
A Refined Tableau Calculus with Controlled
Blocking for the Description Logic SHOI

Mohammad Khodadadi, Renate A. Schmidt, and Dmitry Tishkovsky?

School of Computer Science, The University of Manchester, UK

Abstract The paper presents a tableau calculus with several refine-
ments for reasoning in the description logic SHOI. The calculus uses
non-standard rules for dealing with TBox statements. Whereas in ex-
isting tableau approaches a fixed rule is used for dealing with TBox
statements, the tableau calculus uses a dynamically generated set of re-
fined rules. This approach has become practical because reasoners with
flexible sets of rules can be generated with the tableau prover generation
prototype MetTeL. We also define and investigate variations of the un-
restricted blocking mechanism in which equality reasoning is realised by
ordered rewriting and the application of the blocking rule is controlled
by excluding its application to a fixed, finite set of individual terms.
Reasoning with the unique name assumption and excluding ABox in-
dividuals from the application of blocking can be seen as two separate
instances of the latter. Experiments show the refinements lead to fewer
rule applications and improved performance.

1 Introduction

There exist various tableau algorithms for reasoning in description logics [1]. In
this paper we present a refinement of the tableau calculus introduced in [8] for
the description logic SHOI. Termination is ensured using a rewriting variant of
the unrestricted blocking rule [15]. A sufficient condition for termination using
unrestricted blocking is the finite model property [15]. The finite model property
for SHOI is provided here by a standard filtration argument that does not
involve tableau reasoning as in [2]. The core tableau rules are in line with a
refined tableau calculus obtained in the tableau synthesis framework [14], but,
exploiting the tree model property of SHOI, transitive roles are accommodated
via a propagation rule rather than a structural rule.

Different blocking mechanisms have been developed for description logic
tableau algorithms. A common point of these mechanisms is that they essen-
tially exploit kinds of the tree model property. They compare maximally ex-
panded label sets of concept expressions through the construction of tree-like
models. These blocking techniques provide strong termination results but some
care is needed to ensure soundness. For more expressive logics, for example, logics
with role inverse and nominals, back-and-forth traversal of a tree model is re-
quired with implicit backtracking together with forms of dynamic blocking [5,6].

? This research is supported by UK EPSRC research grant EP/H043748/1.

In [12,15], it was shown, the description logics ALBO and ALBOid, which do
not have the tree model property, can be decided using a labelled tableau ap-
proach enhanced by the unrestricted blocking mechanism, while many existing
blocking mechanisms are not sufficient for description logics without a kind of
tree-model property. The unrestricted blocking mechanism ensures weak ter-
mination. It is generic and reverts decisions only when needed, namely when
a contradiction was obtained. While many techniques in the presented tableau
calculus have similarities with existing tableau algorithms, there are also signi-
ficant differences because our tableau calculus is designed to be proof-confluent
and as general as possible. In this paper, we describe a rewriting variant of
the unrestricted blocking rule, because equality reasoning is realised by ordered
rewriting.

The paper is based on [8]. Its main contributions are twofold. First, we discuss
a general technique of controlling the blocking rule by disabling its application
to individual terms from an a priori given, finite set (Section 4). This approach
can be utilised for reasoning in domains with the unique name assumption.
Second, we use a novel approach for reasoning with respect to TBox statements
(Section 5). Rather than using a fixed tableau rule for TBox statements, we dy-
namically generate rules for each statement. These dynamic rules are optimised
by a rule refinement technique described in [16]. The MetTeL tool [17] allows
us to automatically generate a prover for a specific knowledge base based on a
calculus with dynamically generated rules. In order to evaluate the provers that
use the tableau calculi with dynamically generated rules, an experimental com-
parison between them and provers that use the fixed tableau rule was undertaken
(Section 6). Controlled variants of unrestricted blocking are also evaluated. Two
repositories of existing ontologies are used as problem sets.

Long versions of the paper are [9] and with proofs [10].

