
Reasoning With Bounded Self-Reference
Using Logical Interpreters

Daniel Gorı́n, Lutz Schröder, and Thorsten Wißmann

Dept. of Comput. Sci., Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract. Self-referential concepts in description logic may formally be viewed
as concepts that at some point mention an individual previously encountered in
the evaluation; this corresponds to a restricted form of the down-arrow binder
known from hybrid logic. Typical examples include being a narcissist, (someone
who loves himself); a celebrity (someone who is known by everyone she meets)
or a grant application reviewer (who can only review proposals of researchers
with whom she did not collaborate in the past). While reasoning in ALC plus
self-reference is known to be undecidable, it has recently been shown that one
can often safely restrict self-reference to at most two indirections (allowing the
definition of narcissists and celebrities, but not of grant reviewers). In particu-
lar, the extension of ALCQ with this construct has an expressive power roughly
equivalent to ALCHIQ plus safe Boolean combinations of roles. Here, we dis-
cuss a translation-based approach to reasoning in this logic. The translation goes
into ALCHIQ (without Boolean roles) and therefore can be used in combina-
tion with off-the-shelf reasoners for OWL. The translation strategy encodes the
semantics of the source axiomatically in the target logic. We use an implementa-
tion of this type of translations to evaluate the feasibility of the whole approach.

1 Introduction

Modern description logics reasoners accept definitions and queries in very expressive
logical languages such as SROIQ, which contains nominals, complex role inclusions,
disjoint roles, universal roles, etc. among its features [5]. Yet, it is not unusual to run
into settings that on the one hand make use of only some of the features available, and
on the other hand require other features that are not supported. Moreover, the latter may
be known not to interact well with other constructs, so it may not be clear whether a
given reasoner can be extended easily or at all in order to add support for them. Role
intersections is a typical example that comes to mind.

We suggest a translation-based methodology as a cost-effective alternative for such
scenarios. Satisfiability-preserving translations are a common tool in computational
logic, usually as a means of establishing complexity bounds (but not always, see
e.g. [6,7,10] for practical examples); here, however, we want to go beyond satisfiability
preservation. We look for translations taking a knowledge-base Γ in a source logic L to
a knowledge-base Γ ′ in a target logic L′ (for which reasoners exist) such that common
queries on Γ including satisfiability, but also concept classification or instance retrieval,
can be translated to analogous queries on Γ ′. That is, modulo a thin layer of translations,
we would like to use a reasoner for L′ as if it were a reasoner for L.

More concretely, we employ what we shall call logical interpreters. Extending the
example above, we represent complex L-concepts with atomic L′-concepts and encode
the semantics of L (restricted to a finite set of L-concepts) using a set of L′-axioms, so
that we can say that we are interpreting the semantics of L in L′. This is reminiscent of
works such as [9], where modal formulas are expressed as ground first-order terms and
modal axiomatic systems encoded as Π0

1 -formulas (then fed to an ATP); but notice that
here i) we deal with semantics and not with provability, and ii) we expect L and L′ to
be “semantically close”, so that the cost of interpretation is kept relatively low.

We showcase this technique by building a logical interpreter in ALCHIQ for the
logic ALCQme2, the extension of ALCQ with Marx’s I-me operators [8] under the
restriction that there can be at most two qualified number restrictions between an I and
the me it binds. Intuitively, an individual a is a member of the I.C concept whenever a
is a member of C under the assumption that me denotes the singleton concept {a}. In
ALCQme2 one can naturally define some self-referential concepts such as “a narcissist
is someone who loves himself” (Narcissist ≡ I.∃loves.me) or “a celebrity is a person
that is known by everyone she meets” (Celebrity ≡ Person u I.∀meet.∃knows.me).

In ALCQme2 one can define inverses, role hierarchies and safe Boolean combina-
tion of roles (where full role complementation is replaced by role subtraction R − S).
In fact it has been shown that ALCQme2 is expressively equivalent to the extension
of ALCHIQ with safe Boolean combination of roles and the ∃R.Self operator of
SROIQ (but ALCQme2 is conjectured exponentially more succinct) [4]. The good
computational behavior of ALCQme2 does not transfer to other logics with bounded
self-reference: already ALCme3 has an undecidable satisfiability problem [3]. It is not
yet known if nominals and/or transitive roles can be safely added to the mix.

We formally introduceALCQme2 in Sec. 2. The general idea of logical interpreters
is first explained in Sec. 3 by describing a trivial self-interpreter for ALCHIQ. We
then extend this construction to a logical interpreter for ALCQme2 in Sec. 4. Finally
we present in Sec. 5 preliminary results on empirical evaluation of the approach.

2 Preliminaries

The DL ALCQme2 extends ALCQ with the I-me construct originally proposed in [8],
in which me is a nominal that can be bound by I, just like the ↓-binder of hybrid logics
would do [1], but under the restriction that me is never separated from its binding I by
more than two qualified number restrictions. Formally, let 〈NC,NR〉 be a vocabulary
where NC = {A1, A2, . . .} and NR = {R1, R2, . . .} are disjoint sets of atomic concepts
and roles, respectively. The grammar for complex ALCme2-concepts is given by C in:

C :=> | ⊥ | me | ¬me | Ai | ¬Ai | C u C | C t C | I.QnRi. C | QnRi. D

D :=> | ⊥ | me | ¬me | Ai | ¬Ai | D uD | D tD | I.QnRi. C
(1)

for Qn ∈ {≥n+1,≤n}. Here, Ai ∈ NC and Ri ∈ NR, and n is a non-negative integer.
We will say that me occurs free in a concept C if it is not under the scope of an I. Notice
that according to (1), ≥nR.≥mS.me is not well-formed, even though I.≥nR.≥mS.me
is so. Hence, we shall not considerQnR.C a sub-concept of I.QnR.C. For convenience,

2

we have defined concepts in negation normal form (NNF), i.e., negation only occurs in
front of atoms. We denote with C the negation normal form of ¬C. For conciseness, we
will sometimes employ standard abbreviations: ∃R.C := ≥1R.C, ∀R.C := ≤0R.C,
C → D := C uD and C ↔ D := (C → D) u (D → C).

