite shows a layer spacing of 0.34 nm along the c-axis <0 0 2>, carbon soot consists of a much more irregular structure with different tortuosity and layer spacing [11,12]. Nanoparticles within carbon soot were already assessed with high angle annular dark-field (HAADF)–scanning (S)TEM tomography with respect to their shape, volume and distribution [13], but the internal three-dimensional structure of the support itself remained undiscovered so far. Its observation is hampered by its sensitivity to radiation damage caused by knock-on displacement, heating and/or chemical etching effects [14,15]. The knock-on displacement threshold for carbon lies between 27 and 95 kV [16], depending on the actual carbon configuration. To reveal the internal three-dimensional structure of e.g. carbon soot in its pristine stage, it is necessary, firstly, to operate the TEM below or near the corresponding knock-on damage...
threshold, secondly, to work with an optimized electron dose to reduce all radiation damage processes as much as possible [17–19], and thirdly, to choose an operation mode allowing high-resolution imaging of the carbon soot while fulfilling the requirements for electron tomography.

Electron tomography itself requires, first, an acquisition method which provides a monotonic contrast mechanism relating signal intensity to sample thickness and elemental scattering cross-section (projection requirement) [20]; second, a high enough gain in signal-to-noise ratio with respect to the applied dose, and third, an alignment and reconstruction algorithm providing as much information from the only partly sampled 3D object inducing as less artefacts as possible.

In materials science electron tomography, HAADF–STEM is commonly used with its Z-contrast imaging capability for crystalline samples ensuring the projection requirement [21]. Atomic resolution in two-dimensional STEM imaging has been achieved by the decrease of probe size and the increase of beam current by aberration correction and enhanced electron sources, respectively; this ensures good signal-to-noise ratio [22], however, at the cost of strongly increased electron dose. Recently Buban et al. [23] have reported a roadmap to achieve two-dimensional, low-dose STEM imaging with similar conditions as TEM, but due to signal-to-noise limitation so far only for low-angle annular dark-field which shows less Z-contrast than necessary for sharp platinum on carbon [13]. On the contrary, ensuring the projection requirement, phase contrast imaging in TEM relates intensity linearly to the crystal potential for weak scattering materials and thin objects only [24,25]. Moreover, zero-loss energy filtered (EF)TEM extends the region of weak-phase approximation while improving contrast by removing inelastically scattered electrons. This results in good signal-to-noise conditions, which are preserved even for low-dose conditions [26]. Atomic resolution on electron beam-sensitive inorganic and organic test specimens has been shown recently by Evans et al. [27] with aberration corrected microscopes in phase contrast HRTEM imaging in combination with a low-dose approach. It can be concluded that zero-loss filtered aberration corrected HRTEM imaging combined with a low-dose protocol shall be promising for high-resolution electron tomography on beam-sensitive materials.

Low-dose protocols were originally established in the field of biological TEM tomography; here data collection for search, track, focus or exposure takes place at relatively low magnification (\(<30,000\)) and lower resolution with different settings for beam illumination, magnification and exposure time of the camera [28]. This ensures a cumulative dose of less than approximately \(2 \times 10^3 \text{ e}^-/\text{nm}^2\) for the entire tilt-series in biological electron tomography achieving a resolution of about 2 nm [29].

Generally, in order to obtain 3D tomographic data, the sample is imaged in 2D projection at various tilt angles. Imperfections in the acquired tilt series due to limited tilt angles, performance of the stage and projection system need to be corrected [30]. Back-projecting the tilt series into 3D space by Fourier-based or algebraic-based reconstruction techniques like ART are used to generate the desired 3D object [31].

Within this work methods from materials science and biological electron tomography are combined and extended to study the 3D nature of carbonaceous materials. In order to account for carbon knock-on damage and minimizing the overall beam damage, the accelerating voltage of the aberration corrected TEM was set to the commonly available option of 80 kV. We choose aberration-corrected zero-loss energy filtered HRTEM as imaging mode for data acquisition and establish corresponding low-dose imaging protocols. We intend to increase the resolution in the tomogram by refining existing alignment procedures as well as determining optimum reconstruction parameters.

