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Aging is organized in a hierarchy, in which aging of cells results

in aged tissues, ultimately limiting lifespan. For organ systems

that also in the adult depend on stem cells for tissue

homeostasis like the hematopoietic system that forms immune

cells, it is believed that aging of the stem cells strongly

contributes to aging-associated dysfunction. In this review, we

summarize current aspects on cellular and molecular

mechanisms that are associated with aging of hematopoietic

stem cells, the role of the stem cell niche for stem cell aging as

well as novel and encouraging experimental approaches to

attenuate aging of hematopoietic stem cells to target

immunosenescence.
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Introduction
A number of theories have been proposed regarding the

cellular and molecular mechanisms regulating aging, and

genetic, behavioral and environmental factors may all be

involved [1]. Many organs with high cell turnover (e.g.,

skin, intestine and blood) are composed of short-lived

cells that require continuous replenishment by somatic

stem cells [2–6]. Aging results in the inability of these

tissues to maintain homeostasis. Stem cells were initially

thought to be endowed with unlimited self-renewal

capacity, and thus exempt from aging. However, there

is measurable and successive age-dependent decline in
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stem cell activity from adulthood to old age in various

organs, including intestine and muscle and the blood

forming system. This age-associated decline in stem cell

function leads to a decline in the regenerative capacity in

humans and mice [7–13], which may limit lifespan

[7,8,14–16]. Identifying the underlying mechanisms of

stem cell aging may be a first step towards designing

treatments for aging-associated diseases of such stem-cell

based tissues.

Hallmarks of hematopoietic stem cell aging — Both the

innate and the adaptive part of the immune system are

reduced in function upon aging. This implies as a possible

underlying basic mechanism in this type of immunose-

nescence the dysfunction of a more primitive hemato-

poietic cell that contributes to both lineages, which is the

hematopoietic stem cell (HSC), Figure 1.

HSCs from young and aged mice differ in their function

with respect to their self-renewal and differentiation

ability. HSC aging is driven by both intrinsic and extrinsic

factors [8,17–21]. Referring to cell intrinsic components,

we describe young HSCs and aged HSCs when speaking

of HSCs from young and aged animals [22]. There are

multiple aging-associated phenotypes of HSCs reported.

In their sum though, and not individually, they separate

young from aged HSCs. Here we shortly introduce this

‘canonical’ set of parameters for aging of at least murine

HSCs that might serve as a general reference list.

Altered HSC self-renewal and heterogeneity
In general, aging of HSCs is associated with reduction in

function. Aged HSCs show reduced self-renewal activity

determined in serial transplant assays [23]. When aged

HSCs are transplanted together with young HSCs into

lethally irradiated young recipients, aged HSCs are on

average 2-fold less efficient in contributing to hematopoi-

esis compared to young HSCs [24,25] and exhibit a 2-fold

reduced ability to home to the bone marrow (BM) [26].

There is functional heterogeneity among primitive HSCs:

some display a preferential production of myeloid off-

spring (and can therefore be regarded as myeloid-biased),

some other show preferential production of lymphoid

cells (and are referred to as lymphoid-biased), while

usually HSCs with a more balanced output dominate

[27–30]. An explanation for lineage skewing upon aging

is therefore that the composition of the pool of HSCs

changes. Such a view is supported by data that show that

myeloid-biased HSCs increase at the expense of lym-

phoid-bias or balanced clones upon aging [31–34]. Clonal
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Figure 1
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Aging of HSCs has both, intrinsic elements as well is influenced by changes in stem cell niche (cell composition and cellular function). As listed in Table

1, HSCs show heterogeneity with respect to their differentiation potential (light purple: myeloid (myelo-erythroid, megakaryocytic, m) biased stem cells,

dark purple lymphoid biased (l) stem cells) and it is assumed that the myeloid-biased subgroup expands upon aging, because of both stem cell

intrinsic mechanisms and extrinsic (niche) mechanism. In addition, stem cells show altered differentiation upon aging, and limited self-renewal (curved

arrow), which results in reduced repopulation potential. Upon aging, stem cells are located more distant from the endosteal stroma cells (straight

arrow), and show more dynamic protrusions (glow), while endosteal stroma cells like osteoblasts (Ob), osteoclasts/monocytes (Oc/M), endothelial cells