An interpretation or model is an structure I = 〈∆I , ·I〉 where ∆I is a non-empty
set (the domain of I); AI ⊆ ∆I for each A ∈ NC; and, for Ri ∈ NR, RIi ⊆ ∆I ×∆I .
For a set Ni of individual names and an individual i ∈ Ni, we also expect iI ∈ ∆I .
Now, for every a ∈ ∆I , we use CIa to denote the extension of an ALCQme2-concept
C under the assumption that me stands for a. This is formally defined as:

AIa = AI meIa = {a}
(¬C)Ia = ∆I − CIa (C uD)Ia = CIa ∩DIa

(I.≥nR.C)
I
a = {b : b ∈ (≥nR.C)

I
b } (≥nR.C)

I
a = {b : |RI(b) ∩ CIa | ≥ n}

A concept C is said closed if it has no free occurrences of me. It is easy to prove that:

Proposition 1. If C is a closed concept, then CIa = CIb for all a, b ∈ ∆I .

We thus denote the extension of a closed concept C just by CI . From Proposition 1 it
is clear that ALCQme2 is a conservative extension of ALCQ.

An ALCQme2 knowledge-base (KB) T is a pair 〈T,A〉—a TBox and an ABox—
with the provision that every concept occurring in it must be closed. Formally, T is a
set of concept equivalence axioms of the form C ≡ D and A is a set of assertions of
the form Ri(a, b) or a : C with a, b ∈ Ni (individual names). We say that I satisfies
T , notation I |= T , whenever: i) CI = DI for all C ≡ D ∈ T; ii) aI ∈ CI for all
a : C ∈ A. iii) (aI , bI) ∈ RIi for all R(a, b) ∈ A. We say that T is consistent if it
is satisfied by some model. We may also write axioms of the form C v D in TBoxes,
which are short for C tA ≡ D, for some fresh atomic concept A.

We assume the reader to be familiar with the DL ALCHIQ (see e.g. [2]). We shall
employ R−i as the role constructor for inverses and assume ALCHIQ-KB to contain
also an RBox R, i.e., a set of role-inclusion axioms of the form R v S.

3 Logical (self-)interpreters

We now introduce the notion of logical interpreters via a toy example: a self-interpreter
for ALCHIQ. This will be later turned into an ALCHIQ-interpreter for ALCQme2.

When discussing logical interpreters, one needs to clearly distinguish the language
to be interpreted from the language in which the interpreting axioms are written; we
shall refer to the latter as the host language. In the example of this section, ALCHIQ
is both the host and the interpreted language. The main idea is then simple to describe:
we represent each concept of the interpreted language as an atomic concept of the host
language, called the host representation, and describe its semantics by suitable axioms.

To illustrate this, consider a concept ≥5R.C of the interpreted language. We as-
sociate to it an atomic concept H≥5R.C and, if the host language includes qualified
number restrictions among its features, we can describe its meaning with the TBox ax-
iomH≥5R.C ≡ ≥5R.HC , whereHC is the host representation of the concept C, which

3

in turn needs to be suitably axiomatized. As this example already suggests, in order to
axiomatize the semantics of a concept C, we need to provide axiomatizations for the
host representations of the subconcepts of C (this, of course, is a consequence of the
fact that Tarski-style semantics are compositional in nature).

Formally, assume then for the rest of the section that the interpreted language is
ALCHIQ over a vocabulary 〈N i

C , N
i
R〉. For a finite setΣ of concepts of this language,

we let 〈Nh
C(Σ), Nh

R(Σ)〉 denote the vocabulary ofALCHIQ as host language, and put:

Nh
R(Σ) := N i

R Nh
C(Σ) := {HC | C or C are subconcepts of a D ∈ Σ}.

For convenience we shall usually identify A ∈ N i
C with HA and thus assume that

N i
C ⊆ Nh

C(Σ). We shall also identifyH> with> andH⊥ with⊥. We denote by S0(Σ)
the set of axioms used to interpret the concepts in Nh

C(Σ); S0(Σ) contains axioms

HCtD ≡ HC tHD HCuD ≡ HC uHD H¬A ≡ ¬HA

H≥nR.C ≡ ≥nR.HC H≤nR.C ≡ ≤nR.HC

whenever the index of the left hand side is in Σ. Notation involving Σ is extended to a
KB T by considering the set of all subconcepts of concepts occurring in T .

Let T = 〈Ti,Ai,Ri〉 be a KB to be interpreted. Our logical interpreter maps T to
the KB I0(T) = 〈Th,Ah,Rh〉, where Th := S0(T) ∪ {HC ≡ HD | C ≡ D ∈ Ti},
Ah := {a : HC | a : C ∈ Ai} and Rh := Ri.

One can now make the relation between a KB T and its interpretation I0(T) precise.
It suffices to observe how models for one are to be converted into models for the other,
and vice versa. In general, we need to define two functions on models: I↑ taking a model
of the interpreted language to one in the host language, and I↓ in the converse direction.
In the case of the self-interpreter under consideration, we have that I↓ is the restriction
of I to the signature N i

C ⊆ Nh
C(Σ), while I↑ interprets each HC ∈ Nh

C(Σ) −N i
C as

HC
I↑ := CI . It is then straightforward to show the following:

Proposition 2. For all T , I and J , we have that I |= T ⇐⇒ I↑ |= I0(T) and
J ↓ |= T ⇐⇒ J |= I0(T).
This proposition shows that I0 is satisfiability-preserving in a strong sense; in particular,
individuals mentioned in the ABox are preserved both by I↑ and J ↓, so that it is safe
to map even ABox-queries on T to analogous queries in I0(T ′), where T ′ is a suitable
extension of T . For example, for any given a conceptC, it is easy to see that the instance
retrieval problem for C on T = 〈T,A,R〉 corresponds to the instance retrieval problem
for a fresh atomic concept A0 on I0(T ′) where T ′ = 〈T ∪ {A0 ≡ C},A,R〉.

