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Abstract. We study comparisons between interpretations in descrip-
tion logics with respect to “logical consequences” of the form of semi-
positive concepts (like semi-positive concept assertions). Such compar-
isons are characterized by conditions similar to the ones of bisimulations.
The simplest among the considered logics is a variant of PDL (propo-
sitional dynamic logic). The others extend that logic with inverse roles,
nominals, quantified number restrictions, the universal role, and/or the
concept constructor for expressing the local reflexivity of a role. The stud-
ied problems are: preservation of semi-positive concepts with respect to
comparisons, the Hennessy-Milner property for comparisons, and mini-
mization of interpretations that preserves semi-positive concepts.

1 Introduction

Bisimulation is a natural notion of equivalence arose in modal logic [23–25] and
state transition systems [20, 11]. It can be viewed as a binary relation associating
state transition systems which behave in the same way in the sense that one
system simulates the other and vice versa. Kripke models in modal logic are a
special case of labeled state transition systems.

Bisimulations have widely been studied for various variants of modal logic like
dynamic logic, temporal logic, hybrid logic and, in particular, also for description
logics (DLs) [13, 6, 14, 21]. They have been used for analyzing the expressivity
of a wide range of modal logics (see, e.g., [2] for details), for minimizing state
transition systems, as well as for concept learning in DLs (e.g., [19, 22, 10, 5]).

Bisimilarity between two states is usually defined by three conditions (the
states have the same label, each transition from one of the states can be simu-
lated by a similar transition from the other, and vice versa). For bisimulation
between two pointed-models, the initial states of the models are also required to
be bisimilar. When converse is allowed, two additional conditions are required
for bisimulation [2]. Bisimulation conditions for dealing with graded modalities
were studied in [4, 3, 12]. In the field of hybrid logic, the bisimulation condition
for dealing with nominals is well known (see, e.g., [1]). In DLs, such condi-
tions are used for dealing with inverse roles, (quantified) number restrictions
and nominals, respectively. There are also bisimulation conditions for dealing
with individuals, the universal role and the Self constructor in DLs [7, 22].
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In modal logic, bisimulation invariance has the form: if two states are bisimi-
lar then they satisfy the same set of formulas (i.e., all modal formulas are invari-
ant w.r.t. bisimulation). For the converse, the Hennessy-Milner property states
that, in finitely branching Kripke models, two states are bisimilar iff they sat-
isfy the same set of formulas. This property can be generalized for non-finitely
branching Kripke models (see, e.g., [14]).

Simulation is a notion with weaker conditions than bisimulation. It is only
“one way”, while bisimulation is “two way”. In the most common understanding,
the “ways” are related with the “transitions” but not w.r.t. comparison between
the sets of atomic formulas satisfied at the considered states. Such simulation
preserves positive existential formulas (see, e.g., [2]).

What variant of bisimulation can be used to talk about preservation of pos-
itive formulas, which may use both existential and universal modal operators?
Defining positive formulas to be the ones without ⊥ (falsity), ¬ (negation) and
→ (implication), in [15] Nguyen gave a bisimulation-based comparison between
Kripke models that preserves positive formulas in basic serial monomodal logics.
In [17] he extended the preservation result also for serial regular grammar log-
ics and proved the corresponding Hennessy-Milner property. Such bisimulation-
based comparison uses the conditions of bisimulation for “transitions” and com-
pares the sets of atomic formulas satisfied at the considered states. Bisimulation-
based comparison between Kripke models is worth studying, because it can be
used for minimizing a Kripke model w.r.t. the set of logical consequences be-
ing positive formulas. For example, after constructing a least Kripke model of a
positive modal logic program in a serial modal logic [15, 17, 8], one can minimize
it w.r.t. positive formulas to obtain a minimal Kripke model that characterizes
the program w.r.t. positive consequences. Such minimization is also applicable
to (non-serial) DLs [16, 18].

In this paper, we study bisimulation-based comparisons between interpreta-
tions in DLs. The simplest among the considered logics is ALCreg, a variant
of PDL (propositional dynamic logic). The others extend that logic with in-
verse roles, nominals, quantified number restrictions, the universal role, and/or
the concept constructor for expressing the local reflexivity of a role. The studied
problems are: preservation of semi-positive concepts with respect to comparisons,
the Hennessy-Milner property for comparisons, and minimization of interpreta-
tions that preserves semi-positive concepts. The class of semi-positive concepts
differs from the class of positive concepts in that, in the recursive definition, it
allows also ⊥. This is involved with non-seriality.

Apart from [15, 17, 8], bisimulation-based comparisons for modal logics were
studied also in [9] (and possibly other works). In [9] the notion is studied at
an abstract level for coalgebraic modal logics under the name Λ-simulation,
and the term “positive formula” is used instead of “semi-positive formula”. As
mentioned before, the term “simulation” traditionally has another meaning, and
in our opinion ⊥ should not be referred to as “positive”. At an abstract level, the
work [9] does not have a result like a Hennessy-Milner property. In the current
work, to guarantee a Hennessy-Milner property, roles in semi-positive concepts
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have a specific syntax due to the presence of the test operator. The definition of
semi-positive concepts itself in the current work is not trivial (e.g., we have that
if C is a semi-positive concept then ≤n r.¬C is also a semi-positive concept).

Our results on preservation of semi-positive concepts and the Hennessy-
Milner property w.r.t. comparisons may overlap to a certain degree with the
known ones. However, our results on “characterizing bisimulation by semi-
positive concepts” and “minimization preserving semi-positive concepts” are
completely novel.

2 Notation and Semantics of Description Logics

Our languages use a finite set ΣC of concept names (atomic concepts), a finite
set ΣR of role names (atomic roles), and a finite set ΣI of individual names. Let
Σ = ΣC ∪ΣR ∪ΣI . We denote concept names by letters like A and B, denote
role names by letters like r and s, and denote individual names by letters like a
and b.

We consider some (additional) DL-features denoted by I (inverse), O (nom-
inal), Q (quantified number restriction), U (universal role), Self. A set of DL-
features is a set consisting of some or zero of these names.