(E) as well as mesenchymal type of stem cells (M) that are known to be involved in forming a niche are believed to alter function upon aging (glow),

contributing to impaired hematopoiesis and immune cell formation upon aging.
analyses on sorted young and aged HSCs though revealed

that these myeloid-biased HSCs from aged BM also

possess a reduced proliferative response and additional

functional aging deficiencies, implying that all HSCs

subtypes present with reduced function upon aging

[35]. It has also recently reported that the frequency of

adult CD41+ HSCs increased with age. CD41+ HSCs are

largely quiescent and exhibit myeloerythroid and mega-

karyocyte gene priming, governed by Gata1, whereas

CD41-HSCs were more proliferative and exhibited lym-

phoid gene priming, adding another aging heterogeneity

marker to the HSC field [36�].
Table 1

Hallmarks of HSC aging

Hallmarks of HSC aging Mouse 

Number/frequency Increased [18,41��,71] 

Self-renewal Reduced [74] 

Heterogeneity Altered [34,35,37], increase in CD41+ ce

and megakaryocytic primed [36�]) clonali

Differentiation Myeloid-biased [29,30,37] 

Localization More distant from endosteum [40,41��] 

Homing Reduced [26] 

Mobilization efficiency Enhanced [38] 

Stem cell polarity Apolar [41��,70��] 

Stem cell niche RANTES elevated [46�]

Alters clonality in HSCs upon aging [44�,
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Altered HSCs differentiation
Aging also affects the differentiation potential of HSCs,

which is probably the most relevant phenotype with respect

to reduced immunological functions caused by changes in

the hematopoietic hierarchy upon aging. Studies have

demonstrated that aged HSCs are deficient in their ability

to support erythropoiesis, and that aged HSCs do not

efficiently generate B-lymphoid as well as T-lymphoid

progeny but are better in supporting the myeloid cell lineage

(see Ref. [4] and references cited), which has been linked to

the skewing in HSC heterogeneity upon aging, but which is

also seen on an individual stem cell level [35,37].
Human

Increased [72,73]

?

ll number (myeloerythroid

ty increased [75�]

Altered [72]

Increased myeloid contribution [73],

decreased myeloid contribution [72]

?

?

Normal or lower [76–78]

?

45]

?
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Altered HSC localization
Stem cells are supported by stroma cells and additional

endogenous factors, which form the so-called stem cell

niche. Aged HSCs occupy positions within BM that are

distinct from position of young HSCs, and it is thus

implied that they use niches that are distinct from niches

young stem cells have access to. Our own data also show

that aged HSCs are less efficient in their ability to adhere

to stroma cells and exhibit significantly elevated cell

protrusion activity in vivo, reducing the time for effective

interactions with the microenvironment [38–40].

Altered stem cell polarity and other regulatory
pathways
We recently demonstrated that the majority of aged HSC

are apolar for cell polarity markers usually associated with

planar cell polarity (like Scribble, Cdc42 and Dlg), while

young HSCs, in their majority, show polarity for these

markers [41��]. Polarity is usually associated with div-

isional asymmetry, while apolarity might be linked to

divisional symmetry. Whether such mechanism then

contributes to aging in hematopoiesis or aging-related

disease in hematopoiesis like leukemia needs to be

investigated in more detail. Aged HSCs exhibit distinct

whole genome expression signatures [18,42] and more

importantly, specific pathways that are altered upon aging

can be identified, based on gene ontology terminology.

We could very recently show, based initially on whole

genome expression data, that aging HSC shifts from

canonical to non-canonical Wnt-signaling, which is

accompanied by an activation of distinct Notch signaling

and calcium signaling pathways. It has been reported that

aged HSC presents with increased double-strand breaks

as detected by increased levels of gammaH2AX staining,

a surrogate marker for DNA double strand breaks [43].

