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Abstract. The introduction of defeasible reasoning in description logics has been
a main research topic in the field in the last years. Despite the fact that various
interesting formalizations of nonmonotonic reasoning for the TBox have been
proposed, the application of such a kind of reasoning also to ABoxes is more
problematic. In what follows we are going to present the adaptation for the ABox
of a classical nonmonotonic form of reasoning, namely Lehmann and Magidor’s
Rational Closure. We present both a procedural and a semantical characterization,
and we conclude the paper with a comparison between our and other analogous
proposals.

1 Introduction

In the last years it has become apparent the need for the introduction of forms of uncer-
tain and non-classical reasoning in the field of formal ontologies; hence, considering the
main role of description logics (DLs), endowing DLs with non-monotonic features is
an important problem from the point of view of knowledge representation and reason-
ing. Indeed, there have been various proposals for the introduction of non-monotonic
reasoning in DLs and similarly structured logics, mostly ranging from preferential ap-
proaches [8,9,10,13,18,23] to circumscription [2], amongst others [1,3,4,7,11,15].

The preferential approach, that has been formalized for the propositional languages
mainly in the 90’s [20,22], turns out to be particularly promising for a number of rea-
sons. Firstly, it provides a thorough analysis of the properties that any non-monotonic
consequence relation considered ‘well-behaved’ is supposed to satisfy, which plays a
central role in assessing how intuitive the obtained results are; secondly, it allows for
many decision problems to be reduced to classical entailment checking, sometimes
without blowing up the computational complexity with respect to the classical case,
and, thirdly, it has a well-known connection with belief revision [16,19]. It is reason-
able to expect that most of these features will transfer to extensions for DLs.

In what follows we are going to present the adaptation for the ABox of a classi-
cal nonmonotonic form of reasoning, Lehmann and Magidor’s Rational Closure. Else-
where [6,10] we have taken under consideration the Rational Closure of a defeasible
knowledge base composed only of defeasible inclusion axioms, i.e. inclusion axioms
C <∼D read as ‘an object falling under the concept C typically falls also under the con-
cept D’, and we are going to briefly review such a procedure in the following section.



Instead, here we are going to take under consideration knowledge bases composed also
of an ABox A containing information about specific individuals, as C(a) (‘the individ-
ual a falls under the concept C’) or r(a, b) (the individual a is connected to the individ-
ual b through the role r): we shall present a procedure defining rational closure for the
ABox, giving also a semantic characterization (Section 3). Eventually in Section 4 we
shall compare the proposed procedure with other ones in the field.

2 Preliminaries

ALC language and semantics. We shall present our work for the description logic
ALC, but it is adaptable also to other more expressive description logics. The language
of the description logic ALC is built up from a finite set of concept names NC and a
finite set of role names NR such that NC ∩ NR = ∅. A concept name is denoted by A
and a role name by r. Complex concepts are denoted by C,D, . . ., and are built in the
usual way according to the rule: C ::= A | ¬C | C uC | ∃r.C | >. Concepts built with
the constructors t and ∀, as well as the concept ⊥, are defined in terms of the others in
the usual way. We denote the set of all ALC concepts by L.

The semantics of ALC is a standard set theoretic semantics. An interpretation is
a structure I := 〈∆I , ·I〉, where ∆I is a non-empty set called the domain, and ·I is
an interpretation function mapping concept names A ∈ NC into subsets AI of ∆I ,
and mapping role names r ∈ NR into binary relations rI over ∆I × ∆I . Given an
interpretation I = 〈∆I , ·I〉, ·I is extended to interpret complex concepts in the fol-
lowing way: (¬C)I = ∆I \ CI , (C uD)I = CI ∩DI , and (∃r.C)I = {x ∈ ∆I |
for some y, (x, y) ∈ rI and y ∈ CI}.

Given C,D ∈ L, C v D is a subsumption statement. C ≡ D is an abbreviation for
both C v D and D v C. An ALC knowledge base K is composed by a TBox T and
an ABox A. A TBox T is a finite set of subsumption statements. An interpretation I
satisfies C v D (denoted I  C v D) if and only if CI ⊆ DI . C v D is (classically)
entailed by a TBox T , denoted T |= C v D, if and only if I  C v D for every I
such that I  E v F for all E v F ∈ T . An ABox A is a set of assertions about
individuals. Let D be a set of individuals {a, b, c, . . .}, that are interpreted in 〈∆I , ·I〉
as elements of the domain ∆I , i.e. aI ∈ ∆I . The admissible assertions in ALC have
the form C(a) and r(a, b), where I  C(a) if and only if aI ∈ CI and I  r(a, b) if
and only if 〈aI , bI〉 ∈ rI .