Restricting the interpreter to tree-models. The interpreter for ALCQme2 to be defined
in Sec. 4 exploits heavily a tree-like model property of ALCQme2. This means that we
will want to restrict our attention to models of the host language that are trees (or rather
forests). We now show how to enforce this, and discuss some associated pitfalls.

Definition 3. We say that a binary relation R ⊆ X2 is a tree whenever there exists
r ∈ X , the root of R, such that there is exactly one directed path in (X,R) from r to
any x ∈ X . We say that R is a forest if it is isomorphic to a disjoint union of trees. We
say that I is a tree model whenever U =

⋃
RR
I is a forest.

4

Observation 4. If R is such that R−1 is a partial function and R−1(r) is undefined, r
is the root of a tree obtained by restricting R to the connected component of r in R.

The observation serves as a guiding principle in refining I0. For T = 〈Ti, ∅,Ri〉, define
It0(T) := 〈Tht,Aht

∅ ,R
ht〉, where for a fresh role symbol f and a fresh individual i∅,

Tht := Th ∪{> v ≤1f.>}, Aht
∅ := {i∅ : ∀f.⊥} and Rht := Rh ∪

⋃
R∈Ni

R
{R− v f}.

Clearly, any model I for It0(T) is turned into a tree model T (I) for It0(T) by
restricting it to only the connected components of elements satisfying ∀f.⊥, like i∅I .
In the presence of non-empty ABoxes we have to be more careful since it is easy to have
one that forces non-tree models. We will consider this when interpreting ALCQme2.

4 An Interpretation of ALCQme2 in ALCHIQ

Self-interpretation as was done in Sec. 3 is an extreme case: since the host and inter-
preted languages coincide, the interpreter is trivial. We are now faced with the problem
of interpreting in ALCHIQ a radically different language, namely, ALCQme2. We
shall overcome here several challenges.

First and foremost, there is a radical mismatch between the semantics ofALCQme2
and that of ALCHIQ: the extension of concepts in the latter corresponds to subsets of
the domain, while in the former they induce a binary relation (i.e., we need two points
of evaluation: the current one and that denoted by me). To circumvent this problem, we
observe that ALCQme2 possesses a tree-like model property (cf. Theorem 6 below);
i.e., for purposes of reasoning we can in general restrict our attention to tree-like models.
Now, it turns out that if we intend to decide whether x ∈ CIy on a tree-like model I
where the distance between x and y is at most 1 (i.e., they either coincide or one is the
father of the other), we will only need to consider subproblems of the form z ∈ DIw,
where the distance between z and w is 1 as well (for closed concepts, in particular, we
can assume distance 0). In the end, there is a finite combination of relevant cases that
we will be able to encode in the host representation.

Definition 5. A relation S ⊆ X2 is a quasi-tree with root r if there is a treeR with root
r and R ⊆ S ⊆ R ∪R−1 ∪ IdX . Such R is unique and called the underlying tree of S.

Terms quasi-forest and quasi-tree model are used in analogy to Def. 3. The following is
proved with an unraveling similar to the one in the analogous proof for ALCme2 [3].

Theorem 6 (Quasi-tree model property). If C is a satisfiable closed ALCQme2-
concept, then there exists a quasi-tree model that satisfies C at its root.

We have seen in the previous section how to enforce tree models in a ALCHIQ-KB
with an empty ABox. We use f throughout this section to denote the “father-of” relation
(partial function) of this encoding. In a quasi-tree, one can also have self-loops and
links going back to the father of a node. We can simulate them in the interpreter by
adding atomic concepts 	R and ↑R, for each R ∈ N i

R, to the host language; the former
represents a self-loop for role R, the latter an up-link. In particular, ↑R cannot hold at a
root, so ↑Rv ∃f.> will have to be an axiom of the interpreter.

5

In the self-interpreter of Sec. 3, a conceptC of the interpreted language was mapped
to the atomic concept HC of the host language. We could think of HC as meaning
“satisfies conceptC in the interpreted language”. In order to account for the extension of
me we will need a richer set of atomic concepts in the host language. We will use atomic
concept H∗∗:C to describe “those elements that satisfy C in the interpreted language
when they are also the value of me”. Similarly, Hf∗:C shall represent “those elements
that satisfy C in the interpreted language when their father is the value of me”. It will be
crucial to consider a third family, namely H∗f :C , which is to be read as “those elements
whose father satisfies C under the assumption that they are the value of me”. Although
dispensable, we find it conceptually clearer to include an additional family,H∗:C , where
C is a closed concept, for “those elements that satisfy C regardless the value of me”.
We refer to L := {∗, ∗∗, f∗, ∗f} as the set of possible contexts.

For the case where C has u or t as top-level operator, we can mimic the corre-
sponding axioms from Sec. 3. For atomic negation we observe some differences in
contexts involving the father: by definition, elements satisfying Hf∗:¬A or H∗f :¬A
must have a father, so the corresponding axioms need to be H∗f :¬A ≡ ∃f.H∗:¬A and
Hf∗:¬A ≡ H∗:¬Au∃f.>. In fact, we will generalize these axioms to any closed concept
(not just negated atoms) and also have H∗∗:C ≡ H∗:C when C is closed.

The last missing ingredient of the interpreter is the handling of concepts of the form
(I.)≥nR.C and (I.)≤nR.C, that is, those whose top-level operator is a qualified number
restriction or an I binder in front of one. This requires some effort since we need to take
into account the “virtual” part of roles (i.e., the ↑R and 	R) in the counting. The general
idea in handling this is to interpret H`:≥nR.C by way of a case-analysis: depending on
which of 	R and ↑R hold, and whether C holds at the current state and/or at the father,
we pick a suitable discount 0 ≤ d ≤ 2 and then test if ≥n−dR.C holds. For example,
a discount value of 1 indicates that either the current node or its father (but not both)
is one of the n successors required, so it suffices to find n − 1 more. The axioms for
contexts other than ∗f are given in terms of the following helper construct:

ξ≥n

R (C1, C2, C3) :=
l

 (↑R uC1) u (R uC2)→ ≥n−2R.C3

(↑R uC1)↔ ¬(R uC2)→ ≥n−1R.C3

¬(↑R uC1) u ¬(R uC2)→ ≥n−0R.C3

 (2)

ξ≤n

R is defined using ≥ instead of ≤. Observe that whenever m > n, then ≥n−mR.C3

(resp.≤n−mR.C3) shall represent> (resp.⊥). The intuition is that ξ≥n

R (C1, C2, C3) is
discounting 2 when both 	R and ↑R hold and C1, a suitable modification of C, holds
“at the father” while C2, another suitable modification of C, holds at the current node;
it discounts 1 when only one of these conditions hold; and nothing otherwise.