Thus, a canonical set of features phenotypically separate

young from aged HSCs.

Mechanisms of HSC aging: stroma
While the list of phenotypes associated with aged HSCs is

long but diverse, the underlying molecular mechanisms

of stem cell aging have been more difficult to elucidate.

Stem cell aging is driven not only by stem cell intrinsic

factors, but also by the aging niche. For example, trans-

plantation of young HSCs into an aged niche elicits in

these young HSCs as least some of the phenotypes

associated with aged HSCs, like myeloid skewing

[44�,45,46�], which has been attributed molecularly to

elevated expression of the factor RANTES in stroma cells

in aged mice. As especially myeloid-driven leukemia

increase exponentially with aging, there has also been

strong interest in the community on whether aged stroma/

niche can contribute to leukemia initiation or progression.

More recent research clearly demonstrates [47��] that

signals from the niche can actually initiate leukemia

development, while research from us and others demon-

strated that aged niches support the development of
Current Opinion in Immunology 2014, 29:86–92 
clonality among pre-leukemic clones (a pre-requisite

for leukemia development). Together, these more recent

data imply a strong role for the niche also in blood-disease

development with age.

Intrinsic mechanisms of stem cell aging:
SIRTs, WNTs, Notch and RhoGTPases
Current data though still support a primarily intrinsic

mechanism of stem cell aging, aka the molecular mech-

anisms that aged stem cells are initiated in stem cells

themselves and act more independently from the niche.

While it has been initially difficult to identify the under-

lying mechanisms based on whole genome expression

data, novel rational approaches, moving from aging-

associated phenotypes to likely mechanistic regulators

have revealed novel and exciting knowledge on under-

lying pathways that result in aging of HSCs.

A recent publication for example revealed that SIRT3, a

mammalian sirtuin that regulates the global acetylation

landscape of mitochondrial proteins and reduces oxi-

dative stress, is highly enriched in hematopoietic stem

cells (HSCs) was essential under stress or at old age, but

dispensible when young [48��]. Most interestingly

though, the authors showed that SIRT3 is suppressed

with aging, while SIRT3 upregulation in aged HSCs

improved regenerative (aka serial transplantation)

capacity. While the role of sirtuins in aging has been

controversially discussed, these data strongly support an

important role for an acetylation regulator in the process

of stem cell aging.

We recently established that the activity of the small

RhoGTPase Cdc42, which cycles between an inactive,

GDP bound form and an active, GTP bound forms and

which functions as a molecular switch to regulate HSC

polarity, differentiation and engraftment, is increased in

bone marrow and other tissues upon aging. This elevated

Cdc42 activity was causally linked to HSC aging [41��].

Many Wnt family proteins are expressed in hematopoietic

tissues, both in stroma and in hematopoietic cells [49].

However, it remains unclear whether they function as

growth or differentiation factors for HSCs. Actions of the

canonical Wnt ligands are frequently opposed by non-

canonical Wnts, resulting in a daunting complexity of

interactions. In particular, one non-canonical signal can

influence actin-dependent cytoskeletal reorganization

and regulate cell polarity [50–52]. Canonical Wnt3a and

non-canonical Wnt5a have been the most studied Wnt

ligands in the hematopoietic context. Recently it was also

shown that Wnt5a maintains long-term HSC function in

the bone marrow niche, and Wnt5a signaling can affect

planar cell polarity [52]. Interestingly, the elevated

activity of Cdc42 in aged HSCs is a consequence of

increased stem cell intrinsic expression of Wnt5a,

resulting in a stem cell intrinsic shift from canonical to
www.sciencedirect.com
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non-canonical Wnt signaling as HSCs age. This aging-

associated elevation of Wnt5a and Cdc42 activity in HSCs

results in a loss of HSC polarity, including the acetylated

form of histone 4 on lysine 16 within the nucleus, reduced

engraftment, and the aging-associated differentiation

skewing. In this context it is also interesting that a loss

of Sirt1 in HSCs results in reduced H4K16 acetylation

and transient expansion with the ultimate fate of stem cell

failure [53�].