2 Syntax and semantics of SHOI

The description logic SHOI [7,5] extends the description logicALC with singleton
concepts, role inverse, transitive roles and role inclusion axioms. Its language is
defined over disjoint sets of atomic concepts, atomic roles and individuals. The
set of individuals is assumed to be finite. C and D denote concepts, A denotes an
atomic concept, R and T denote roles, r denotes an atomic role, and a and b de-
note individuals. Concepts and roles are built from atomic concepts, individuals,
and atomic roles using the connectives {·} (singleton operator), ¬, t, and ∃ · .·
(existential restriction operator), − (role inverse operator) as defined by these
BNFs: C

def
= A | {a} | ¬C | C t C | ∃R.C and R

def
= r | R−. The operators >,⊥,u

and ∀ · .· are defined as usual. We assume that (r−)−
def
= r.

A knowledge base consists of an ABox A, a TBox T and an RBox R. A finite
number of concept assertions of the form a : C and role assertions of the form
(a, b) : R constitute the ABox. The hierarchy between concepts are expressed
in the TBox using a finite set of inclusion statements of the form C v D. The
RBox is a finite set of transitivity statements Trans(r) for some atomic roles r

and inclusion statements of the form R v T which are used to express the
hierarchy between roles. Normalisation of the RBox is not assumed.

We define the closure R+ of role inclusions in the RBox R as the smallest
RBox that contains R and satisfies the following two properties: (i) if Q v R ∈
R+ then Q− v R− ∈ R+; (ii) if Q v R,R v T ∈ R+ then Q v T ∈ R+. Given
an RBox R, let R∗ denote the RBox R+ ∪ {R v R | R is a role}.

An SHOI-model I is a tuple I def
= (∆I , ·I), where ∆I is a non-empty domain

of interpretation and ·I is an interpretation function which maps individuals to
elements of ∆I , concept names to subsets of ∆I , and role names to binary
relations over ∆I . The interpretation function extends inductively to all concept
and role expressions as follows.

{a}I def
= {aI} (¬C)I

def
= ∆I \ CI (C tD)I

def
= CI ∪DI

(∃R.C)I
def
= {x | ∃y ∈ CI (x, y) ∈ RI} (R−)I

def
= {(x, y) | (y, x) ∈ RI}

For any expression or statement E, E is true (valid) in the model I is denoted
by I |= E and is defined as follows:

I |= C
def⇐⇒ CI = ∆I I |= a : C

def⇐⇒ aI ∈ CI
I |= R v T def⇐⇒ RI ⊆ T I I |= (a, b) : R

def⇐⇒ (aI , bI) ∈ RI
I |= C v D def⇐⇒ CI ⊆ DI I |= Trans(r)

def⇐⇒ rI is transitive.

A concept C is satisfiable in a model I iff CI 6= ∅. A concept is satisfiable in I
with respect to a knowledge base if it is satisfiable in I whenever every statement
of the knowledge base is true in I. That is, C is satisfiable with respect to
(A, T ,R) in I iff CI 6= ∅ provided that I |= E for every E ∈ A ∪ T ∪R.

The termination result in the next section for a tableau calculus for SHOI
relies on the finite model property of the logic.

Theorem 1 (Finite model property of SHOI [2,10]). If a concept C is
satisfiable with respect to a knowledge base (A, T ,R) in a SHOI-model then it
is satisfiable with respect to (A, T ,R) in a finite SHOI-model.

3 Tableau calculus TabSHOI

The language of the tableau calculus is an extension of the language of SHOI
with equality formulae and individual terms used as labels. The set of (indi-
vidual) terms s is defined inductively by the grammar rule s

def
= a | f(s,R,C),

where a denotes any individual, C any concept, R any role, and f is a (fixed)
function symbol. Terms which are not ABox individuals can be viewed as be-
ing Skolem terms. Formulae in the tableau language are ABox assertions over
individual terms, and equalities of terms. More precisely, tableau formulae are
defined by the following grammar rule, where s and t are individual terms, C is
a concept and R is a role.

E
def
= s : C | (s, t) : R | s ≈ t

We extend the interpretation of SHOI to the tableau language as follows. For
every SHOI interpretation I, let the interpretation fI in I of the function f
be an arbitrary function mapping triples (s,R,C) with s ∈ ∆I , R ⊆ (∆I)2,
C ⊆ ∆I to elements of ∆I . The semantics of tableau formulae is specified by:

(f(a,R,C))
I def

= fI(aI , RI , CI), I |= s : C
def⇐⇒ sI ∈ CI ,

I |= s ≈ t def⇐⇒ sI = tI , I |= (s, t) : R
def⇐⇒ (sI , tI) ∈ RI .