Now, why do we need concepts C1, C2 and C3 in (2) instead of just one concept
C? There are two reasons for this: i) adjusting the context and ii) dealing with free
occurrences of me in C. This will become clear with an example. Assume we need to
interpret H∗:I.≥nR.C . In order to see if the father node (if any) needs to be discounted
from the n successors, we need to know whether C holds at the father under the as-
sumption that the current node stands for me. So, in principle, we would like to use
H∗f :C for C1. But we know more: if we are evaluating this formula on a tree, then the
current node and its father will be distinct nodes, so evaluating C at the father will be

6

equivalent to evaluating C ′ at the father, where C ′ is obtained from replacing every top-
level occurrence of me in C by ⊥. Observe that the fact that no me appearing under the
scope of a qualified number restriction is replaced by ⊥ is critical for the correctness of
the argument. The following piece of notation will be handy:

Definition 7. For concepts C and D, C(D) is the concept obtained by replacing every
free occurrence of me outside the scope of a qualified number restriction in C by D.

Now we can formalize the axioms for H∗:(I.)≥nR.C , H∗∗:≥nR.C and Hf∗:≥nR.C :

H∗:(I.)≥nR.C ≡ ξ
≥n

R (H∗f :C(⊥), H∗∗:C(>), Hf∗:C(⊥)) (3)

H∗∗:≥nR.C ≡ ξ≥n

R (∃f.H∗:C(⊥), H∗:C(>), H∗:C(⊥)) (4)

Hf∗:≥nR.C ≡ ξ≥n

R (∃f.H∗:C(>), H∗:C(⊥), H∗:C(⊥)) u ∃f.> (5)

Three things are worth observing. First, notice the relation between the context of the
interpreted concept and the assignments of > and ⊥. Second, (3) is the first axiom we
discussed so far that contains a concept with context other than ∗ that does not occur at
the left of the ≡. In fact, this and the dual axiom for (I.)≤nR.C concepts will be the
only such axioms. From this observation and because in ALCQme2 there are at most
two qualified number restrictions between I and me, it is clear that C in (4) and (5)
can be assumed to have all occurrences of me at the top-level, so that C(⊥) and C(>)
are closed concepts. Finally, notice that unlike the self-interpreter of Sec. 3, the set
of relevant concepts needs to be closed by replacements of top-level me by > and ⊥
(recall, also, from Sec. 2, that ≥nR.C as not a subconcept of I.≥nR.C).

The only kind of axiom we are missing is that for H∗f :≥nR.C . Because ≥nR.C is
expected to hold at the father of the current node, we will need to use ∃f.ξ≥n+c(. . .),
which will take care of the father’s virtual relations, if any, picking also a correction
factor −1 ≤ c ≤ 1 that will compensate for “interferences” of the current node in the
counting. Formally, the required axiom is H∗f :≥nR.C ≡ ϑ≥n

R (C) u ∃f.>, where:

ϑ
≥n

R (C) :=
l

 (∃R−.> u (H∗:C(>) u ¬H∗:C(⊥)))→ ∃f.ξ
≥n−1

↑R (C)

(¬∃R−.> t (H∗:C(>) ↔ H∗:C(⊥)))→ ∃f.ξ
≥n+0

↑R (C)

(∃R−.> u (¬H∗:C(>) u H∗:C(⊥)))→ ∃f.ξ
≥n+1

↑R (C)

 (6)

Here ξ≥n

↑R (C) stands for ξ≥n

R (∃f.H∗:C(⊥), H∗:C(⊥), H∗:C(⊥)). Firstly, it is helpful to
compare the latter with the ξ-expressions of (4) and (5) and observe that me is not being
replaced by > anywhere. In particular, if the current state satisfies H∗:C(⊥) it may get
counted when it should not be. More precisely, in order to have a non-zero correction
factor, we need the current state to be an R-successor of its father. If it additionally
satisfies H∗:C(>) then we need to discount it from the expected R-successors of the
father satisfying C (c = 1), except when H∗:C(⊥) holds as well, since then it will be
incorrectly be counted as one of the R-successors of its father that satisfies C under the
assumption that me is not current node (c = 0). The case where c = −1 is analogous.

To formalize the whole procedure, we assume the vocabulary of ALCQme2 to be
〈N i

C , N
i
R〉 and fix a set of concepts Σ. Let Σ′ ⊇ Σ be the smallest set closed by

7

H`:CtD ≡ H`:C tH`:D H`:CuD ≡ H`:C uH`:D

H∗:¬A ≡ ¬H∗:A H∗:(I.)QnR.C ≡ ξQn
R (H∗f :C(⊥), H∗∗:C(>), Hf∗:C(⊥))

H∗∗:C0 ≡ H∗:C0 H∗∗:QnR.C ≡ ξQn
R (∃f.H∗:C(⊥), H∗:C(>), H∗:C(⊥))

Hf∗:C0 ≡ H∗:C0 u ∃f.> Hf∗:QnR.C ≡ ξQn
R (∃f.H∗:C(>), H∗:C(⊥), H∗:C(⊥)) u ∃f.>

H∗f :C0 ≡ ∃f.H∗:C0 H∗f :QnR.C ≡ ϑQn
R (C) u ∃f.>

Table 1: S1(Σ) contains one of these axioms for each concept inNh
C(Σ). Notation: ` ∈

L, C0 is a closed concept but neither a conjunction nor a disjunction;Qn ∈ {≥n,≤n}.

subconcepts and such that if C ∈ Σ′ then C(⊥), C(>) ∈ Σ′ as well. We then have:

Nh
C(Σ) := {H`:C | ` ∈ {∗∗, ∗f, ∗f}, C ∈ Σ′} ∪ {H∗:C | C ∈ Σs

r , C is closed} .