Let Φ be any set of DL-features and let L stand for ALCreg. The DL language
LΦ allows roles and concepts defined inductively as follows:

– if r ∈ ΣR then r is a role of LΦ
– if A ∈ ΣC then A is a concept of LΦ
– if R and S are roles of LΦ and C is a concept of LΦ then
• ε, R ◦ S , R t S, R∗ and C? are roles of LΦ
• >, ⊥, ¬C, C tD, C uD, ∃R.C and ∀R.C are concepts of LΦ
• if I ∈ Φ then R− is a role of LΦ
• if O ∈ Φ and a ∈ ΣI then {a} is a concept of LΦ
• if Q ∈ Φ, r ∈ ΣR and n is a natural number

then ≥ n r.C and ≤ n r.C are concepts of LΦ
• if {Q, I} ⊆ Φ, r ∈ ΣR and n is a natural number

then ≥ n r−.C and ≤ n r−.C are concepts of LΦ
• if U ∈ Φ then U is a role of LΦ
• if Self ∈ Φ and r ∈ ΣR then ∃r.Self is a concept of LΦ.

We use letters like R and S to denote arbitrary roles, and use letters like C
and D to denote arbitrary concepts. We refer to elements of ΣR also as atomic
roles. Let Σ±R = ΣR ∪ {r− | r ∈ ΣR}. From now on, by basic roles we refer
to elements of Σ±R if the considered language allows inverse roles, and refer to
elements of ΣR otherwise. In general, the language decides whether inverse roles
are allowed in the considered context.

An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , called the
domain of I, and a function ·I , called the interpretation function of I, which
maps every concept name A to a subset AI of ∆I , maps every role name r to a
binary relation rI on ∆I , and maps every individual name a to an element aI
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(R ◦ S)I = RI ◦ SI

(R t S)I = RI ∪ SI

(R∗)I = (RI)∗

(C?)I = {〈x, x〉 | CI(x)}
εI = {〈x, x〉 | x ∈ ∆I}
UI = ∆I ×∆I

(R−)I = (RI)−1

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C tD)I = CI ∪DI

(C uD)I = CI ∩DI

{a}I = {aI}
(∃r.Self)I = {x ∈ ∆I | rI(x, x)}

(∃R.C)I = {x ∈ ∆I | ∃y [RI(x, y) and CI(y)]

(∀R.C)I = {x ∈ ∆I | ∀y [RI(x, y) implies CI(y)]}
(≥ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) and CI(y)} ≥ n}
(≤ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) and CI(y)} ≤ n}

Fig. 1. Interpretation of complex roles and complex concepts.

of ∆I . The interpretation function ·I is extended to complex roles and complex
concepts as shown in Figure 1, where #Γ stands for the cardinality of the set
Γ . We write CI(x) to denote x ∈ CI , and write RI(x, y) to denote 〈x, y〉 ∈ RI .

An interpretation I is said to be serial in LΦ if, for every basic role R of LΦ
and every x ∈ ∆I , there exists y ∈ ∆I such that 〈x, y〉 ∈ RI .

We say that a role R is in the converse normal form (CNF) if the inverse
constructor is applied in R only to role names and the role U is not under the
scope of any other role constructor. Since every role can be translated to an
equivalent role in CNF,1 in this paper we assume that roles are presented in the
CNF.

3 Positive and Semi-Positive Concepts

Let Lpos
Φ be the smallest set of concepts and Lpos

Φ,∃, L
pos
Φ,∀ be the smallest sets of

roles defined recursively as follows:

– if r ∈ ΣR then r is a role of Lpos
Φ,∃ and Lpos

Φ,∀,

– if I ∈ Φ and r ∈ ΣR then r− is a role of Lpos
Φ,∃ and Lpos

Φ,∀,

– if R and S are roles of Lpos
Φ,∃ and C is a concept of Lpos

Φ

then ε, R ◦ S , R t S, R∗ and C? are roles of Lpos
Φ,∃,

– if R and S are roles of Lpos
Φ,∀ and C is a concept of Lpos

Φ

then ε, R ◦ S , R t S, R∗ and (¬C)? are roles of Lpos
Φ,∀,

– if A ∈ ΣC then A is a concept of Lpos
Φ ,

– if O ∈ Φ and a ∈ ΣI then {a} is a concept of Lpos
Φ ,

1 For example, ((r t s−) ◦ r∗)− = (r−)∗ ◦ (r− t s).
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– if Self ∈ Φ and r ∈ ΣR then ∃r.Self is a concept of Lpos
Φ ,

– if C is a concept of Lpos
Φ , R is a role of Lpos

Φ,∃ and S is a role of Lpos
Φ,∀ then

• >, C tD, C uD, ∃R.C and ∀S.C are concepts of Lpos
Φ ,

• if Q ∈ Φ, r ∈ ΣR and n is a natural number
then ≥ n r.C and ≤ n r.(¬C) are concepts of Lpos

Φ ,
• if {Q, I} ⊆ Φ, r ∈ ΣR and n is a natural number

then ≥ n r−.C and ≤ n r−.(¬C) are concepts of Lpos
Φ ,

• if U ∈ Φ then ∀U.C and ∃U.C are concepts of Lpos
Φ .

A concept of Lpos
Φ is called a positive concept of LΦ. We introduce both

Lpos
Φ,∀ and Lpos

Φ,∃ due to the test constructor of roles. The concepts ∃(A?).B and
∀((¬A)?).B are positive concepts; they are equivalent to A u B and A t B,
respectively. That the concept ≤nR.(¬A) is positive should not be a surprise,
as ∀R.A is equivalent to ≤0R.(¬A).

Let Lsp
Φ be the smallest set of concepts and Lsp

Φ,∃, L
sp
Φ,∀ be the smallest sets

of roles defined analogously to the case of Lpos
Φ , Lpos

Φ,∃, L
pos
Φ,∀ except that ⊥ is also

allowed as a concept of Lsp
Φ . We call concepts of Lsp

Φ semi-positive concepts of LΦ.

4 Bisimulation-Based Comparisons for Interpretations

Let I and I ′ be interpretations. A binary relation Z ⊆ ∆I×∆I′ is called an LΦ-
comparison between I and I ′ if the following conditions hold for every a ∈ ΣI ,
A ∈ ΣC , r ∈ ΣR, x, y ∈ ∆I , x′, y′ ∈ ∆I′ :

Z(aI , aI
′
) (1)

Z(x, x′)⇒ [AI(x)⇒ AI
′
(x′)] (2)

[Z(x, x′) ∧ rI(x, y)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧ rI

′
(x′, y′)] (3)

[Z(x, x′) ∧ rI
′
(x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(x, y)], (4)

if I ∈ Φ then

[Z(x, x′) ∧ rI(y, x)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧ rI

′
(y′, x′)] (5)

[Z(x, x′) ∧ rI
′
(y′, x′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(y, x)], (6)

if O ∈ Φ then

Z(x, x′)⇒ [x = aI ⇒ x′ = aI
′
], (7)

if Q ∈ Φ then

if Z(x, x′) holds then, for every role name r, there exists a bijection
h : {y | rI(x, y)} → {y′ | rI′(x′, y′)} such that h ⊆ Z,

(8)

if {Q, I} ⊆ Φ then (additionally)

if Z(x, x′) holds then, for every role name r, there exists a bijection
h : {y | rI(y, x)} → {y′ | rI′(y′, x′)} such that h ⊆ Z,

(9)
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if U ∈ Φ then

∀x ∈ ∆I ∃x′ ∈ ∆I
′
Z(x, x′) (10)

∀x′ ∈ ∆I
′
∃x ∈ ∆I Z(x, x′), (11)

if Self ∈ Φ then

Z(x, x′)⇒ [rI(x, x)⇒ rI
′
(x′, x′)]. (12)

For example, if Φ = {Q, I} then only the conditions (1)-(6), (8) and (9) (and
all of them) are essential.