Since the interpretations of the formulae s ≈ t, s : {t} and t : {s} coincide, we
refer to them as equalities, and to formulae of the form s : ¬{t} as inequalities.

Let Tab denote a tableau calculus comprising of a set of inference rules.
A derivation or tableau for Tab is a finitely branching, ordered tree whose nodes
are annotated by sets of tableau formulae. Assuming that C is the input concept
to be tested for satisfiability with respect to a knowledge base (A, T ,R), the root
node of the tableau is the set {a : C} ∪ A, where a denotes a fresh individual
and A is the ABox. Successor nodes are constructed in accordance with a set of
inference rules in the calculus. The inference rules have the general form

X0

X1 | . . . | Xn
(side-condition),

where X0 is the set of premises and the Xi are the sets of conclusions. If n = 0,
the rule is called closure rule and written X0/⊥.

A rule is applicable, if the premises of the rule match formulae of one of the
leaf nodes. If the rule is applied to a leaf node, then the tableau is extended, by
attaching to the leaf node, n child nodes annotated with the formulae of the leaf
node together with appropriate instantiations of the conclusions of the rule. In
order to avoid redundancies we stipulate that a rule application is redundant if
an annotation of one of the child nodes is contained in the leaf node annotation.

A branch in the tableau is a maximal path from the root of the tableau to a
leaf node. If a closure rule has been applied in a branch then the branch is said
to be closed. If a branch is not closed, it is called open. A tableau is closed if all
its branches are closed. A branch is fully expanded if no more rules are applicable
to its leaf node modulo redundancy. We call a tableau fully expanded iff all its
branches are fully expanded. We denote by Tab(A, T ,R, C) a fully expanded
tableau constructed in the calculus Tab for the input concept C (to be tested
for satisfiability) and the knowledge base (A, T ,R).

In this paper, equality reasoning for individuals is done by means of ordered
rewriting for efficiency reasons. If an equality formula s ≈ t is derived in a node,
it triggers a rewriting of the current node with respect to the equalities of the
node and a fixed reduction ordering.

Our tableau calculus TabSHOI for the description logic SHOI is given in
Figure 1. It is not difficult to see that each rule of TabSHOI preserves satisfiab-
ility. Consequently we can state:

Theorem 2 (Soundness). The tableau calculus TabSHOI is sound for SHOI.
That is, if a concept C is satisfiable with respect to the knowledge base (A, T ,R)
then any fully expanded TabSHOI-tableau for (A, T ,R, C) has an open branch.

(⊥):
s : ¬C, s : C

⊥ (¬¬):
s : ¬¬C
s : C

(∃):
s : ∃R.C

f(s,R,C) : C, (s, f(s,R,C)) : R
(t):

s : C tD

s : C | s : D

(¬∃):
s : ¬∃T.C, (s, t) : R

t : ¬C (R v T ∈ R∗) (¬t):
s : ¬(C tD)

s : ¬C, s : ¬D
(¬∃−):

s : ¬∃T−.C, (t, s) : R

t : ¬C (R v T ∈ R∗) (−):
(s, t) : R−

(t, s) : R

(tr):
s : ¬∃T.C, (s, t) : R

t : ¬∃R.C
(R v T ∈ R∗, Trans(R) ∈ R) (id1):

s : C

s : {s}

(tr−):
s : ¬∃T−.C, (t, s) : R

t : ¬∃R−.C (R v T ∈ R∗, Trans(R) ∈ R) (id2):
s : ¬{t}
t : {t}

(RBox):
(s, t) : R

(s, t) : T
(R v T ∈ R+) (id3):

(s, t) : R

s : {s}, t : {t}
(TBox):

s : {s}
s : (¬C tD)

(C v D ∈ T) (≈):
s : {t}
s ≈ t

(s 6= t)

Figure 1. The tableau calculus TabSHOI

A tableau calculus Tab is complete iff for every knowledge base (A, T ,R)
and every concept C if C is unsatisfiable with respect to (A, T ,R) then there is
a closed tableau Tab(A, T ,R, C).

Theorem 3 (Completeness). TabSHOI is a complete tableau calculus for the
description logic SHOI.