We identify H∗:> with >, H∗:⊥ with ⊥ and H∗:A with A, for A ∈ N i
C . We then define

the atomic roles of the host language with Nh
R(Σ) := N i

R∪{f}∪{	R, ↑R| R ∈ N i
R}.

The set S1(Σ) of axioms needed to interpret relevant concepts in Σ is listed in Table 1.
Again, we extend the notation from sets of concepts to knowledge-bases as expected.

For simplicity, we shall first discuss the interpretation of ALCQme2-KBs with
empty ABoxes. So let T = 〈Ti, ∅〉 be such a knowledge-base. A logical interpreter for
T is the ALCHIQ-KB I1(T) = 〈Th,Ah

∅ ,R
h〉 where Rh :=

⋃
R∈Ni

R
{↑Rv ∃f.>},

Ah
∅ := {i∅ : ∀f.⊥} and Th := S1(T) ∪ {> v ≤1f.>} ∪ {↑Rv ∃f.> | R ∈ N i

R}.
We now look at how quasi-tree models forALCQme2 are turned into tree models of

the host logic and vice versa. We first take a quasi-tree model I and observe that since
every rooted quasi-tree induces a unique tree, I induces some tree model I ′ (which
only depends on the elements picked as roots). Then I ′ is extended to a model I↑ in
the signature of the host language by interpreting 	R and ↑R in the obvious way (e.g.,
	R
I′ := {x | (x, x) ∈ RI}); making fI

′
the union of the converse of every role in

I ′, and interpreting all the other concepts in the expected way, for instance, one defines
(Hf∗:C)

I↑ = {x | ∃y : (x, y) ∈ fI′ and x ∈ CIy)}. Also, i0 denotes some root of I↑.
On the other direction, for a model J of the host language we let J ′ be the restriction
of the domain of J to all elements the connected components that include an “f -root”,
i.e., an element that has no f -predecessor (or J ′ = J when no such element exist). We
then define J ↓ as the restriction of J ′ to the vocabulary of the interpreted language,
plus RJ

↓
:= RJ

′ ∪ {(x, x) | x ∈	J
′

R } ∪ {(x, y) | ∃y : (y, x) ∈ fJ ′ and x ∈ ↑RJ
′
}.

Proposition 8. Fix an ALCQme2-KB T . If I is a quasi-tree model, then I |= T ⇐⇒
I↑ |= I1(T). If J |= I1(T), then J ↓ is a quasi-tree model and J ↓ |= T .

Example 9. Let T = 〈{> ≡ I.≥2R.me}, ∅〉 and let T ′ = I1(T). We want to verify
that T ′ is unsatisfiable (we use |= for the global entailment relation). Clearly, we have
that T ′ |= H∗:I.≥2.me, and because of (3), we get T ′ |= ξ

≥2

R (H∗f :⊥, H∗∗:>, Hf∗:⊥) as
well. Now, we know T ′ |= (H∗f :⊥ ↔ ∃f.H∗:⊥) u (H∗∗:> ↔ H∗:>) and H∗:⊥ and

8

H∗:> were identified with⊥ and>, respectively. Hence, T ′ |= ξ
≥2

R (⊥,>, Hf∗:⊥). Sim-
plifying in (2), we conclude that T ′ |= (R→ ≥1R.Hf∗:⊥) u (¬ 	R→ ≥2R.Hf∗:⊥).
However, T ′ |= Hf∗:⊥ ↔ ⊥ u ∃f.>, so in particular T ′ |= Hf∗:⊥ → ⊥. Therefore,
we have T ′ |= (R→ ≥1R.⊥) u (¬ 	R→ ≥2R.⊥), so T ′ must be unsatisfiable.

We shall end this section by briefly discussing the handling of ABoxes. The first thing to
observe is that for ABox reasoning there is no tree-like model property one can use: that
is, it is trivial to build a consistent ALC ABox without tree models. That models in the
host language are trees is a crucial part of the interpreter (it is what allows us to safely
replace me by ⊥ in the axiom for H∗f :≥nR.C), so we cannot let go this property. The
upshot is: we can only handle ABoxes whose graph can be embedded in a quasi-forest.

We assume that the so called Unique Name Assumption (UNA) does not hold, that
is, different individual names may denote the same individual (this corresponds with
the OWL standard and, moreover, the case where the UNA holds is somewhat simpler).
The following tells us how to eliminate all role assertions from such an ABox:

Proposition 10. Let T = 〈T,A〉 be anALCQme2-KB and let I be the set of individual
names in A. If the graph of A can be embedded in a quasi-tree, then for each i ∈ I there
is a Ci such that T is consistent iff T = 〈T,

⋃
i∈I {Ci}〉 is consistent.

Proof (sketch). Because individual names cannot occur in concepts we are free in prin-
ciple to replace an assertion R(i, j) ∈ A by an assertion R(i, j′), where j′ is a fresh
individual that realizes the same formulas as j. Moreover, ALCQme2 is expressive
enough to describe such an individual without needing a fresh individual name. We
only need a fresh atomic concept in combination with two fresh role symbols U and U .

Formally, fix i ∈ I and let Ai be the ABox obtained by renaming every j ∈ I −{i}
by ji. Moreover, let Aji denote a fresh concept for each such j. We assume i to be the
root of Ai from which the underlying tree structure is uniquely determined. Ci is then
the conjunction of i) all conceptsC such that i : C ∈ A; ii) I.R.me for eachR(i, i) ∈ A;
and iii) for each ji that is an immediate successor of i in Ai we add ≤1U.Aji plus:

I.∃U.(AjiuCjiu∃S1.meu. . . ∃Sn.meu∃U.meu∀U.meuI.∀U.(∃R1.meu. . . ∃Rm.me))

where R1(i, ji) . . . Rm(i, ji) and S1(ji, i) . . . Sm(ji, i) are all such role assertions in
Ai. For Cji we iterate conditions i-iii; the tree guarantees the recursion to terminate.