Hence, a classical ALC knowledge base K is composed by a finite TBox T and a
finite ABox A (K = 〈A, T 〉), both of them possibly empty.

Rational Closure of the TBox. In order to formalize defeasible reasoning in DLs,
we introduce a form of defeasible subsumption statements, indicated as C <∼D and
read as ‘the individuals falling under the concept C typically fall also under the con-
cept D’ [6,10]. Hence, a defeasible knowledge base K is composed also by a DBox D,
a finite set of defeasible subsumption statements (K = 〈A, T ,D〉). Here we recall
the procedure to formalize the Rational Closure of a set of inclusion axioms, without
considering the information about the individuals, i.e. we present the procedure to de-
termine the Rational Closure of a knowledge base composed only of TBox and Dbox,
〈T ,D〉.We shall indicate the inference relation corresponding to the rational closure



with `rat. The procedure below, appropriate for deciding `rat, has been originally pre-
sented in [13], and the reader should look at such a paper for a better insight on the
procedure.

Step 1. Let D (resp., T ) be the set containing the materializations of the axioms in D (resp.,
T ), i.e. D = {¬C t D | C <

∼D ∈ D} (resp., T = {¬C t D | C v D ∈ T });
by materialization of an inclusion axiom C <

∼D or C v D we indicate the concept that
expresses in the language the same inclusion relation as the one expressed by the axiom (if
an object falls under C, then it falls also under D).
We determine an exceptionality ranking of the sequents in D using T and D. A concept C
is considered exceptional in a knowledge base 〈T ,D〉 only if

|=
l

T u
l

D v ¬C.

If a concept C is exceptional in 〈T ,D〉, also all the defeasible inclusion axioms having C
as antecedent are considered exceptional. Given a knowledge base 〈T ,D〉, we can define a
function E that gives back the exceptional axioms in D (E(D) = {C <

∼D | |=
d

T ud
D v ¬C}).1 Given 〈T ,D〉 we can construct a sequence E0, E1, . . . starting with E0 = D

and setting Ei+1 = E(Ei). Since D is a finite set, the construction will terminate with a
(empty or not-empty) fixed point of E.

Step 2 We define a ranking function r that associates to every axiom in D a number, representing
its level of exceptionality:

r(C <
∼D) =

{
i if C <

∼D ∈ Ei and C <
∼D /∈ Ei+1

∞ if C <
∼D ∈ Ei for every i .

We indicate with Di the set of the defeasible axioms having i as ranking value. Hence a set D
is partitioned into the sets D1, . . . ,Dn,D∞, for some n, and with D∞ possibly empty. It is
possible to define a new knowledge base 〈T ′,D′〉, with T ′ = T ∪{C v D | C <

∼D ∈ D∞}
and D′ = D/D∞. The only difference between 〈T ,D〉 and 〈T ′,D′〉 is that the classical
knowledge that was ‘implicitly contained’ in D is now moved into T , and the set D′ is
partitioned by the ranking function r into D1, . . . ,Dn, without any axiom with ∞ as ranking
value. We shall indicate with δi the default concept obtained from the conjunction of all the
materializations of rank i or higher (δi =

d
(
⋃

i≤j≤n Dj)).
Step 3. Now, given a knowledge base 〈T ,D〉 we can define the inference relation `rat.

Definition 1. 〈T ,D〉 `rat C <
∼D iff |=

d
T ′u δiuC v D, where δi is the first element of

the sequence 〈δ0, . . . , δn〉 s.t. 6|=
d

T ′ u δi v ¬C; if there is no such element, 〈T ,D〉 `rat

C <
∼D iff |=

d
T ′ uC v D. Moreover, 〈T ,D〉 `rat C v D iff 〈T ,D〉 `rat C u¬D <

∼⊥.