Both pharmacological inhibition of elevated Cdc42

activity and genetic inhibition of Wnt5a expression in

chronologically aged HSCs rejuvenated HSC function,

thus implying an important role to the Wnt5-Cdc42 path-

way for aging as well as rejuvenation of aged HSCs.

Interestingly, this shift in stem cell intrinsic Wnt-sig-

naling in HSCs upon aging directly resulted in changes

in Notch as well as calcium signaling upon aging of HSCs,

but these changes could also be induced by exogenous

Wnt5a, supporting again both intrinsic and extrinsic regu-

lation of stem cell aging. Notch signaling in HSC aging

was already implied by analyzing gene expression profiles

of HSCs from patients with Down syndrome (DS) [54], as

DS is associated with many of the signs of premature

aging including T-cell deficiency, increased incidence of

early Alzheimer-type and myelodysplastic-type diseases

and leukemia. Notch-signaling of course plays a very

crucial role in almost all aspects of immunity [55], so it

is likely that the changes in Notch-signaling in aged

HSCs influence immunosenescence.

Implications for health in aging
So what are the implications of aging of HSCs on health in

aging? Conclusions on direct causal relationships between

aging of stem cells and consequences for health and

disease are still difficult to draw. This might also be

owing to the fact that research in primarily performed

in mice, and standard disease of aging in mice, except for

leukemia, are very difficult to model and monitor in this

model system.

Unexplained anemia is observed in older adults that

cannot be accounted for by iron deficiency, renal insuffi-

ciency or other molecular/dietary problems [56]. In

addition, in general, levels of red blood cells in blood

tend to be lower in older adults, which are linked to frailty

or other symptoms related to low oxygen levels in the

system. As a consequence, older adults can show an

increased susceptibility to situations of stress to the

system such as infections, or additional blood loss because

of surgery. Whether this unexplained anemia in older

adults though is directly associated with aging of HSCs is

still to be investigated in more detail in the mouse model.

The incidence of leukemia, like almost all types of

cancers, increases exponentially with age. While certainly

both stem cell intrinsic and extrinsic (like the niche, see
www.sciencedirect.com 
above) aging mechanisms are believed to contribute to

the aging-associated increase in stem cell driven leuke-

mia like AML, the molecular contribution of aging to the

elevated incidence is far from being understood, and

research in this directions is still in its just beginning

[44�,45,57–61].

An age-related decline in immune responses also results

in greater susceptibility to infection and reduced

responses to different vaccination strategies such as influ-

enza or pneumococcal bacteria [62]. A direct influence of

aging of HSCs on immune-senescence has been so far

difficult to determine, as of course multiple additional

parameters (e.g. thymic involution in adulthood) that are

independent of stem cell biology also contribute to it

[63,64]. In addition, because of the nature of HSCs,

investigations need to be done in animals, precluding

conclusions with respect to causal relationships. Novel

interventions exist that result in long-term attenuation of

stem cell aging (see above), so novel mechanistic un-

derstanding on the role of aging of HSCs on immune-

senescence might be derived from analyzing immune-

competence in animals with such rejuvenated hemato-

poiesis.

Future directions of research: attenuation of
stem cell aging
It has been reported that aged muscle stem (‘satellite’)

cells, in which the aged phenotype is a response to Wnt-

signaling, can be activated to differentiate and regenerate

muscle in aged animals as efficiently as young muscle

stem cells — either by forced activation of Notch, or by

factors in serum from young animals supplied by para-

biosis [9,65–67]. Separately, attenuation of HSC aging

could also be achieved by lifelong caloric restriction in

BalbC inbred mice [68], or anti-oxidative therapy [69].

While these experiments involve different mechanisms,

to date reported rational interventions that target intrinsic

mechanisms of HSC aging are limited to the use of

rapamycin and the Cdc42 activity inhibitor, CASIN

[41��,70��]. While these are very encouraging results,

additional research will be necessary to investigate to

what extent such novel regeneration/rejuvenation path-

ways will attenuate aging-associated immunosenescense.
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