By (2’), (7’), (12’) we denote the conditions obtained respectively from (2),
(7), (12) by replacing the second implication (⇒) by equivalence (⇔). If the
conditions (2), (7), (12) are replaced by (2’), (7’), (12’) then the relation Z is
called an LΦ-bisimulation between I and I ′ [7].

Proposition 4.1.

1. The relation {〈x, x〉 | x ∈ ∆I} is an LΦ-comparison between I and I.
2. If Z1 is an LΦ-comparison between I0 and I1, and Z2 is an LΦ-comparison

between I1 and I2, then Z1 ◦ Z2 is an LΦ-comparison between I0 and I2.
3. If Z is a set of LΦ-comparison between I and I ′ then

⋃
Z is also an LΦ-

comparison between I and I ′.

The proof of this proposition is straightforward.

Lemma 4.2. Let I and I ′ be interpretations and Z be an LΦ-comparison be-
tween I and I ′. Then the following properties hold for every concept C of Lsp

Φ ,

every role R of Lsp
Φ,∃, every role S of Lsp

Φ,∀, every x, y ∈ ∆I , every x′, y′ ∈ ∆I′ ,
and every a ∈ I:

Z(x, x′)⇒ [CI(x)⇒ CI
′
(x′)] (13)

[Z(x, x′) ∧RI(x, y)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧RI

′
(x′, y′)] (14)

[Z(x, x′) ∧ SI
′
(x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ SI(x, y)]. (15)

See the appendix for a proof of this lemma.
A concept C of LΦ is said to be preserved by LΦ-comparisons if, for any

interpretations I, I ′ and any LΦ-comparison Z between I and I ′, if Z(x, x′)
holds and x ∈ CI then x′ ∈ CI

′
. The following theorem follows immediately

from the assertion (13) of Lemma 4.2.

Theorem 4.3. All concepts of Lsp
Φ are preserved by LΦ-comparisons.

Corollary 4.4. All concepts of Lpos
Φ are preserved by LΦ-comparisons.

Let I and I ′ be interpretations, x ∈ ∆I and x′ ∈ ∆I′ . Define that:

– x is equivalent to x′ w.r.t. (concepts of) LΦ, denoted by x ≡Φ x′, if, for every
concept C of LΦ, x ∈ CI iff x′ ∈ CI′ ;
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– x is less than or equal to x′ w.r.t. concepts of Lsp
Φ (resp. Lpos

Φ ), denoted by
x ≤sp

Φ x′ (resp. x ≤pos
Φ x′), if, for every concept C of Lsp

Φ (resp. Lpos
Φ ), x ∈ CI

implies x′ ∈ CI′ ;
– x is equivalent to x′ w.r.t. concepts of Lsp

Φ , denoted by x ≡sp
Φ x′, if x ≤sp

Φ x′

and x′ ≤sp
Φ x.

We say that an interpretation I is finitely branching (or image-finite) w.r.t.
LΦ if, for every x ∈ ∆I and every basic role R of LΦ, the set {y ∈ ∆I | RI(x, y)}
is finite. We say that I is unreachable-objects-free (w.r.t. LΦ) if every element of
∆I is reachable from some aI (with a ∈ ΣI) via a path consisting of edges being
instances of basic roles (of LΦ). The following theorem comes from our work [7].

Theorem 4.5 (The Hennessy-Milner Property). Let I and I ′ be finitely
branching interpretations (w.r.t. LΦ) such that, for every a ∈ ΣI , aI ≡Φ aI

′
.

Suppose that if U ∈ Φ then either ΣI 6= ∅ and both I, I ′ are finite, or both I,
I ′ are unreachable-objects-free. Then, for every x ∈ ∆I and x′ ∈ ∆I′ , x ≡Φ x′
iff there exists an LΦ-bisimulation Z between I and I ′ such that Z(x, x′) holds.
In particular, the relation {〈x, x′〉 ∈ ∆I ×∆I′ | x ≡Φ x′} is an LΦ-bisimulation
between I and I ′.

In the rest of this section we present theorems similar to the Hennessy-Milner
property that are related to LΦ-comparisons and/or semi-positive concepts.

Theorem 4.6. Let I and I ′ be finitely branching interpretations (w.r.t. LΦ)
such that, for every a ∈ ΣI , aI ≤sp

Φ aI
′
. Suppose that if U ∈ Φ then either

ΣI 6= ∅ and both I, I ′ are finite, or both I, I ′ are unreachable-objects-free. Then,
for every x ∈ ∆I and x′ ∈ ∆I′ , x ≤sp

Φ x′ iff there exists an LΦ-comparison Z
between I and I ′ such that Z(x, x′) holds. In particular, the relation {〈x, x′〉 ∈
∆I ×∆I′ | x ≤sp

Φ x′} is an LΦ-comparison between I and I ′.

See the appendix for a proof of this theorem.
Analyzing the proof of Theorem 4.6, it can be seen that, in the case Q /∈ Φ, ⊥

is only used for showing that there exists y ∈ ∆I such that rI(x, y) holds when
proving the condition (4). If I is a serial interpretation then that property is
guaranteed. Therefore, we also have the following theorem, whose proof is very
similar to the proof of Theorem 4.6.

Theorem 4.7. Let I and I ′ be finitely branching interpretations (w.r.t. LΦ)
such that I is serial and, for every a ∈ ΣI , aI ≤pos

Φ aI
′
. Suppose Q /∈ Φ and if

U ∈ Φ then either ΣI 6= ∅ and both I, I ′ are finite, or both I, I ′ are unreachable-
objects-free. Then, for every x ∈ ∆I and x′ ∈ ∆I′ , x ≤pos

Φ x′ iff there exists an
LΦ-comparison Z between I and I ′ such that Z(x, x′) holds. In particular, the
relation {〈x, x′〉 ∈ ∆I ×∆I′ | x ≤pos

Φ x′} is an LΦ-comparison between I and I ′.