The inference relation `rat satisfies the DL-translation of the properties character-
izing rational consequence relations, and, since the entire procedure consists of a finite
number of classical decisions, it is implementable using already existing DL reasoners,
and the complexity of the decision problem does not increase w.r.t. the classical one
(i.e., the it is ExpTime-complete for ALC). The semantic characterization presented
here below strengthens the claim that the above procedure is the DL-correspondent of
rational closure.

1 This is the only difference between the present procedure and the original one in [13]. The lat-
ter is a syntactical procedure still lacking of a semantics, and the condition for the exception-
ality of a concept C is T ∪ Dv |= > v ¬C (Dv = {C v D | C <

∼D ∈ D}), while the se-
mantics presented in what follows suggests that the correct condition is |=

d
T u

d
D v ¬C.



Semantics. We can give a semantic characterization of the Rational Closure for
ALC using the notion of minimal ranked model, defined for the propositional logic by
Giordano et al. [17], and here we briefly present a reformulation forALC. More details
about the preferential and ranked models for ALC and the notion of minimal ranked
entailment can be found in [6].

First of all, we need to define the notion of ranked interpretation, that in turn is
based on the notion of modular order. Given a set X , ≺ ⊆ X ×X is a modular order if
and only if there is a ranking function rk : X −→ N s.t. for every x, y ∈ X , x ≺ y iff
rk(x) < rk(y).

Definition 2 (Ranked Interpretation). A ranked interpretation is a structure R =
〈∆R, ·R,≺R〉, where 〈∆R, ·R〉 is a DL interpretation (which we denote by IR), and≺R
is a modular order on ∆R satisfying the smoothness condition (for every C ∈ L,
min≺R(CR) 6= ∅).

As in the propositional case [20], the order≺R is read as a typicality order [3,4,5], in
this case defined over the objects in the domain [8], i.e., if we have that, for a, b ∈ ∆R,
a ≺R b is in R, then a is considered a more typical object than b in the situation de-
picted by R; for each concept C, the set min≺R(CR) = {x ∈ CR | there is no y ∈
CR s.t. y ≺R x} contains the most typical elements of C in R. A ranked interpreta-
tion R = 〈∆R, ·R,≺R〉 satisfies a defeasible subsumption statement C <∼D, denoted
by R  C <∼D, if and only if min≺R(CR) ⊆ DR, with CR and DR being the in-
terpretations in R of the concepts C and D. A knowledge base 〈T ,D〉 is consistent if
and only if there is a ranked model that satisfies all the classical inclusion axioms in T
and all the defeasible inclusion axioms in D. Given a knowledge base 〈T ,D〉, consider
the ranked models satisfying 〈T ,D〉; in order to define the consequence relation we are
interested in, we do not take all of them under consideration, but we select just some of
them, respecting the following procedure.

For every ranked modelR, we can define a function hR that, given an object in∆R,
gives back its height inR, i.e., hR(x) is the length of the longest chain x0 ≺R, . . . ,≺R
x, where x0 ∈ min≺R(∆R); we shall consider only the finitely ranked models, that
is, those models in which there is a maximal value for the height of the objects in the
domain (actually, we can prove that each ranked model have a preferentially equivalent
model that is finitely ranked).

First of all, we need to define a notion of D-compatibility of an interpretation w.r.t.
a knowledge base 〈T ,D〉. We indicate with |=R the consequence relation defined in the
classical way using all the ranked models of 〈T ,D〉, that is, 〈T ,D〉 |=R C <∼D if and
only if C <∼D is satisfied in all the ranked models satisfying 〈T ,D〉.

Definition 3. For an interpretation I and an x ∈ ∆I , the tuple 〈I, x〉 is 〈T ,D〉-
compatible if and only if 〈T ,D〉 6|=R C <∼⊥ for every C ∈ L s.t. x ∈ CI . I is said to
be 〈T ,D〉-compatible if and only if for every 〈T ,D〉-compatible tuple 〈J , y〉 there is
an x in ∆I such that, for every C ∈ L, x ∈ CI iff y ∈ CJ . A ranked interpretation R
is 〈T ,D〉-compatible if and only if the classical interpretation IR associated with it is
〈T ,D〉-compatible.