Thus, we aim for revealing individual carbon layers in the interior of 3D carbon soot particles as well as layer configurations nearby catalytically active platinum nanoparticles on commercial Vulcan XC72. Our approach, moreover, should be applicable to other beam-sensitive carbon allotropes and may allow to reveal and quantify their internal three-dimensional structure.

2. Experimental

2.1. Material

For this study we used commercially available Vulcan XC72 with 20 wt.% Pt (ETeK, Inc.) containing platinum nanoparticles (atomic number \(Z = 78\)) supported on carbon soot. The powder was dispersed in ethanol by ultrasonic treatment and deposited on a lacy carbon film (Plano GmbH, Wetzlar, Germany).

2.2. Acquisition

The tomography tilt-series was obtained using a Titan 80–300 TEM (FEI, Netherlands) equipped with imaging Cs-corrector (CETCOR, CEOS GmbH, Germany) and post column energy filter (GIF, Tridiem 863, Gatan, US). The instrument was operated at 80 kV accelerating voltage. Special illumination conditions were used in order to optimize the damping envelope function of the microscope and to increase the information limit <0.12 nm [32]. Spherical aberration coefficient \(C_s\) was set to approximately \(+20 \mu\text{m}\). Approximately \(-10 \text{ nm}\) defocus were applied to obtain classical Scherzer conditions with dark atom contrast.

Images for rough tracking were acquired by pre-GIF CCD camera (1 k \(\times\) 1 K 14 bit, type MSC794, Gatan, US) at magnification of \(\times 48\) K. Zero-loss filtered images (10 eV slit width) for tomographic series were acquired by post-filter CCD camera (2 K \(\times\) 2 K 16 bit, type US1000, Gatan, US) without changing magnification. Assuming approximately \(\times 15\) post-magnification of the imaging filter, the effective magnification on the second CCD was around \(\times 720\) K, which corresponds to a field of view of \(37 \times 37 \text{ nm}^2\) for the investigated object (images were binned by 2 resulting in a sampling rate of 0.036 nm/px while resolving carbon and platinum reflexes up to 0.22 nm at \(-0.33 \times \text{Nyquist to omit aliasing}\ [33]). A single-tilt 2020 Advanced Tomography Holder (Fischione, US) was used.

In order to minimize the deposited dose, a number of precautions were taken: First, tracking, stigmation, focusing and acquisition were performed at different C2 condenser...
excitation (two-condenser lense mode in free control) ensuring the minimum required intensity. Second, a pre-specimen beam blanker was used in order to ensure specimen illumination only during camera exposition. Third, different cameras were used for tracking and acquisition, thus, eliminating the necessity for magnification change and additional tuning related to it. To automate this procedure and monitor the deposited dose at each intermediate step, a semi-automatic, user friendly utility was implemented based on the software interface TEMScripting (FEI, Netherlands).

2.3. Alignment

Following the standard procedure, first, cross-correlation alignment is applied for rough stacking of succeeding tilt images, and second, feature tracking for fine tuning, both carried out in the IMOD-package [34]. Due to partly occurring diffraction contrast, the images are pre-processed by a low-pass filter to enhance recognition of the nanoparticles, which have been used as fiducials for tracking. Thus, it is accounted for x, y-shifts, distortions, magnification changes, tilt-angles and an imprecise tilt-axis.

In order to overcome the necessity of fiducial tracking for fine alignment, an iterative self-consistent alignment strategy was established, which is based on weighted back-projection reconstruction and cross-correlation, resulting in x- and y-shifts (cf. Fig. 1). Final x-shifts account for tilt-axis inaccuracy in the x and z direction as well as arbitrary movements of the sample in x direction. Final y-shifts account only for the arbitrary movements during acquisition in y-direction. Both values are measured by cross-correlation with sub-pixel accuracy. A rotation of the tilt-axis in the x-y-plane is accounted for by manual adjustment by the method of “arcs of intensity” as described in [35] and for example available in Inspect3D (FEI, Netherlands).