5 Characterizing Bisimulation by Semi-Positive Concepts

In the case Q ∈ Φ, there is a closer relationship between semi-positive concepts
and LΦ-bisimulation from the semantic point of view.
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Theorem 5.1. Let I and I ′ be finitely branching interpretations (w.r.t. LΦ)
such that, for every a ∈ ΣI , aI ≡sp

Φ aI
′
. Suppose Q ∈ Φ and if U ∈ Φ then both

I and I ′ are unreachable-objects-free. Then, for every x ∈ ∆I and x′ ∈ ∆I
′
,

x ≡sp
Φ x′ iff there exists an LΦ-bisimulation Z between I and I ′ such that Z(x, x′)

holds. In particular, the relation {〈x, x′〉 ∈ ∆I × ∆I
′ | x ≡sp

Φ x′} is an LΦ-
bisimulation between I and I ′.

See the appendix for a proof of this theorem.

Corollary 5.2. Let I and I ′ be finitely branching interpretations (w.r.t. LΦ)
such that, for every a ∈ ΣI , aI ≡sp

Φ aI
′
. Suppose Q ∈ Φ and if U ∈ Φ then both

I and I ′ are unreachable-objects-free. Then, for every x ∈ ∆I and x′ ∈ ∆I
′
,

x ≡sp
Φ x′ iff x ≡Φ x′.

This corollary follows from Theorems 5.1 and 4.5.

Example 5.3. We show that the assumption Q ∈ Φ of Theorem 5.1 is neces-
sary. Let Φ = ∅, ΣI = {a}, ΣC = {A,B}, ΣR = {r} and let I, I ′ be the
interpretations specified as follows.

– ∆I = {u, v0, v1, v2}, aI = u, rI = {〈u, v0〉, 〈u, v1〉, 〈u, v2〉}, AI = {v1, v2},
BI = {v2},

– ∆I
′

= {u, v0, v2}, aI
′

= u, rI
′

= {〈u, v0〉, 〈u, v2〉} and AI
′

= BI
′

= {v2}.

Notice that I ′ is obtained from I by deleting v1. Observe that there are LΦ-
comparisons between I and I ′ as well as between I ′ and I, but there is no
LΦ-bisimulations between I and I ′. In particular, aI ≡sp

Φ aI
′
, but aI 6≡Φ aI

′
. C

The point of the above example is that, when Q /∈ Φ, if v0, v1, v2 are pairwise
different r-successors of u, v0 ≤sp

Φ v1 and v1 ≤sp
Φ v2 then the edge 〈u, v1〉 ∈ rI is

not essential for the semantics of semi-positive concepts. Also note that, when
Q /∈ Φ, if v and v′ are different r-successors of u such that v ≡sp

Φ v′ then the
edge 〈u, v′〉 ∈ rI is not essential for the semantics of semi-positive concepts.

Suppose Q /∈ Φ and let I be a finitely branching interpretation. We say that
I is Lsp

Φ -tidy if it is unreachable-objects-free and, for every x, y, y′, y′′ ∈ ∆I and
every basic role R of LΦ,

– if {〈x, y〉, 〈x, y′〉} ⊆ RI and y ≡sp
Φ y′ then y = y′,

– if {〈x, y〉, 〈x, y′〉, 〈x, y′′〉} ⊆ RI , y ≤sp
Φ y′ and y′ ≤sp

Φ y′′ then y = y′ or y′ = y′′

or (Self ∈ Φ and y′ = x).

Theorem 5.4. Suppose Q /∈ Φ. Let I and I ′ be finitely branching and Lsp
Φ -tidy

interpretations such that, for every a ∈ ΣI , aI ≡sp
Φ aI

′
. Then, for every x ∈ ∆I

and x′ ∈ ∆I′ , x ≡sp
Φ x′ iff there exists an LΦ-bisimulation Z between I and I ′

such that Z(x, x′) holds. In particular, the relation {〈x, x′〉 ∈ ∆I ×∆I′ | x ≡sp
Φ

x′} is an LΦ-bisimulation between I and I ′.

See the appendix for a proof of this theorem.
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6 Auto-Bisimulation and Minimization

In this section, we recall some results of our manuscript [7], not published in [6].

An LΦ-bisimulation between I and itself is called an LΦ-auto-bisimulation of I.
An LΦ-auto-bisimulation of I is said to be the largest if it is larger than or equal
to (⊇) any other LΦ-auto-bisimulation of I.

Proposition 6.1. For every interpretation I, the largest LΦ-auto-bisimulation
of I exists and is an equivalence relation. C

Given an interpretation I, by ∼Φ,I we denote the largest LΦ-auto-
bisimulation of I, and by ≡Φ,I we denote the binary relation on ∆I with the
property that x ≡Φ,I x

′ iff x is LΦ-equivalent to x′.

Theorem 6.2. For every finitely branching interpretation I, ≡Φ,I is the largest
LΦ-auto-bisimulation of I (i.e. the relations ≡Φ,I and ∼Φ,I coincide).

An interpretation I is said to be minimal among a class of interpretations
if I belongs to that class and, for every other interpretation I ′ of that class,
#∆I ≤ #∆I

′
(the cardinality of ∆I is less than or equal to the cardinality

of ∆I
′
).

A concept assertion of LΦ (resp. Lsp
Φ ) is an expression of the form C(a),

where C is a concept of LΦ (resp. Lsp
Φ ). We say that an interpretation I satisfies

a concept assertion C(a) if a ∈ CI . We say that I satisfies the same concept
assertions of LΦ (resp. Lsp

Φ ) as an interpretation I ′ if, for every concept assertion
C(a) of LΦ (resp. Lsp

Φ ), I satisfies C(a) iff I ′ satisfies C(a).

6.1 The Case without Q and Self

The quotient interpretation I/∼Φ,I of I w.r.t. ∼Φ,I is defined as usual:

– ∆I/∼Φ,I = {[x]∼Φ,I | x ∈ ∆I}, where [x]∼Φ,I is the abstract class of x
w.r.t. ∼Φ,I

– aI/∼Φ,I = [aI ]∼Φ,I , for a ∈ ΣI
– AI/∼Φ,I = {[x]∼Φ,I | x ∈ AI}, for A ∈ ΣC
– rI/∼Φ,I = {〈[x]∼Φ,I , [y]∼Φ,I 〉 | 〈x, y〉 ∈ rI}, for r ∈ ΣR.