Given a classical interpretation I, we consider the set R〈I,〈T ,D〉〉 of all the ranked
interpretations that agree on I and satisfy 〈T ,D〉. If I is 〈T ,D〉-compatible, also are



the interpretations in R〈I,〈T ,D〉〉. We take under consideration as candidate models for
our consequence relation exactly the interpretations in all the 〈T ,D〉-compatible sets
R〈I,〈T ,D〉〉.

Hence, given a set R〈I,〈T ,D〉〉 composed of 〈T ,D〉-compatible and finitely ranked
interpretations, we define an order ≤I on such interpretations s.t., given two interpreta-
tions R,R′ ∈ R〈I,〈T ,D〉〉, R ≤I R′ iff for every x ∈ ∆I hR(x) ≤ hR′(x). Based on
such an ordering of the interpretations, we can define the consequence relation �≤R.

Definition 4. For a consistent knowledge base 〈T ,D〉, 〈T ,D〉 �≤R C <∼D if and only
if R  C <∼D, where R is the ≤I-minimum ranked interpretation of some 〈T ,D〉-
compatible interpretation I. If 〈T ,D〉 is unsatisfiable then every defeasible subsump-
tion statement C <∼D is in the ranked entailment of 〈T ,D〉.

Such a consequence relation corresponds to `rat.

Theorem 1. For every knowledge base 〈T ,D〉 and every defeasible subsumption rela-
tion C <∼D, 〈T ,D〉 `rat C <∼D iff 〈T ,D〉 �≤R C <∼D.

3 Rational Extensions of an ABox

Here we consider the extension of the above procedure to knowledge bases contain-
ing also an ABox: given information about particular individuals, we want to derive
what presumably holds about such individuals. Our knowledge base will have a classi-
cal ABox, composed of concept and role assertions, but, using the defeasible inclusion
axioms inD, we will be able to derive defeasible informations about the individuals: we
shall indicate with the expression ‘·C(a)’ the conclusion that the individual a presum-
ably falls under the concept C. A first attempt for this kind of procedure is presented
in [13], and a similar version of the following procedure, specified for a consequence
relation different from rational closure, appears in another paper [12], but they both
lack of a semantical characterization and the properties of the inference relation are not
properly investigated.

The procedure for the ABox is built on top of the procedure for the DBox. Hence we
work with a knowledge base 〈A, T ,D〉, and from now we assume that we have already
applied the above procedure to the knowledge base 〈T ,D〉, that is, we assume that in the
pair 〈T ,D〉 all the strict information has already been moved into the TBox T , i.e., inD,
D∞ is empty and the set has already been partitioned into D0, . . . ,Dn, for some finite
n. The basic idea of the following procedure is to consider each individual named in the
ABox as much typical as possible, that is, to associate to it all the possible defeasible
information that is consistent with the rest of the knowledge base. In order to apply the
defeasible information locally to each individual, we encode such information using the
materializations of the inclusion axioms, i.e. the sets Di and the default concepts δi.

Hence, given D =
⋃
{D0, . . . ,Dn}, we end up with the sequence of default con-

cepts ∆ = 〈δ0, . . . , δn〉, as specified in Section 2 at the Step 2 of the Rational Closure
procedure. It is easy to see that δi |= δi+1 for 1 ≤ i ≤ n, and we want to be able to
associate to each individual a ∈ O (with O being the set of the individuals named in
the ABox) the strongest formula δi that is consistent with the knowledge base. In such



a way we define a new knowledge base K̃ = 〈AD, T 〉, that we call a rational ABox
extension of the knowledge base 〈A, T ,D〉.

Definition 5 (Rational ABox extension). Given a knowledge base K = 〈A, T ,D〉
(with 〈T ,D〉 already modified in such a way thatD∞ = ∅), a knowledge base 〈AD, T 〉
is a rational extension of K = 〈A, T ,D〉 iff

– 〈AD, T 〉 is classically consistent and A ⊆ AD.
– For any a ∈ O, C(a) ∈ AD \ A iff C = δi for some i and for every δh, h < i,

〈T ,AD ∪ {δh(a)}〉 |= ⊥

The above definition identifies the extensions of the original ABox A s.t. to every
individual is associated all the defeasible information that is consistent with the rest of
the knowledge base. Using such an approach dealing with the individuals, we remain
consistent with the idea behind rational closure: the default information still respects
the exceptionality ranking, and we consider each individual as much typical as possible,
preserving the general consistency. Also the semantic characterization that is presented
here will confirm that the notion of rational ABox extension is consistent with the basic
idea of rational closure, that is, ‘pushing’ the individuals as lower as possible in the
model. Still, the main problem is that, since the individuals can be related to each other
through roles, the possibility of associating a default concept to an individual is often
influenced by the default information associated to other individuals, as shown in the
following example.