A form of blocking or loop-checking is necessary in order to ensure termin-
ation. We achieve termination by incorporating a variation of the unrestricted
blocking mechanism described in [12] into the tableau calculus. In [12] equality
reasoning is realised by tableau equality rules, whereas in this paper ordered
rewriting is used. We therefore adapt the unrestricted blocking rule from [12] as
follows:

(ub):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(s 6= t).

Termination condition: In every open branch there is some node from which
point onward before any application of the (∃) rule, all possible applications
of the (ub) rule have been performed.

The (ub) rule is applicable to any pair of distinct individual terms that are
used as labels in the current leaf node. When it is applied, two tableau successor
nodes are created. In the left node, s ≈ t acts as a trigger which induces rewriting
modulo derived equalities. In the right branch, the leaf node is a copy of the
current leaf node extended with the additional formula s : ¬{t}, which indicates
that s and t are not equal.

Let TabSHOI(ub) be the calculus consisting of all the rules of TabSHOI and
the (ub) rule. Since, the (ub) rule is sound, and TabSHOI is sound and complete
(Theorem 3), we get:

Theorem 4. TabSHOI(ub) is a sound and complete for SHOI.

Based on [13,15] it can be shown that adding the rewriting version of un-
restricted blocking to a sound and complete, ground semantic tableau calculus
ensures termination, if the logic has the finite model property. A tableau cal-
culus Tab is (weakly) terminating iff for any finite set N , every closed tableau
Tab(N) is finite and every open tableau Tab(N) has a finite open branch [14].
A procedure based on a tableau calculus is fair if any inference that is possible
is performed eventually [15].

Theorem 5 (Termination). Any fair procedure based on the tableau calculus
TabSHOI(ub) is terminating for satisfiability in SHOI.

As branch selection fairness is particularly important, this provides a weak
termination result and means that in an implementation breadth-first search
or more efficient depth-first iterative deepening search guarantees termination.
Mainstream description logic tableau algorithms with less eager blocking condi-
tions are strongly terminating. We also expect to be able to show strong termin-
ation for algorithms based on TabSHOI(ub).

Theorem 6 (Decidability). Any fair procedure based on the tableau calculus
TabSHOI(ub) and satisfying the termination condition is a decision procedure
for SHOI and its sublogics.

4 Controlling the application of blocking using (ubnoS)

The (ub) rule may potentially create a large number of branching points in the
derivation, as it is applicable to all pairs of individual terms in the branch. The
situation is worse if the knowledge base contains a large number of individuals
and ∃-expressions. It is thus important to find ways of controlling the application
of blocking without loosing termination. We may reduce the number of applica-
tions of the (ub) rule, and reduce the search space by imposing appropriate side
conditions on the application of the blocking rule. Ideal are side-conditions, and
additional premises, that maximise the chance of constructing a finite model
without the need for backtracking. It is however not possible to know which
identification of individual terms will be helpful for discovering a finite model
quickly. It is clear that systematic approaches for selecting individual terms to
identify are needed, and different approaches display different performances.

The following theorem holds for arbitrary restrictions of the (ub) rule.

Theorem 7 (Soundness and completeness). The (ub) rule constrained by
any additional premises or side-conditions is sound. TabSHOI extended with
such a constrained rule is thus sound and complete for SHOI.

In this section we introduce a general technique for controlling the application
of the (ub) rule. One possible way of controlling the (ub) rule is to find individual
terms whose identification is known not to be essential for termination. It could
also be that the domain of application dictates that certain individuals cannot

be equal. For example, a subset of the ABox individuals may be assumed to be
uniquely named.

Let us assume it is possible to specify a finite set S of individual terms
which we want to exclude from blocking or know their blocking is not essential.
Consider the following variation of the (ub) rule.

(ubnoS):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(t 6∈ S, s 6= t)

In particular, it is not applied to pairs of terms appearing in the set S.
Let TabSHOI(ubnoS) be the calculus consisting of all the rules of TabSHOI

and the (ubnoS) rule.

Theorem 8. Let S be a finite set of individual terms. Then TabSHOI(ubnoS)
is sound, complete and terminating for SHOI.