Theorem 6.3. Suppose Φ ⊆ {I,O, U} and let I be an unreachable-objects-free
interpretation. If I/∼Φ,I is finitely branching then it is a minimal interpretation
that satisfies the same concept assertions of LΦ as I.

6.2 The Case with Q and/or Self

For the case when Q ∈ Φ or Self ∈ Φ, in order to obtain a result similar to
Theorem 6.3, we introduce QS-interpretations as follows.

A QS-interpretation is a tuple I = 〈∆I , ·I , QI , SI〉, where
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– 〈∆I , ·I〉 is an interpretation,
– QI is a function that maps every basic role to a function ∆I ×∆I → N such

that QI(R)(x, y) > 0 iff 〈x, y〉 ∈ RI , where N is the set of natural numbers,
– SI is a function that maps every role name to a subset of ∆I .

If I is a QS-interpretation then we redefine

(∃r.Self)I = {x ∈ ∆I | x ∈ SI(r)}
(≥ nR.C)I = {x ∈ ∆I | Σ{QI(R)(x, y) | CI(y)} ≥ n}
(≤ nR.C)I = {x ∈ ∆I | Σ{QI(R)(x, y) | CI(y)} ≤ n}.

Other notions for interpretations remain unchanged for QS-interpretations.
For I being an interpretation, the quotient QS-interpretation of I w.r.t.∼Φ,I ,

denoted by I/QS∼Φ,I , is the QS-interpretation I ′ = 〈∆I′ , ·I′ , QI′ , SI′〉 such that:

– 〈∆I′ , ·I′〉 is the quotient interpretation of I w.r.t. ∼Φ,I
– for every basic role R and every x, y ∈ ∆I ,

QI
′
(R)([x]∼Φ,I , [y]∼Φ,I ) = max

x′∈[x]∼Φ,I
#{y′ ∈ [y]∼Φ,I | 〈x′, y′〉 ∈ RI}

– for every role name r,

SI
′
(r) = {[x]∼Φ,I | 〈x, x〉 ∈ rI}.

Note that, in the case when Q ∈ Φ, we have

QI
′
(R)([x]∼Φ,I , [y]∼Φ,I ) = #{y′ ∈ [y]∼Φ,I | 〈x, y′〉 ∈ RI}.

Here is a counterpart of Theorem 6.3, with no restrictions on Φ:

Theorem 6.4. Let I be an unreachable-objects-free interpretation. If I/QS∼Φ,I is
finitely branching then it is a minimal QS-interpretation that satisfies the same
concept assertions of LΦ as I.

7 Minimization Preserving Semi-Positive Concepts

Suppose Φ ⊆ {O,U, Self} and let I be a finitely branching interpretation such
that it is also unreachable-objects-free when U ∈ Φ. By TidyspΦ (I) we denote the
maximal Lsp

Φ -tidy sub-interpretation of I obtained by modifying I as follows:

– For each r ∈ ΣR, if {〈x, y〉, 〈x, y′〉} ⊆ rI , y ≡sp
Φ y′, y 6= y′ and y′ 6= x then

delete the pair 〈x, y′〉 from rI .
– For each r ∈ ΣR, if {〈x, y〉, 〈x, y′〉, 〈x, y′′〉} ⊆ rI , y ≤sp

Φ y′, y′ ≤sp
Φ y′′, y 6≡sp

Φ

y′, y′ 6≡sp
Φ y′′ and (Self /∈ Φ or y′ 6= x) then delete the pair 〈x, y′〉 from rI .

– Delete from the domain of I all elements not reachable from any aI (with
a ∈ ΣI) via a path consisting of edges being instances of basic roles of LΦ.

Lemma 7.1. Suppose Φ ⊆ {O,U, Self} and let I be a finitely branching in-
terpretation such that it is also unreachable-objects-free when U ∈ Φ. Then
TidyspΦ (I) satisfies the same concept assertions of Lsp

Φ as I.
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Proof. Let I ′ = TidyspΦ (I) and let Z, Z ′ be the smallest binary relations such that

the following conditions hold for every a ∈ ΣI , r ∈ ΣR, x, y ∈ ∆I , x′, y′ ∈ ∆I′ :

– Z(aI , aI) and Z ′(aI , aI),
– Z(x, x′) ∧ rI(x, y) ∧ rI′(x′, y′) ∧ y ≤sp

Φ y′ ⇒ Z(y, y′),

– Z ′(x′, x) ∧ rI(x, y) ∧ rI′(x′, y′) ∧ y′ ≤sp
Φ y ⇒ Z ′(y′, y).

It is easy to see that Z is an LΦ-comparison between I and I ′, and Z ′ is an
LΦ-comparison between I ′ and I. Therefore, by Theorem 4.3, I ′ and I satisfy
the same concept assertions of Lsp

Φ . C

Theorem 7.2. Suppose Φ ⊆ {O,U, Self}. Let I0 and I ′0 be finitely branching
interpretations such that they are also unreachable-objects-free when U ∈ Φ and
they satisfy the same concept assertions of Lsp

Φ . Let I = TidyspΦ (I0), I2 = I/∼Φ,I
if Self /∈ Φ, and I2 = I/QS∼Φ,I if Self ∈ Φ. Then I2 satisfies the same concept

assertions of Lsp
Φ as I ′0 and #∆I2 ≤ #∆I

′
0 .

Proof. Let I ′ = TidyspΦ (I ′0). By Lemma 7.1, I and I ′ satisfy the same concept
assertions of Lsp

Φ . Consequently, by Theorem 5.4, there exists an LΦ-bisimulation
between I and I ′. By Theorem 4.5, it follows that I and I ′ satisfy the same
concept assertions of LΦ. If Self /∈ Φ then let I ′2 = I ′/∼Φ,I′ , else let I ′2 =

I ′/QS∼Φ,I′ . By Theorems 6.3 and 6.4, #∆I2 = #∆I
′
2 . Since #∆I

′
2 ≤ #∆I

′
0 , it

follows that #∆I2 ≤ #∆I
′
0 . C

Theorem 7.3. Suppose Q ∈ Φ. Let I and I ′ be finitely branching interpreta-
tions such that they are also unreachable-objects-free when U ∈ Φ and they satisfy
the same concept assertions of Lsp

Φ . Then I2 = I/QS∼Φ,I is a QS-interpretation

that satisfies the same concept assertions of Lsp
Φ as I ′ and #∆I2 ≤ #∆I

′
.