The proof of the left-to-right implication is then straightforward; for the converse
direction one needs to reassign the interpreted individuals to make sure that those that
were in the same connected component in A are in the same connected component of
the model, the fact that A was a quasi-tree guarantees that this can be done.

5 Feasibility of Logical Interpreters: Preliminary Results

The interpreters we have considered are, of course, more complex than the knowledge-
bases they interpret; yet, it is not hard to see that the blow-up (measured in number
of axioms and assertions, and size of all complex concepts mentioned) is only linear –
or O(n log n) if one considers the representation cost of fresh symbols. Although the

9

translation is in principle small, it is not clear a priori how it is to interact in practice
with off-the-shelve DL reasoners. On the other hand, these interpreters are not hard to
implement, so it is worth experimenting. We report here some preliminary results.

We implemented a translation from ALCQme2 to ALCHIQ1 following the inter-
preter approach of Sect. 4. The translator takes OWL files (where we expect certain
role-name and certain atomic concept to stand for I and me respectively) and outputs
OWL files. This means that we can use them in combination with standard tools. We
included only very basic optimizations in order to reduce the size of the interpreter, the
most important one is simplifying complex concepts using Boolean identities such as
⊥ t C 7→ C. This is important since these type of concepts are generated often when
replacing top-level occurrences of me by > and ⊥.

1 2 3 4

2
6
0
x
In
d
ex
B
o
u
n
d
s

1
6
1
.3

8

5

9
6
x
In
d
ex
B
o
u
n
d
s

5
4
5
.1

3

6

3
2
2
x
O
u
t
O
f
M
em

or
y,

1
0
3
x
In
d
ex
B
o
u
n
d
s,

2
x
T
im

eo
u
t

5
8
.3

7

1
x
In
d
ex
B
o
u
n
d
s,

4
9
x
T
im

eo
u
t

1
9
.3

7

8

9
x
In
d
ex
B
o
u
n
d
s,

4
x
T
im

eo
u
t

1
2
.8

2

9

2
5
3
x
In
d
ex
B
o
u
n
d
s,

2
x
T
im

eo
u
t

3
7
.8

2

10

1
x
T
im

eo
u
t,

5
0
x
O
th
er

1
x
T
im

eo
u
t,

5
0
x
O
th
er

11

2
x
O
th
er

2
x
O
th
er

12

2
5
7
x
O
th
er

2
5
7
x
O
th
er

13 14 15

1
2
.4

4

16 17

1
8
.0

3

18

Pellet
HermiT

[secs]

2

4

6

8

10

Fig. 1: Average runtime for the interpreter in seconds, with standard devation.

Since there are of course no real examples of ALCQme2 ontologies, we have to
rely on artificial examples. We downloaded from the TONES ONTOLOGY REPOSI-
TORY2 ontologies that corresponded to fragments of ALCHIQ and turned them into
ALCQme2 ontologies by interpreting some atomic concept A as me and, ≥nR as I ,
for some atomic role R. Care was put to delete role inclusion axioms mentioning R
and ignoring occurrences of A that were free or not under at most two qualified number
restrictions from the binding point. We actually did this conversion for up to 400 hun-
dred combinations per ontology, which in most of the cases was exhaustive. Each of the
resulting ontologies was translated toALCHIQ using our tool and checked for consis-
tency with PELLET [12] and HERMIT [11], versions 2.3.0 and 1.3.6.1054, respectively,
on a LINUX box with a 2.4GHz INTEL XEON CPU and 24Gb RAM.

1 Available at http://sourceforge.net/p/imeowl.
2 Online resource: http://owl.cs.manchester.ac.uk/repository/.

10

http://sourceforge.net/p/imeowl
http://owl.cs.manchester.ac.uk/repository/

We measured the time to required for each ontology (usertime) and, for those de-
rived from the same TONES ontology, took the average time and the standard deviation
(only for those that ended before the timeout of 600 seconds). The results are summa-
rized in Fig. 1 (the raw data can be found on Table 4, in the Appendix).

We are including in Fig. 1 also ontologies which consistently failed either by out-
of-memory errors, triggered what seems like an internal bug in PELLET (“ArrayIndex-
OutOfBoundsError”) or simply could not be parsed by the reasoners, even though they
were generated using the OWLAPI (indicated by “Other”).

One can clearly see that most of the cases that could be handled end within a minute,
regardless of the reasoner (although HERMIT seems to be able to handle more cases).
In principle, the results are positive, although one needs to be cautious here: because
of the artificial nature of the examples, it is possible that they are being solved simply
because they are trivial (e.g., if there are no interactions between the chosen I and me).

Instead of performing a case-by-case analysis, we decided to conduct a quick ex-
periment that could give us an idea of the cost of interpretation. We extended our tool to
turn it into a very simple self-interpreter generator, trivially extending the one of Sect. 3
to SHIQ. We downloaded from TONES all the ontologies for fragments of SHIQ,
which made for a total of 45 ontologies of diverse complexity. We had to discard 17
of them because our OWL API-based tool failed to parse them. Of the remaining 62%,
we rejected three more ontologies since they required (undeclared) features beyond
SHIQ. For the 25 surviving ontologies, we ran a consistency check, both on the origi-
nal and the translated ontologies and measured the runtime (same setup as before).

These results are summarized in Fig. 2 (the raw data can be found in Table 3 in
the Appendix). We plotted, for each ontology, the quotient between the runtime for the
translated and for the original version. Even though the sample is small, it is still notice-
able that PELLET exhibits a relatively consistent behavior, staying in general within a
factor of 2, which is more than acceptable. HERMIT on the other hand shows a more er-
ratic behavior (sample 16 is actually way off the scale). At the moment we were unable
to find any noticeable correlation between file size, number of axioms in the original
ontology or language, and the performance of the reasoner on the interpreter.