2.4. Reconstruction and quantification

The algebraic reconstruction technique (ART) available from the open-source tomography package XMIPP [36] is used for reconstruction of the aligned series. The POCS (projection onto convex sets) approach for positivity constraint with n iterations and relaxation factor λ are chosen after optimization for best contrast of the reconstruction. For this purpose, a selected region of the tilt-series was reconstructed on a cluster computer system by different (n, λ) sets and the contrast was measured from linescans across reconstructed carbon layers. The tilt series was pre-processed before reconstruction by background subtraction and afterwards inverted to relate the signal to high and the background to low intensity values. Fourier-ring-correlation (FRC) [37] and spectral-signal-to-noise-ratio (SSNR) [38], which are both available in XMIPP, are used to assess alignment improvements in the resulting 3D reconstruction. The reconstructed carbon layers were binarized within Avizo (TSG, Inc.) and measured with respect to layer distance, length and tortuosity (calculated by the Distance Metric as a ratio of layer path length and endpoint distance) by self-written code in MATLAB (Mathworks, Inc.).

3. Results and discussion

Although carbonaceous materials are beam-sensitive in general, the dose appropriate for an entire tilt series of at least 40 images depends on the actual configuration. While graphene would permit HRTEM exposures with a cumulative dose of $\sim 10^6$ e$^-$/nm2, complex structures like soot require two orders of magnitudes more stringent conditions. As illustrated in Fig. 2, carbon layers move half of their graphitic interplanar distance already at approximately 3.1×10^7 e$^-$/nm2, which defines the dose limit for a tomographic tilt-series acquisition with 0.34 nm resolution. At approximately twice the cumulative dose the platinum nanoparticles change their position obviously by one third of their diameter, likewise defining the limit for a successful reconstruction for low-resolution nanoparticle investigation. Whereas individual carbon layer distances resist electron beam interactions, it is the weakest configuration within a soot particle which defines the success of the tilt-series acquisition (cf. Fig. 2, and “Supplementary Data”). Thus, the deposited dose has to be optimized and carefully distributed among the tilt-series by a low-dose protocol. Different doserates are predefined with respect to

2 (http://www.bw-grid.de), Member of the German D-Grid initiative, funded by the Ministry of Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry of Science, Research and the Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg).
corresponding requisites for tracking (slight visibility of the field of view), stigmation (considerable SNR for the first Thon-ring in the FFT), focussing (slight visibility of carbon layers) and acquisition (resolution for the object) together with a beam blanker usage. This approach allows to acquire a tilt series of ±57° with a 3° tilt increment (46 images) for which the graphitic layers within the soot particle preserved their pristine configuration (cf. Fig. 3). In addition, it is possible to achieve a minimum dose of 1.7×10^7 e⁻/nm² for acquisition and 1.3×10^7 e⁻/nm² for tracking, stigmation, and focussing. Thus, the overall dose consumption enables to estimate the success of tilt-series acquisition on other structures in the future.

Standard alignment with platinum nanoparticles as fiducials resulted in remaining shifts observable in the series due to non-spherical, and moreover, overlapping particles, preventing high alignment accuracy. Thus, in order to achieve higher resolution in the alignment-prone x-z direction resulting in better distinguishable carbon layers, an iterative self-consistent alignment procedure was applied (cf. Fig. 3). The tilt-axis rotation in the x-y plane is adjusted manually by the help of nanoparticles up to an accuracy of ±0.5°. Deviations in experimental from true tilt-angles are not accounted for so far. Independent of the chosen alignment procedure, missing-wedge artefacts remain due to limited tilt-range and results in streaks at the top and bottom. Despite these limitations, the alignment could be improved by the iterative-self-consistent approach enhancing the FRC by a relative difference of 138% and the SSNR by 35% at the corresponding space frequency of 2.9 nm⁻¹ (0.34 nm real space distance). Tilt dependent rotation and stretching of individual tilt images needs not to be accounted for as a small underfocus is required for aberration-corrected microscopy, which does not rotate the field of view, as well as our imposed dose limit for carbon layer resolution precludes sample shrinkage.