Example 1. Consider K = 〈A,D〉, with A = {r(a, b)} and D = D0 = {> <∼A u
∀R.¬A} (hence we have ∆ = 〈δ0〉 = 〈A u ∀r.¬A〉). If we associate δ0 to a, we obtain
¬A(b) and we cannot associate δ0 to b; on the other hand, if we apply δ0 to b, we derive
A(b) and we are not anymore able to associate δ0 to a. Hence, we define two possible
rational extensions of K. 2

This implies that, given a knowledge base 〈A, T ,D〉, even if the rational closure
of 〈T ,D〉 is always unique there is the possibility that we have more than one rational
ABox extensions.
Once we have defined the sequence of default concepts ∆ from D, a simple procedure
to obtain all the possible extensions of a knowledge base 〈A, T ,D〉, with O the set of
the individuals named in A, is the following:

Definition 6. [Procedure for rational ABox extensions]

– Consider the set S of all the linear orders of the individuals in O;
– For each s = 〈a1, . . . , am〉 in S do:
• Set j = 1
• Set AD = A
• Repeat until j = m+ 1:
∗ Find the first default δi ∈ ∆ such that 〈AD ∪ {δi(aj)}, T }〉 6|= > v ⊥.
∗ AD = AD ∪ {δi(aj)}.
∗ j = j + 1



• return 〈AsD, T 〉

Hence, the procedure returns a knowledge base 〈AsD, T 〉 for each s ∈ S. Now, the
following can be proven:

Proposition 1. Given a knowledge base K = 〈A, T ,D〉 and a linear order of O, the
above procedure determines a rational ABox extension of K. Contrariwise, every ratio-
nal ABox extension of K corresponds to the knowledge base generated by some linear
order of the individuals in O.

Now, if we fix a priori a linear order s on the individuals, we can say that ·C(a) is
a defeasible consequence of K = 〈A, T ,D〉 w.r.t. the order s, written ‘K `sr ·C(a)’, iff
〈AsD, T 〉 |= C(a), where 〈AsD, T 〉 is the rational extension generated from K using the
order s. The interesting point of such a consequence relation is that it still satisfies the
properties of a rational consequence relation in the following way.

Proposition 2. Given K and a linear order s of the individuals in K, the consequence
relation `sr satisfies the following properties:

(REFDL) 〈A, T , ∆〉 `sr ·C(a) for every C(a) ∈ A Reflexivity

(LLEDL)
〈A ∪ {D(b)}, T ,D〉 `sr ·C(a) � D ≡ E

〈A ∪ {E(b)}, T ,D〉 `sr ·C(a)
Left Logical Equivalence

(RWDL)
〈A, T ,D〉 `sr ·C(a) � C v D

〈A, T ,D〉 `sr ·D(a)
Right Weakening

(CTDL)
〈A ∪ {D(b)}, T ,D〉 `sr ·C(a) 〈A, T ,D〉 `sr ·D(b)

〈A, T ,D〉 `sr ·C(a)
Cautious Transitivity (Cut)

(CMDL)
〈A, T ,D〉 `sr ·C(a) 〈A, T ,D〉 `sr ·D(b)

〈A ∪ {D(b)}, T ,D〉 `sr ·C(a)
Cautious Monotonicity

(ORDL)
〈A ∪ {D(b)}, T ,D〉 `sr ·C(a) 〈A ∪ {E(b)}, T ,D〉 `sr ·C(a)

〈A ∪ {D t E(b)}, T , ∆〉 `sr ·C(a)
Left Disjunction

(RMDL)
〈A, T ,D〉 `sr ·C(a) 〈A, T ,D〉 6`sr ·¬D(b)

〈A ∪ {D(b)}, T ,D〉 `sr ·C(a)
Rational Monotonicity

For the explanation of the original propositional rules and their meaning, check the
paper by Kraus et al. [20], while, about the DL case, see [6].