Proof. Let I ′2 = I ′/QS∼Φ,I′ . By Theorem 5.1, there exists an LΦ-bisimulation

between I and I ′. By Theorem 4.5, it follows that I and I ′ satisfy the same
concept assertions of LΦ. Hence, by Theorem 6.4, #∆I2 = #∆I

′
2 . Since #∆I

′
2 ≤

#∆I
′
, it follows that #∆I2 ≤ #∆I

′
. C

Notice that minimization of interpretations that preserves semi-positive con-
cepts for the case when Q /∈ Φ and I ∈ Φ is not investigated in this section.

8 Conclusions

We have studied bisimulation-based comparisons between interpretations in a
reasonably systematic way for a large class of useful description logics and ob-
tained novel results on “characterizing bisimulation by semi-positive concepts”
and “minimization preserving semi-positive concepts”.
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A Proofs

Proof of Lemma 4.2

We prove this lemma by induction on the structures of C, R and S.
Consider the assertion (14). Suppose Z(x, x′) and RI(x, y) hold. By induction

on the structure of R we prove that there exists y′ ∈ ∆I′ such that Z(y, y′) and
RI
′
(x′, y′) hold. The base case occurs when R is a role name and the assertion

for it follows from (3). The induction steps are given below.

– Case R = ε is trivial.
– Case R = R1 ◦ R2, where R1 and R2 are roles of Lsp

Φ,∃: We have that (R1 ◦
R2)I(x, y) holds. Hence, there exists z ∈ ∆I such that RI1 (x, z) and RI2 (z, y)
hold. By the inductive assumption of (14), there exists z′ ∈ ∆I′ such that
Z(z, z′) and RI

′

1 (x′, z′) hold, and there exists y′ ∈ ∆I
′

such that Z(y, y′)
and RI

′

2 (z′, y′) hold. Since RI
′

1 (x′, z′) and RI
′

2 (z′, y′) hold, we have that
(R1 ◦R2)I

′
(x′, y′) holds, i.e. RI

′
(x′, y′) holds.

– Case R = R1 tR2, where R1 and R2 are roles of Lsp
Φ,∃, is trivial.

– Case R = R∗1, where R1 is a role of Lsp
Φ,∃: Since RI(x, y) holds, there exists

x0, . . . , xk ∈ ∆I such that x0 = x, xk = y and, for 1 ≤ i ≤ k, RI1 (xi−1, xi)
holds. Let x′0 = x′. For each 1 ≤ i ≤ k, since Z(xi−1, x

′
i−1) and RI1 (xi−1, xi)

hold, by the inductive assumption of (14), there exists x′i ∈ ∆I such that

Z(xi, x
′
i) and RI

′

1 (x′i−1, x
′
i) hold. Hence, Z(xk, x

′
k) and (R∗1)I

′
(x′0, x

′
k) hold.

Let y′ = x′k. Thus, Z(y, y′) and RI
′
(x′, y′) hold.

– Case R = (D?), where D is a concept of Lsp
Φ : By the definition of (D?)I ,

we have that DI(x) holds and x = y. By the inductive assumption of (13),
DI
′
(x′) holds, and therefore RI

′
(x′, x′) holds. By choosing y′ = x′, we have

that Z(y, y′) and RI
′
(x′, y′) hold.

– Case I ∈ Φ and R = r−: The assertion for this case follows from (5).

The assertion (15) can be proved analogously as for (14) except for the case
S = (¬C)?, where C is a concept of Lsp

Φ . The proof for this case is as follows.

Suppose Z(x, x′) and SI
′
(x′, y′) hold. Thus, (¬C)I

′
(x′) holds and x′ = y′. By

the contrapositive of the inductive assumption of (13), it follows that (¬C)I(x)
holds. By choosing y = x, Z(y, y′) and SI(x, y) hold.

Consider the assertion (13). Suppose Z(x, x′) and CI(x) hold, where C is a
concept of Lsp

Φ . We show that CI
′
(x′) holds. The cases when C is of the form

>, ⊥, A, D tD′ or D uD′ are trivial.

– Case C = ∃R.D, where R is a role of Lsp
Φ,∃ and D is a concept of Lsp

Φ : Since

(∃R.D)I(x) holds, there exists y ∈ ∆I such that RI(x, y) and DI(y) hold.
By the inductive assumption of (14) (proved earlier), there exists y′ ∈ ∆I′

such that Z(y, y′) and RI
′
(x′, y′) hold. By the inductive assumption of (13),

DI
′
(y′) holds. Therefore, CI

′
(x′) holds.

– Case C = ∀S.D, where S is a role of Lsp
Φ,∀ and D is a concept of Lsp

Φ : Let

y′ be an arbitrary element of ∆I
′

such that SI
′
(x′, y′) holds. We show that
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DI
′
(y′) holds. By the inductive assumption of (15) (proved earlier), there

exists y ∈ ∆I such that Z(y, y′) and SI(x, y) hold. Since (∀S.D)I(y) holds,
it follows that DI(y) holds. Therefore, by the inductive assumption of (13),
it follows that DI

′
(y′) holds.

– Case O ∈ Φ and C = {a}: Since {a}I(x) holds, we have that x = aI . By the
condition (7), it follows that x′ = aI

′
. Hence CI

′
(x′) holds.

– Case Self ∈ Φ and C = ∃r.Self: Since (∃r.Self)I(x) holds, we have that
rI(x, x) holds. By the condition (12), it follows that rI

′
(x′, x′) holds. Hence

CI
′
(x′) holds.

– Case Q ∈ Φ and C = (≥ n r.D), where D is a concept of Lsp
Φ : By the con-

dition (8), there exists a bijection h : {y | rI(x, y)} → {y′ | rI′(x′, y′)} such
that h ⊆ Z. Since (≥n r.D)I(x) holds, there exist pairwise different y1, . . . ,
yn ∈ ∆I such that rI(x, yi) and DI(yi) hold for every 1 ≤ i ≤ n. For each
1 ≤ i ≤ n, let y′i = h(yi). Thus, Z(yi, y

′
i) holds. By the inductive assumption

of (13), it follows that DI
′
(y′i) holds. Since rI

′
(x′, y′) and DI

′
(y′i) hold for

1 ≤ i ≤ n, and yi 6= yj for 1 ≤ i 6= j ≤ n, it follows that (≥n r.D)I
′
(x′)

holds, which means CI
′
(x′) holds.