Replacing the (ub) rule with the (ubnoS) rule, the calculus remains sound
and complete, since the (ubnoS) rule is a sound rule. However, preservation of
termination needs to be formally proved. This can be done by showing that there
exists a finite open branch for any satisfiable concept C when constructing the
complete tableau using TabSHOI(ubnoS). Since the existence of an open branch is
ensured by soundness, we just need to show there is a finite open branch. This can
be shown by constructing a finite, fully expanded and open branch, with the use
of a model branch built for the given concept using TabSHOI(ub). Guided by the
model branch, a finite fully expanded branch for the same concept is constructed
by TabSHOI(ubnoS). During the construction, an association function is used to
limit the possible selection of branches to the ones that mimic the model branch.
The association function is formed using the instances of blocking rule which are
no longer applicable. The complete proof of a generic variant of this theorem for
arbitrary description logic is presented in [10].

Different variations of the (ubnoS) rule can be introduced based on how S
is chosen. Possible criteria for choosing members of S are syntactic criteria, for
example, individual terms that are not used as labels for any ∃-expressions.

Also, the (ubnoS) rule can be used for reasoning modulo an implicit unique
name assumption for a finite subset of the individual terms. This is expected to
be more efficient than adding explicit inequality assertions to the input set to
ensure the unique name assumption, which may cause a drop in performance by
increasing the overhead for premise selection. Let Si be a finite set of individual
terms which are assumed to be uniquely named. For each set Si, an instance
of the (ubnoS) rule should be introduced. An ontology which contains national
identification numbers of people as well as student identification numbers, is a
good example for this case. None of the national identification numbers (rep-
resented by individuals) should be identifiable, equally no student identification
numbers should refer to the same person. But a national identification number
and a student identification number can refer to the same person.

In our setting, ABox individuals are not excluded from being blocked as in
many description logic tableau systems and the blocking rule is applicable to

the pairs of ABox individuals. So, we may form a set S using all the ABox
individuals. Then, similar to [4], no terms from S are identified which were not
created during the derivation. For this case individuals in S need to be specified
to be smallest with respect to the reduction ordering ≺ and this instance of
the (ubnoS) rule needs to be used.

(ubnoABox):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(t is not an ABox individual , s 6= t)

5 Refined tableau calculus

In this section we refine the calculus TabSHOI presented in Section 3. The idea of
the refinement is that the (TBox) rule is replaced by dynamically generated and
refined tableau rules. In the first step, all the atomic concepts in the TBox T are
equi-satisfiably replaced by constant concepts and the parametric (TBox) rule
is represented as a set of tableau rules for each C v D ∈ T . The benefit of this
replacement of the (TBox) rule by a set of rules is the possibility of refining the
rules. This allows to reduce the branching factor of the rules, while preserving
soundness and completeness.

In the second step, we apply the atomic rule refinement introduced in [16].
Atomic rule refinement is a special case of general rule refinement which is intro-
duced in [14]. Under this refinement, all conclusions of a rule that are of the form
s : ¬A, where A is an atomic concept or a singleton, are moved to the premise
position of the rule as s : A. For example, for the TBox statement A u B v C
the rule

s : {s}
s : ¬A | s : ¬B | s : C

is refined to
s : A, s : B

s : C
.

We apply the atomic rule refinement to all rules obtained from TBox state-
ments. Consequently there are fewer branches in the conclusion and additional
premises are added that limit application of the rules. (Similar refinements on
instances of the (RBox) rule are possible for more expressive logics with negated
role assertions.)

Let Tabdyn,TSHOI(ub) denote the calculus which consists of the refined generated
tableau rules from the TBox T and all rules of TabSHOI except the (TBox) rule.
That is, for each statement C v D ∈ T a corresponding tableau rule is generated
and refined according to the atomic rule refinement. Soundness and completeness
of Tabdyn,TSHOI(ub) is a direct consequence of the results in [16].

Theorem 9. Tabdyn,TSHOI(ub) is a sound, complete and terminating tableau cal-
culus for reasoning in SHOI with respect to a knowledge base (A, T ,R) with a
fixed TBox T .