6 Conclusions

We have described a translation-based approach to reasoning in the context of Descrip-
tion Logics, based on the idea of axiomatizing the semantics of the original logic –
what we have called a logical interpreter. We illustrated the idea with a trivial example,
a self-interpreter, and then constructed a non-trivial one for the case of ALCQme2: a
language with a binder construct, capable to express features such as role-intersections.
We also report preliminary results on the behavior of off-the-shelf DL reasoners on both
on an interpreter forALCQme2 and several self-interpreters. The results are suggestive
that the logical-interpreter approach may be effective in some real scenarios. Building
a logical interpreter is relatively cheap, so it appears as a cost-effective alternative.

11

1 2 3 4 5 6 7 8 9 10 11

1
3
3
.3

2

12 13

7
.6

7

14 15

ti
m
eo

u
t

16 17 18

o
u
t
o
f
m
em

or
y

ti
m
eo

u
t

19

o
u
t
o
f
m
em

or
y

1
5
3
.6

5

20

o
u
t
o
f
m
em

or
y

ti
m
eo

u
t

21

o
u
t
o
f
m
em

or
y

ti
m
eo

u
t

22

o
u
t
o
f
m
em

or
y

23

o
u
t
o
f
m
em

or
y

24

ti
m
eo

u
t

ti
m
eo

u
t

25

2

4

6

Pellet HermiT

Fig. 2: Runtime for the interpreter divided by the runtime for the original KB.

References

1. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.)
Handbook of Modal Logic, pp. 821–868. Elsevier (2007)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2nd edn. (2010)

3. Gorı́n, D., Schröder, L.: Narcissists are easy, stepmothers are hard. In: Foundations of Soft-
ware Science and Computation Structures, FoSSaCS 2012. LNCS, vol. 7213, pp. 240–254.
Springer (2012)

4. Gorı́n, D., Schröder, L.: Extending ALCQ with bounded self-reference. In: Advances in
Modal Logic, AiML 2012. pp. 300–316. College Publications (2012)

5. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Knowledge Repre-
sentation and Reasoning, KR 2006. pp. 57–67. AAAI Press (2006)

6. Hustadt, U., Schmidt, R.A.: An empirical analysis of modal theorem provers. Journal of
Applied Non-Classical Logics 9(4), 479–522 (1999)

7. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. Journal of
Automated Reasoning 40(2–3), 89–116 (2008)

8. Marx, M.: Narcissists, stepmothers and spies. In: Proc. of the 2002 International Workshop
on Description Logics (DL’02). CEUR, vol. 53 (2002)

9. Rabe, F., Pudlák, P., Sutcliffe, G., Shen, W.: Solving the $100 modal logic challenge. Journal
of Applied Logic 7(1), 113 – 130 (2009), special Issue: Empirically Successful Computer-
ized Reasoning

10. Sebastiani, R., Vescovi, M.: Automated reasoning in modal and description logics via SAT
encoding: the case study of Km/ALC-satisfiability. Journal of Artificial Intelligence Re-
search 35, 343–389 (2009)

11. Shearer, R., Motik, B., Horrocks, I.: HermiT: A Highly-Efficient OWL Reasoner. In: Rutten-
berg, A., Sattler, U., Dolbear, C. (eds.) Proc. of the 5th Int. Workshop on OWL: Experiences
and Directions (OWLED 2008 EU). Karlsruhe, Germany (October 26–27 2008)

12. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53
(Jun 2007)

12

A Test data

From all ontologies which were considered because of their claimed expressitivity, the
ontologies listed in Table 2 had to be discarded. The remaining ontologies are listed by
Table 3 – together with the exact data measured.

Ontology DL Problem

action ALCHIN Syntax
atom-complex-proton-2.0 ALEQ Syntax
biochemistry-complex ALC Syntax
chemistry-complex ALCHQ Syntax
expression ALCHI Syntax
heart SHI Syntax
legal-action ALC Syntax
legal-role ALC Syntax
lkif-rules ALCH Syntax
mereology SHIN Syntax
molecule-complex ALCH Syntax
norm SHI Syntax
process ALCHI Syntax
relative-places SHIF Syntax
role ALCI Syntax
time SHI Syntax
yowl-complex ALCH Syntax

tambis-full SHIN Nominals
tambis-patched SHIN Nominals
biochemical-reaction-complex ALCR SubObjectPropertyOf

Table 2: Ontologies that could not be tested. The problem can be a syntactical reason or
of language features not supported by our implentation (e.g. nominals).

N
r.