Example 2. We define a DL-variation of the penguin example. Let K = {A, T ,D}
be a knowledge base where A = {P (a), B(b), Hunt(a, c), Hunt(b, c)}, T = {P v
B, I v ¬Fi}, D = {B <∼ F, P <∼ ¬F,B <∼ ∀Hunt.I, P <∼ ∀Hunt.F i}, where you can
read B as Bird, P as Penguin, F as Flying, I as Insect, Fi as Fish, and Hunt as hunts.
From D we obtain the default concepts δ0 = (¬B t F ) u (¬B t ∀Hunt.I) u (¬P t
¬F ) u (¬P t ∀Hunt.F i) and δ1 = (¬P t ¬F ) u (¬P t ∀Hunt.F i).

Applying our procedure we can identify two possible rational ABox extensions of
K: one in which we associate the default concepts first to a and then to b, and the second
one in which we consider b before a. In the former case we associate to a the default
δ1, and we derive that a is a typical penguin that hunts fishes (hence we can conclude
Fi(c)) and does not fly, while, having concluded that c is a fish, we cannot associate
anymore δ0 to b, and we have to treat b as an atypical bird, and we are not able to



associate to c the typical properties of birds, i.e., that it flies and hunts insects. On the
other hand, if we consider b before a, we associate δ0 to b, hence considering b a typical
bird that flies and hunts insects, but, being c an insect, we cannot associate with it the
concept δ1, and we have to consider a an atypical penguin. 2

From the point of view of the computational complexity, the decision problem w.r.t.
`sr has the same complexity result of the classical ABox consistency decision problem
in ALC [14].

Proposition 3. Deciding 〈A, T ,D〉 `sr ·C(a) in ALC is an ExpTime-complete prob-
lem.

In the presence of multiple rational ABox extensions, we can also define the infer-
ence relation `r, a more conservative inference relation independent from any order
on the individuals, that corresponds to the intersection of all the inference relations `sr
modeling a rational extension.

`r=
⋂
{`sr| s is a linear order on the elements of O}

However, there is the possibility that we lose the property of rational monotonicity.

Proposition 4. The inference relation `r does not always satisfy (RMDL).

The computational complexity of `r is the same as `sr, i.e., the decision procedure
is ExpTime-complete: assuming that the number of individuals named in the ABox is
n, we have to decide `sr for each possible sequences s defined on the n individuals.
That is, in the worst case we need to do n! ExpTime-complete decision procedures,
that, again, gives back an ExpTime-complete decision procedure2.

Yet, we have still to understand if there is the possibility of a decision procedure
characterized by a lower computational complexity. Notwithstanding, in many (proba-
bly most) of the real-world cases, a knowledge base would have a single rational ABox
extension, and in such cases on one hand (RMDL) is still valid, and on the other hand
the decision problem remains ExpTime-complete. To check whether a knowledge base
〈A, T ,D〉 has a single rational ABox extension, it is sufficient to associate to each in-
dividual in O the strongest δi modulo consistency w.r.t 〈A, T ,D〉, exactly as in the
procedure in Definition 6, but without adding at every step the new default information
to A. At the end, add to the knowledge base the default information associated to each
individual in A. If the new knowledge base is consistent, that is the only rational ABox
extension of 〈A, T ,D〉.

Proposition 5. In the presence of a knowledge base 〈A, T ,D〉 that has a single ra-
tional ABox extension, checking the uniqueness of the rational ABox extension and
whether 〈A, T ,D〉 `sr ·C(a) is an ExpTime-complete problem in ALC.

Example 3. Consider the KB in Example 2, where in A Hunt(b, c) is replaced with
Hunt(b, d). Then, whatever is the order on the individuals, we obtain the following
association between the default formulae and the individuals: δ1(a), δ0(b), δ0(c), and
δ0(d). Using the information in these defaults, we obtain a unique rational ABox exten-
sion. 2

2 See e.g., http://lifecs.likai.org/2012/06/better-upper-bound-for-factorial.html.



Semantics. Extending the minimal ranked model approach also to the ABoxes we can
characterize from the semantical point of view also the procedure for the rational ABox
extension we have just defined.