6 Implementation and experimental results

In order to compare the performance of provers based on the calculi TabSHOI(ub)

and Tabdyn,TSHOI(ub), an experiment has been designed. MetTeL version 2.0-487

was used to generate provers based on TabSHOI(ub) and Tabdyn,TSHOI(ub) for vari-
ous ontologies. MetTeL generates Java code for a tableau prover from the
specification of the syntax of a logic and the specification of tableau calculus.
By default, the tableau provers generated with MetTeL use a depth-first left to
right search strategy. While specifying the specification of tableau calculus, ap-
propriate rule priorities were assigned to ensure fairness of the expansion strategy
and hence guarantee termination. The generated provers were used with no modi-
fication in this experiment.

In order to embrace an extensive range of problems with varying input sizes
and expressivity, the experiment used the TONES ontology repository [18] and
the corpus of OWL DL ontologies from [11]. The complete repositories of 874 on-
tologies were downloaded. A translator using the OWL API [3] was developed to
prepare appropriate input for MetTeL. This translator converts each ontology
into three forms. The first form provided input to Fact++ [19] to validate the
translation and outputs of the provers. The second form, translated the onto-
logy so that we could check its consistency with a prover generated by MetTeL
using the specification of TabSHOI(ub) as tableau specification. The third form
was used in two ways. First, it was used to produce a tableau specification for
Tabdyn,TSHOI(ub) containing the dynamic rules generated from the ontology. Second,
the remaining ontology axioms were translated so that the prover generated using
the specification of Tabdyn,TSHOI(ub) could check its consistency. Inputs prepared for
both provers were then used with a log file from Fact++ to produce additional
problem sets. Fact++ produces a log file which contains the class hierarchy of
the ontology. For a randomly picked subsumption relation C v D in the hier-
archy and a fresh individual s, s : C and s : D were added to the input file
to form an additional satisfiable input and respectively s : C and s : ¬D to
form an additional unsatisfiable input. This experiment was aimed at evaluating
the effect on reasoning performance when using Tabdyn,TSHOI(ub) in comparison to
TabSHOI(ub). This means we checked the consistency of the input and omitted
checking satisfiability of all concepts and calculating concept hierarchies.

The developed translator successfully translated 628 ontologies and each
prover was executed on 2480 inputs with a timeout of 100 seconds. The compar-
ison was done by measuring the execution time of the prover. The results of this
comparison are presented in Table 1. For the set of results with timeout, when a
prover did not return any answer within 100 seconds, 100 seconds were used in
the calculation of the average time. While for the set of results without timeout,
if one of the provers under comparison required more than 100 seconds, that
input is not included in the results. The results show that the generated provers
based on the refined tableau calculus were faster for unsatisfiable inputs. Inspec-
tion showed this was mainly a consequence of having additional closure rules.
These closure rules were refinements of dynamically generated rules from TBox
statements where all the conclusions are turned into premises in a rule. A signi-
ficant drop in memory use was exhibited when using Tabdyn,TSHOI(ub) compared to
TabSHOI(ub) specially for unsatisfiable inputs. As expected, the performance of
the system was not comparable with Fact++.

With timeout Without timeout

Input count TabSHOI(ub) Tabdyn,T
SHOI(ub) count TabSHOI(ub) Tabdyn,T

SHOI(ub)
Ontology
consistency 628 27.627 43.094 346 0.951 1.049

Satisfiable
inputs 924 60.847 65.999 180 13.447 0.869

Unsatisfiable
inputs 928 21.521 3.643 760 5.053 1.841

Table 1. Average run times in seconds for TabSHOI(ub) and Tabdyn,T
SHOI(ub)

With timeout Without timeout

Input count (ub) (ubnoABox) count (ub) (ubnoABox)
Ontology
consistency 628 27.627 37.162 346 0.951 1.650

Satisfiable
inputs 924 60.847 74.466 180 13.447 14.043

Unsatisfiable
inputs 928 21.521 21.842 760 5.053 5.223

Table 2. Average run times in seconds for TabSHOI(ub) and TabSHOI(ubnoABox)

Moreover, an experiment to compare the performance of TabSHOI(ub) and
TabSHOI(ubnoABox), using the same inputs as before, was designed. Since it
is not yet possible to express rules such as the (ubnoS) rule in the MetTeL
tableau rule language, we generated a prover for the tableau calculus TabSHOI
without any blocking mechanism. Then, code implementing the (ubnoABox) rule
was manually added to the generated Java code. In order to have a fair compar-
ison, the prover for the (ub) rule was also created by manually adding code im-
plementing the (ub) rule. The results of the comparison are presented in Table 2.