– Case {Q, I} ⊆ Φ and C = (≥ n r−1.D), where D is a concept of Lsp
Φ , can be

proved analogously to the above case.
– Case Q ∈ Φ and C = (≤ n r.(¬D)), where D is a concept of Lsp

Φ : For

the sake of contradiction, suppose CI
′
(x′) does not hold. Thus, (¬C)I

′
(x′)

holds, which means (≥ (n + 1) r.(¬D))I
′
(x′) holds. By the condition (8),

there exists a bijection h : {y | rI(x, y)} → {y′ | rI′(x′, y′)} such that
h ⊆ Z. Since (≥ (n + 1) r.(¬D))I

′
(x′) holds, there exist pairwise different

y′1, . . . , y′n+1 ∈ ∆I
′

such that rI
′
(x′, y′i) and (¬D)I

′
(y′i) hold for all 1 ≤

i ≤ n + 1. For each 1 ≤ i ≤ n + 1, let yi = h−1(y′i). Since h is a bijection,
y1, . . . , yn+1 are pairwise different, and by the definition of h, rI(x, yi) holds
for every 1 ≤ i ≤ n + 1. For 1 ≤ i ≤ n + 1, since (¬D)I

′
(y′i) holds, by the

contrapositive of the inductive assumption of (13), it follows that (¬D)I(yi)
holds. Thus, (¬C)I(x) holds, which contradicts the assumption that CI(x)
holds. Therefore, CI

′
(x′) holds.

– Case {Q, I} ⊆ Φ and C = (≤n r−1.(¬D)), where D is a concept of Lsp
Φ , can

be proved analogously to the above case.
– Case U ∈ Φ and C = ∀U.D, where D is a concept of Lsp

Φ : Let y′ ∈ ∆I′ . By
the condition (11), there exists y ∈ ∆I such that Z(y, y′) holds. Since CI(x)
holds, it follows that DI(y) holds. By the inductive assumption of (13), it
follows that DI

′
(y′) holds. Hence CI

′
(x′) holds.

– Case U ∈ Φ and C = ∃U.D, where D is a concept of Lsp
Φ : Since CI(x)

holds, there exists y ∈ ∆I such that DI(y) holds. By the condition (10),
there exists y′ ∈ ∆I′ such that Z(y, y′) holds. By the inductive assumption
of (13), it follows that DI

′
(y′) holds. Hence CI

′
(x′) holds.

Proof of Theorem 4.6

First, suppose Z is an LΦ-comparison between I and I ′ such that Z(x, x′) holds.
We show that x ≤sp

Φ x′. Let C be an arbitrary concept of Lsp
Φ such that CI(x)
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holds. Thus, by the assertion (13) of Lemma 4.2, CI
′
(x′) holds. Therefore, x ≤sp

Φ

x′.

Conversely, we show that Z = {〈x, x′〉 ∈ ∆I × ∆I′ | x ≤sp
Φ x′} is an LΦ-

comparison between I and I ′.

– The condition (1) immediately follows from the assumption of the theorem.

– Consider the condition (2). If Z(x, x′) and AI(x) hold, then by the definition
of Z, AI

′
(x′) holds.

– Consider the condition (3). Suppose Z(x, x′) and rI(x, y) hold. Let S =
{y′ ∈ ∆I

′ | rI′(x′, y′)}. We show that there exists y′ ∈ S such that Z(y, y′)
holds. Since (∃r.>)I(x) holds and x ≤sp

Φ x′, it follows that (∃r.>)I
′
(x′) holds.

Consequently, S 6= ∅. Since I ′ is finitely branching, S must be finite. Let the
elements of S be y′1, . . . , y′n. For the sake of contradiction, suppose that for
every 1 ≤ i ≤ n, Z(y, y′i) does not hold, which means that y 6≤sp

Φ y′i. Thus,
for every 1 ≤ i ≤ n, there exists a concept Ci of Lsp

Φ such that CIi (y) holds,

but CI
′

i (y′) does not. Let C = ∃r.(C1 u . . . u Cn). Thus, CI(x) holds, but

CI
′
(x′) does not. This contradicts x ≤sp

Φ x′. Hence, there exists y′i ∈ S such
that Z(y, y′i) holds.

– Consider the condition (4). Suppose Z(x, x′) and rI
′
(x′, y′) hold. Let S =

{y ∈ ∆I | rI(x, y)}. We show that there exists y ∈ S such that Z(y, y′)
holds. For the sake of contradiction, suppose S = ∅. Thus, (∀r.⊥)I(x) holds.
Since x ≤sp

Φ x′, it follows that CI
′
(x′) holds, and hence ⊥I′(y′) holds, which

is a contradiction. Therefore, S 6= ∅. Since I is finitely branching, S must be
finite. Let y1, . . . , yn be all the elements of S. For the sake of contradiction,
suppose that for every 1 ≤ i ≤ n, Zi(yi, y

′) does not hold, i.e. yi 6≤sp
Φ y′.

Thus, for every 1 ≤ i ≤ n, there exists a concept Ci of Lsp
Φ such that CIi (yi)

holds, but CI
′

i (y′) does not. Let C = ∀r.(C1t . . .tCn). Clearly, CI(x) holds,

but CI
′
(x′) does not. This contradicts x ≤sp

Φ x′. Hence, there exists yi ∈ S
such that Z(yi, y

′) holds.

– The conditions (5) and (6) can be proved analogously as for the conditions (3)
and (4), respectively.

– Consider the condition (7) and the case O ∈ Φ. Suppose Z(x, x′) holds and
x = aI . Since {a}I(x) holds and x ≤sp

Φ x′, it follows that {a}I′(x′) holds.

Therefore, x′ = aI
′
.

– Consider the condition (8) and the case Q ∈ Φ. Suppose Z(x, x′) holds, i.e.,
x ≤sp

Φ x′. Let S = {y ∈ ∆I | rI(x, y)} and S′ = {y′ ∈ ∆I
′ | rI′(x′, y′)}.

Since I and I ′ are finitely branching, S and S′ must be finite. Let m = #S
and n = #S′. We first show that m = n. If m > n then x ∈ (≥mr.>)I and
x′ /∈ (≥mr.>)I

′
, which contradicts x ≤sp

Φ x′. If m < n then x ∈ (≤mr.¬⊥)I

and x′ /∈ (≤mr.¬⊥)I
′
, which contradicts x ≤sp

Φ x′. Therefore m = n. Let
S = {y1, . . . , ym}. We can try to construct a bijection h : S → S′ such that
h ⊆ Z as follows. For each i from 1 to m :

• If there exists y′ ∈ S′\{h(y1), . . . , h(yi−1)} such that Z(yi, y
′) holds then

set h(yi) := y′ and continue with the next i.