Consider a knowledge base 〈A, T ,D〉, where the tuple 〈T ,D〉 has already been
transformed in such a way that all the strict knowledge is in T , and D is partitioned
into D1, . . . ,Dn. First of all, we can check if it is a consistent knowledge base by
using classical reasoning. A knowledge base 〈A, T ,D〉 is consistent if there is a ranked
interpretation that satisfies all the assertions in A, all the classical subsumption axioms
in T and all the defeasible subsumption axioms in D.

Lemma 1. A knowledge base 〈A, T ,D〉 is consistent iff 〈A, T 〉 6|= ⊥ and 6|=
d
T ud

D v ⊥.

Now that we have a method to decide for the consistency of a knowledge base
〈A, T ,D〉, we can prove that the consistency of 〈A, T ,D〉 guarantees the existence of
a minimal ranked model (see Definition 4) of 〈T ,D〉 satisfying A.

Lemma 2. Let 〈A, T ,D〉 be a consistent knowledge base. Then there is at least a min-
imal ranked model of 〈T ,D〉 satisfying A.

Since the consistency of a knowledge base 〈A, T ,D〉 implies that there is at least a
minimal ranked model of 〈T ,D〉 that satisfies the ABox A, we can define a notion of
minimal model in the presence also of an ABox (again, O is the set of the individuals
named inA). We define an order ≤A between the minimal models of 〈T ,D〉 satisfying
A s.t., given R = {∆,≺, ·R} and R′ = {∆,≺′, ·R} (note that IR = IR′ ), R ≤A R′
iff hR(aI) ≤ hR′(aI

′
) for each object a inO. The minimal ABox models of 〈A, T ,D〉

are the minimal elements of the order ≤A.

Definition 7 (Minimal ABox model). R = {∆,≺, ·R} is a minimal ABox model of
a knowledge base 〈A, T ,D〉 iff it is a minimal ranked model of 〈T ,D〉 that satisfies A,
and there is not a minimal ranked model R′ = {∆,≺′, ·R} of 〈T ,D〉 that satisfies A
s.t.R′ ≤A R andR 6≤A R′.

Given the set M〈A,T ,D〉 of the minimal ABox models of 〈A, T ,D〉, we indicate
with M

〈A,T ,D〉
h the subclass of M〈A,T ,D〉 composed by the elements of M〈A,T ,D〉 in

which each element a of O has a specific height h(a) = n. We define a consequence
relation |=≤h as

〈A, T ,D〉 |=≤h C(a) iffM  C(a) for eachM∈M
〈A,T ,D〉
h

and we indicate with |=≤ the consequence relation defined by all the minimal ABox
models of 〈A, T ,D〉.

〈A, T ,D〉 |=≤ C(a) iffM  C(a) for eachM∈M 〈A,T ,D〉,

There is a correspondence between the inference relations `sr and `r and, respec-
tively, the consequence relations |=≤h and |=≤.



Proposition 6. Given a knowledge base 〈A, T ,D〉, each inference relation `sr defined
by a sequence s on the elements of O corresponds to the consequence relation |=≤h
for some h, and the other way around. The inference relation `r, corresponding to the
intersection of all `sr generated by 〈A, T ,D〉, corresponds to the consequence relation
|=≤.

Queries. Assume we want to know if a particular individual a presumably falls under
a concept C, and we want to draw the safest possible conclusion. In the presence of
multiple acceptable extensions, the classical solution is to use a skeptical approach,
i.e. to use the inference relation `r, corresponding to the intersection of all the inference
relations associated to each possible ordering s of the individuals appearing in A.

As we have seen above, in case of multiple rational extensions the computational
of the `r decision problem rises w.r.t the classical ALC decision problem. However,
in case of multiple extensions,the amount of default information associable to an indi-
vidual a can be influenced only by the individuals related to it by means of a role: it
is immediate to see that if there is no role-connection in the ABox between two indi-
viduals a and b, then the information that is associated to a does not influence at all
the amount of defeasible information that we can associate to b. Hence, we can ease
the decisions w.r.t. the ABox introducing the notion of cluster, i.e., a set of individuals
named in the ABox that are linked by means of a sequence of role connections. To do
so, given an ABoxA, we indicate withQ the symmetric and transitive closure of all the
roles in our vocabulary, i.e., the symmetric and transitive closure of

⋃
R, and with Q

the set of the pairs of individuals named in A that are connected by Q.