The experimental results show there is not a big difference between the per-
formance of the provers based on TabSHOI(ub) and TabSHOI(ubnoABox). This
is mainly caused by the small number of ABox individuals in a large number of
ontologies in the test set.

7 Concluding remarks

A refined version of the tableau calculus in [8] was presented which uses dynam-
ically generated tableau rules when reasoning with respect to a knowledge base.
Following the presented procedure in [16] where one can refine tableau rules to
reduce the branching factor, the generated tableau rules are refined. This paper
investigated a controlled variant of the unrestricted blocking rule not applied
to members of an a priori defined, finite set. This variant can be utilised for
scenarios such as reasoning under unique name assumption.

A comparison was done between the provers generated using the tableau
calculus with dynamically generated tableau rules, and a prover with fixed rules
for dealing with TBox and RBox statements. The results show the former is
more optimised for unsatisfiable inputs. The analysis of the reduction in the
branching points and complexity is left as future work.

Other future plans include studying the relationship between properties of a
logic and its required minimal blocking criteria. That is, expressing side condi-
tions that can be used to control the unrestricted blocking rule to be applied as
little as possible. This should be done without endangering termination.

References

1. F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69(1):5–40, 2001.

2. C. L. Duc and M. Lamolle. Decidability of description logics with transitive closure
of roles in concept and role inclusion axioms. In V. Haarslev, D. Toman, and G. E.
Weddell, eds, Proc. DL’10, vol. 573 of CEUR Workshop Proceedings, 2010.

3. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL ontologies.
Semantic Web, 2(1):11–21, 2011.

4. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc.
KR’06, pp. 57–67. AAAI Press, 2006.

5. I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies. J. Logic Comput., 9(3):385–410, 1999.

6. I. Horrocks and U. Sattler. A tableau decision procedure for SHOIQ. J. Automat.
Reason., 39(3):249–276, 2007.

7. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proc. LPAR’99, vol. 1705 of LNCS, pp. 161–180. Springer, 1999.

8. M. Khodadadi, R. A. Schmidt, and D. Tishkovsky. An abstract tableau calculus
for the description logic SHOI using unrestricted blocking and rewriting. In Proc.
DL’12, vol. 846 of CEUR Workshop Proceedings, pp. 224–234, 2012.

9. M. Khodadadi, R. A. Schmidt, and D. Tishkovsky. Refined tableau with controlled
blocking for the description logic SHOI. To appear in Proc. TABLEAUX’13, 2013.

10. M. Khodadadi, R. A. Schmidt, and D. Tishkovsky. Refined tableau with controlled
blocking for the description logic SHOI. Manuscript, http://www.mettel-prover.
org/papers/controlled.pdf, 2013.

11. N. Matentzoglu, S. Bail, and B. Parsia. A corpus of OWL DL ontologies. To
appear in Proc. DL’13, 2013.

12. R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive description
logics with role negation. In Proc. ISWC+ASWC’07, pp. 438–451. Springer, 2007.

13. R. A. Schmidt and D. Tishkovsky. A general tableau method for deciding descrip-
tion logics, modal logics and related first-order fragments. In Proc. IJCAR’08, vol.
5195 of LNCS, pp. 194–209. Springer, 2008.

14. R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau calculi. Logical
Methods in Comput. Sci., 7(2):1–32, 2011.

15. R. A. Schmidt and D. Tishkovsky. Using tableau to decide description logics with
full role negation and identity. arXiv e-Print, abs/1208.1476, 2012.

16. D. Tishkovsky and R. A. Schmidt. Refinement in the tableau synthesis framework.
arXiv e-Print, abs/1305.3131, 2013.

17. D. Tishkovsky, R. A. Schmidt, and M. Khodadadi. The tableau prover generator
MetTeL2. In Proc. JELIA’12, vol. 7519 of LNAI, pp. 492–495. Springer, 2012.

18. TONES. The tones ontology repository, 5 Mar. 2013.
19. D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System description.

In Proc. IJCAR’06, LNCS, pp. 292–297. Springer, 2006.