The aligned tilt-series was reconstructed by ART after the reconstruction parameters were optimized with respect to good convergence and contrast of carbon layers (set to $n = 40$ and $\varphi = 0.1$).

With this alignment procedure and optimized parameters we can clearly distinguish individual carbon layers of the carbon soot within the reconstruction, and thus, a resolution of at least 0.34 nm (typical graphite interplanar distance) has been achieved regularly (cf. Fig. 4). For the carbon layers the
projection requirement is fulfilled [39], whereas, crystalline platinum nanoparticles are affected by Bragg diffraction. The latter leads in some directions to an overlay in intensity with less contrast, though high enough to characterize surrounding carbon layers (cf. Fig. 4 at the lower left corner).

With this approach it is possible to study the carbon layer configuration around the catalytically active platinum particles and within the whole carbon soot. We found that the carbon layers are tightly surrounding the platinum nanoparticles either irregularly (cf. Fig. 5) or regularly (cf. Fig. 6a and b). The latter images depict that already several layers apart from the nanoparticles disordered layers are contributing to the overall soot structure. Carbon layers show a mean layer distance of (0.35 ± 0.06) nm, a mean layer length of (4.6 ± 2.7) nm, and a mean tortuosity of 1.20 ± 0.22 throughout the soot (values correspond to a measurement of 3400 carbon layers). Due to the accessible 3D information, these values can be correlated with the 3D position within the soot. A larger layer length (data not shown) and main contribution of low tortuosity near the surface (cf. Fig. 6d) indicates that the soot particle is hold together by long and straight carbon layers. Thus, it can be concluded that higher tortuosity is both related to areas like the soot tip where layers show a tortuosity of 1.2–1.4 as well as to parts more in the interior of the soot (cf. Fig. 6c), where for example two long-ranging regions merge while entangling a region with highly disordered carbon layers.

With this exemplified protocol, containing a low-dose protocol for high-resolution imaging and an iterative self-consistent alignment procedure, it is now possible to study structure related problems of electron beam-sensitive graphite-like carbon nanomaterials now in three dimensions.
4. Conclusion

A new protocol was established to access those carbon materials by electron tomography which are limited in resolution by the tolerable electron dose. Therefore, low-dose protocols with 80 kV spherical aberration-corrected HRTEM were combined with an iterative self-consistent alignment procedure to ensure accuracy requirements for sub-nanometre resolution in 3D. Different carbon layer configurations in carbon soot were revealed at a resolution of $0.34 \, \text{nm}$ in 3D with a minimum electron dose of $3.0 \times 10^{6} \, \text{e}/\text{nm}^{2}$ applied to the sample. Furthermore, carbon layer distance, length and tortuosity can now be quantified in 3D and correlated with the three-dimensional position within the soot. The presented method allows further insights into the formation process of carbon soot and into the influence of the carbon support to the catalytic activity of nanoparticles. Moreover, this minimum dose high-resolution electron tomography protocol should be applicable to study the structure of other carbonaceous material configurations in 3D. Future work will be addressed to develop strategies to further reduce the influence of beam damage which then may allow even higher resolution of the three-dimensional structure of beam-sensitive carbon materials.

Acknowledgment

We acknowledge financial support by the German Research Foundation DFG within the projects KA1295/7-1.2 and KA1295/10-1 “SALVE – Sub-Ångström Low Voltage Electron microscopy” and of the Ministry of Science, Research and the Arts (MWK) of Baden-Württemberg within SALVE. We gratefully thank the bwGRID project for the computational resources.

Appendix A. Supplementary data

References

[24] Bar Sadan M, Houben L, Wolf SG, Enyashin A, Seifert G, Tenne R, et al. Toward atomic-scale bright-field electron tomography and of the Ministry of Science, Research and the Arts (MWK) of Baden-Württemberg within SALVE. We gratefully thank the bwGRID project for the computational resources.