N
am

e
D

L
Filesize

A
xiom

count
H

E
R

M
IT

user-tim
e

P
E

L
L

E
T

user-tim
e

before
after

before
after

before
after

before
after

1
atom

-com
plex-disjoint.ow

l
A
L
C

15363
85697

1
252

2.939
1.858

3.094
2.056

2
m

ob.ow
l

A
L
I

4604
5379

10
14

0.843
0.79

1.384
1.291

3
dow

nload.ow
l

A
L
CH
Q

9458
22874

24
74

0.889
1.176

1.436
1.476

4
ribosom

e.ow
l

A
L
CF

4356
24105

21
87

0.785
1.084

1.36
1.428

5
atom

-com
m

on.ow
l

A
L
CH
I

19106
43613

89
124

1.037
1.243

1.604
1.724

6
unnam

ed.ow
l

A
L
CF

4343
24092

21
87

0.794
1.155

1.375
1.594

7
physics-com

plex.ow
l

A
L
EQ

3909
115457

8
330

2.155
5.642

2.631
3.133

8
subatom

ic-particle-com
plex.ow

l
A
L
C

21142
121651

75
335

2.817
3.66

3.394
4.07

9
atom

-prim
itive.ow

l
A
L
H

40273
109830

136
383

1.144
1.594

1.745
2.117

10
bfo.ow

l
A
L
C

48992
82021

88
212

1.342
2.065

2.092
2.665

11
brokenPizza.ow

l
A
L
CN

35188
80534

137
245

1.816
2.239

1.561
2.011

12
pharm

acogenom
ics-com

plex.ow
l

A
L
C

76031
287734

256
706

2.126
283.431

2.543
3.643

13
periodic-table-com

plex.ow
l

A
L
U

32596
256468

58
572

1.52
2.794

2.145
3.209

14
O

ntology1191594278.ow
l

A
L
CN

33870
119110

140
379

2.492
19.111

1.596
2.553

15
substance.ow

l
A
L
CF

109294
221817

458
703

1.279
2.494

1.847
2.994

16
particle.ow

l
A
L
CQ

39897
259670

87
529

1.363
T

1.741
2.943

17
M

ovie.ow
l

A
L
CN

28384
117745

140
379

2.377
12.498

1.417
4.027

18
U

nsatC
ook.ow

l
A
L
CF

14321
60378

38
156

0.958
1.925

1.239
4.885

19
reaction.ow

l
A
L
CH
IQ

46705
269999

88
553

1.625
T

M
M

20
cton.ow

l
S
H
F

23193568
24064647

33207
87285

11.389
1749.941

11.808
M

21
organic-com

pound-com
plex.ow

l
A
L
CI

11836
298344

25
671

1.58
T

2.141
M

22
so-xp.obo.ow

l
1133677

2123808
1943

7039
3.287

T
3.472

M
23

ontology.ow
l

A
L
CH
IF

443918
1473601

1960
4019

3.135
T

3.777
M

24
D

O
L

C
E

L
ite

397.ow
l

S
H
IF

105716
148804

351
523

1.173
4.692

1.954
M

25
organic-functional-group-com

plex.ow
l
A
L
CQ

16249
225042

30
436

1.985
T

2.628
T

Table
3:R

aw
testdata:File

sizes
are

given
in

bytes,durations
in

seconds,M
m

arks
an

O
utO

fM
em

oryE
xception

by
the

reasoner,T
m

arks
thatreasoning

w
as

stopped
aftera

tim
eoutof300

seconds.

N
r.

N
am

e
H

E
R

M
IT

us
er

-t
im

e:
P

E
L

L
E

T
us

er
-t

im
e:

A
xi

om
A

ve
ra

ge
St

an
da

rd
Pa

ss
ed

E
rr

or
s

A
ve

ra
ge

St
an

da
rd

Pa
ss

ed
E

rr
or

co
un

t
tim

e
de

vi
at

io
n

te
st

s
Ti

m
e/

M
em

or
y/

O
th

er
tim

e
de

vi
at

io
n

te
st

s
Ti

m
e/

M
em

or
y/

O
th

er

1
at

om
-c

om
m

on
89

1.
84

0.
25

70
0/

0/
0

2.
8

0.
62

70
0/

0/
0

2
at

om
-p

ri
m

iti
ve

13
6

5.
13

0.
6

19
7

1/
0/

0
5.

91
0.

86
19

8
0/

0/
0

3
br

ok
en

Pi
zz

a
13

7
9.

96
4.

32
76

2/
0/

0
5.

1
0.

74
15

0/
0/

63
4

do
w

nl
oa

d
24

2.
39

0.
35

39
0/

0/
0

3.
93

1.
18

34
0/

0/
5

5
M

ov
ie

14
0

16
1.

38
10

4.
06

11
24

9/
0/

0
–

–
0

0/
0/

26
0

6
O

nt
ol

og
y1

19
15

94
27

8
14

0
54

5.
13

0.
0

1
95

/0
/0

–
–

0
0/

0/
96

7
on

to
lo

gy
19

60
58

.3
11

.2
9

37
8

49
/0

/0
–

–
0

2/
32

2/
10

3
8

or
ga

ni
c-

co
m

po
un

d-
co

m
pl

ex
25

19
.3

7
2.

1
50

0/
0/

0
–

–
0

49
/0

/1
9

or
ga

ni
c-

fu
nc

tio
na

l-
gr

ou
p-

co
m

pl
ex

30
12

.8
2

2.
09

13
0/

0/
0

–
–

0
4/

0/
9

10
pa

rt
ic

le
87

37
.8

2
17

.0
3

54
20

1/
0/

0
–

–
0

2/
0/

25
3

11
ph

ar
m

ac
og

en
om

ic
s-

co
m

pl
ex

25
6

–
–

0
1/

0/
50

–
–

0
1/

0/
50

12
ph

ys
ic

s-
co

m
pl

ex
8

–
–

0
0/

0/
2

–
–

0
0/

0/
2

13
re

ac
tio

n
88

–
–

0
0/

0/
25

7
–

–
0

0/
0/

25
7

14
ri

bo
so

m
e

21
1.

29
5.

0e
-2

11
0/

0/
0

1.
61

3.
0e

-2
11

0/
0/

0
15

su
ba

to
m

ic
-p

ar
tic

le
-c

om
pl

ex
75

5.
23

0.
36

52
0/

0/
0

4.
58

0.
18

52
0/

0/
0

16
su

bs
ta

nc
e

45
8

12
.4

4
1.

92
24

0
0/

0/
0

9.
08

0.
39

25
0/

0/
21

5
17

un
na

m
ed

21
1.

28
6.

0e
-2

11
0/

0/
0

1.
62

3.
0e

-2
11

0/
0/

0
18

U
ns

at
C

oo
k

38
18

.0
3

11
.5

9
13

2
0/

0/
0

7.
42

0.
0

1
0/

0/
13

1

Ta
bl

e
4:

R
aw

te
st

da
ta

:E
ac

h
ro

w
de

sc
ri

be
sa

su
m

m
ar

y
of

al
lA
L
CQ

m
e 2

on
to

lo
gi

es
ge

ne
ra

te
d

fr
om

it.
O

th
er

ex
ce

pt
io

ns
in

cl
ud

e
th

e
nu

m
be

r
of

ca
se

s
w

he
re

pe
lle

t.
Ti

m
es

an
d

st
an

da
rd

de
vi

at
io

ns
ar

e
gi

ve
n

in
se

co
nd

s.

	Reasoning With Bounded Self-Reference Using Logical Interpreters