Bisimulation-Based Comparisons for Interpretations 17

• Consider the other case. By the assertion (3), there exists y′ ∈ S′ such
that Z(yi, y

′) holds. Nondeterministically choose 1 ≤ j < i such that
h(yj) = y′, exchange yi and yj , and go back to the previous step.

For the sake of contradiction, suppose that for some 1 ≤ i ≤ m, ev-
ery possible run of the above loop does not terminate. There must ex-
ist S0 ⊆ {y1, . . . , yi−1} such that, for every y ∈ S0 ∪ {yi} and every
y′ ∈ S′, if Z(y, y′) holds then y′ ∈ h(S0). Let S0 ∪ {yi} = {u1, . . . , uh}
and S′ \ h(S0) = {v1, . . . , vk}. We have h + k = m + 1, hence h > m − k.
For each 1 ≤ i ≤ h and 1 ≤ j ≤ k, since Z(ui, vj) does not hold, there exists

a concept Ci,j of Lsp
Φ such that CIi,j(ui) holds, but CI

′

i,j(vj) does not. For
1 ≤ i ≤ h, let Ci = Ci,1u . . .uCi,k. Then let C = C1t . . .tCh. Observe that

{u1, . . . , uh} ⊆ CI and {v1, . . . , vk} ∩ CI
′

= ∅. Thus, x ∈ (≥ h r.C)I and
x′ /∈ (≥h r.C)I

′
, which contradicts the assumption that x ≤sp

Φ x′. Therefore,
there exists a bijection h : S→ S′ such that h ⊆ Z.

– The condition (9) can be proved analogously as for the condition (8).

– Consider the condition (10) and the case U ∈ Φ. By the assumption of this
case, either ΣI 6= ∅ and both I, I ′ are finite, or both I, I ′ are unreachable-
objects-free.

• Case ΣI 6= ∅ and both I, I ′ are finite: Let x ∈ ∆I and let x′1, . . . , x
′
n

be all the elements of ∆I
′
. For the sake of contradiction, suppose that

for every 1 ≤ i ≤ n, x 6≤sp
Φ x′i. Thus, for every 1 ≤ i ≤ n, there exists

a concept Ci of Lsp
Φ such that CIi (x) holds, but CI

′

i (x′i) does not. Let
C = C1 u . . . u Cn and a ∈ ΣI . Since CI(x) holds, (∃U.C)I(aI) also
holds, but (∃U.C)I

′
(aI

′
) does not, which contradicts the assumption

aI ≤sp
Φ aI

′
.

• Case both I, I ′ are unreachable-objects-free: The condition (10) follows
from the conditions (1), (3) and (4).

– The condition (11) can be proved analogously as for the condition (10).

– Consider the condition (12) and the case Self ∈ Φ. Suppose Z(x, x′)
and rI(x, x) hold. Since (∃r.Self)I(x) holds and x ≤sp

Φ x′, it follows that

(∃r.Self)I
′
(x′) holds. Hence, rI

′
(x′, x′) holds.

Proof of Theorem 5.1

If Z is an LΦ-bisimulation between I and I ′ such that Z(x, x′) holds then, by
Theorem 4.5, x ≡Φ x′, and hence x ≡sp

Φ x′. For the remaining assertions of

the current theorem, we show that Z = {〈x, x′〉 ∈ ∆I × ∆I′ | x ≡sp
Φ x′} is an

LΦ-bisimulation between I and I ′.

– The condition (1) immediately follows from the assumption of the theorem.

– Consider the condition (2’). Suppose Z(x, x′) holds. By the definition of Z,
AI(x) holds iff AI

′
(x′) holds.

– Consider the condition (7’) and the case O ∈ Φ. Suppose Z(x, x′) holds.
Thus, {a}I(x) holds iff {a}I′(x′) holds. That is, x = aI iff x′ = aI

′
.
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– Consider the condition (12’) and the case Self ∈ Φ. Suppose Z(x, x′) holds.
Thus, (∃r.Self)I(x) holds iff (∃r.Self)I

′
(x′) holds. That is, rI(x, x) holds

iff rI
′
(x′, x′) holds.

– Consider the condition (8) and the case Q ∈ Φ. Suppose Z(x, x′) holds, i.e.,
x ≡sp

Φ x′. Let S = {y ∈ ∆I | rI(x, y)} and S′ = {y′ ∈ ∆I
′ | rI′(x′, y′)}.

Since I and I ′ are finitely branching, S and S′ must be finite. As shown in
the proof of Theorem 4.6, there exists a bijection h : S → S′ such that, if
h(y) = y′ then y ≤sp

Φ y′. Analogously, there exists a bijection h′ : S′ → S
such that, if h′(y′) = y then y′ ≤sp

Φ y. Therefore, there must exist a bijection
h2 : S→ S′ such that, if h2(y) = y′ then y ≡sp

Φ y′.
– The condition (9) can be proved analogously as for the condition (8).
– The conditions (3) and (4) follow from the condition (8).
– The conditions (5) and (6) follow from the condition (9).
– Consider the conditions (10) and (11) and the case U ∈ Φ. By assumption,

both I and I ′ are unreachable-objects-free. The condition (10) follows from
the conditions (1), (3) and (4). Analogously, the condition (11) also holds.

Proof of Theorem 5.4

Let Z = {〈x, x′〉 ∈ ∆I ×∆I′ | x ≡sp
Φ x′}. Analyzing the proof of Theorem 5.1,

it suffices to show that the condition (3) holds (the conditions (4), (5) and (6)
can be proved in a similar way). Suppose Z(x, x′)∧rI(x, y) holds. We show that
there exists y′ such that Z(y, y′) ∧ rI′(x′, y′) holds. This is trivial for the case
when Self ∈ Φ and y = x. So, suppose Self /∈ Φ or y 6= x. Analogously to
the proof of Theorem 4.6, it can be shown that there exists y′2 ∈ ∆I

′
such that

rI
′
(x′, y′2) holds and y ≤sp

Φ y′2. Dually, there exists y′1 ∈ ∆I
′

such that rI
′
(x′, y′1)

holds and y′1 ≤
sp
Φ y. Similarly, there exist y1, y2 ∈ ∆I such that rI(x, y1) and

rI(x, y2) hold, y1 ≤sp
Φ y′1 and y′2 ≤

sp
Φ y2. Hence y1 ≤sp

Φ y ≤sp
Φ y2. Since I is

Lsp
Φ -tidy, either y = y1 or y = y2. Since y1 ≤sp

Φ y′1 ≤
sp
Φ y and y ≤sp

Φ y′2 ≤
sp
Φ y2, it

follows that y ≡sp
Φ y′1 or y ≡sp

Φ y′2, which completes the proof.