Definition 8 (Cluster). DefineQ as the symmetric and transitive closure of
⋃
R. Given

an individual a ∈ O, we call the cluster of a the set [a] of the individuals connected to
a through Q.

[a] = {b ∈ O | Q(a, b)}

Hence, in order to know what we can presumably conclude about a, it is sufficient to
determine `sr w.r.t. each sequence s of individuals in [a]. LetA[a] be the ABox obtained
restricting A to the statements containing individuals in [a]; the query ·C(a) is clearly
decidable using only A[a].

Proposition 7. 〈A, T ,D〉 `r ·C(a) iff 〈A[a], T ,D〉 `sr ·C(a) for every ordering s of
the individuals in A[a].

If we have a query about an individual a s.t. a is not named in the ABox (a 6∈ O), we
do not have any constraints defined in the ABox about a, we only know >(a); hence,
for each individual not appearing in the ABox, we can associate with it the strongest
default concept consistent with T , that is δ0: for any a s.t. a 6∈ O, we can derive that
presumably C(a) holds iff 〈Aa, T 〉 |= C(a), where Aa = A ∪ {δ0(a)}.

4 Related Work

Two main proposals in the field modeling defeasible reasoning in DLs, and specifically
in ALC or analogous languages, and dealing also with the ABox are the works by
Bonatti et al. [2] and by Giordano et al. [18].



The proposal by Bonatti et al. [2] is based on circumscription. From the point of
view of the quality of the inferences, in such a proposal is more difficult to draw the
expected conclusions. For example, assume that our knowledge base contains the infor-
mation that mammals typically live on land, but that whales are abnormal mammals that
do not live on the land, and the ABox contains the informationMammalu¬Whale(a).
Not knowing anything else about the individual a, we would like our reasoning system
to assume that we are dealing with a typical mammal (since, moreover, it is specified
that a is not a whale) and hence being able to derive that a lives on the land, but in
Bonatti’s proposals the conclusions we can draw change w.r.t. which concepts the user
decides to keep fixed or varying (a non-trivial choice), and the results can be that we are
not able to derive ∃Habitat.Land(a), that we are able to derive it, or we can even derive
that whales do not exist ([2], Section 2.1). In our proposal we can formalize the problem
with a knowledge base 〈A, T ,D〉 with A = {Mammal(a)} (we do not need to spec-
ify that it is not a whale), T = {Whale v Mammal,Whale v6 ∃Habitat.Land}
and D = {Mammal <∼ ∃Habitat.Land}; without needing any kind of choice from
the user, the system can derive automatically ·∃Habitat.Land(a). Moreover, we have
seen that in our procedure the computational cost of our procedure is exponential, while
in the circumscription case, for languages analogous to ALC, the complexity of the in-
stance problem is co-NExpNP ([2, Section 4.1.1]).

Closer to our approach is the work by Giordano et al. [18], that is based too on a
preferential approach. The conclusions that we can derive using the logic ALC+Tmin
are intuitive, but the complexity of the decision problem for the ABox is co-NExpNP

([18, Theorem 13]), and the procedure cannot be reduced to classical entailment.

5 Conclusions
We have started from a previous proposal that models Lehmann and Magidor’s Ratio-
nal Closure for DLs allowing to reason about defeasible subsumption axioms, and on
that we have built a procedure that extends such a kind of reasoning also for ABox
information; we have characterized such a procedure also from the semantical point of
view. Such a procedure allows to derive intuitive conclusions, the decision procedures
are entirely based on a series of classical decision steps. We are actually preparing an
implementation of the algorithm, and we are going to define analogous procedures also
for other consequence relations, still based on Rational Closure but inferentially more
powerful, as Lehmann’s Lexicographic Closure [21].
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A Proofs.

Proposition 1. Given a knowledge base K = 〈A, T ,D〉 and a linear order of O, the
above procedure determines a rational ABox extension of K. Contrariwise, every ratio-
nal ABox extension of K corresponds to the knowledge base generated by some linear
order of the individuals in O.

Proof. The first statement is quite immediate.
For the second statement, assume that there is a rational extension 〈A′, T 〉 of 〈A, T ,D〉

that cannot be generated by any sequence s of the elements ofO.A′ associates to every
individual x a default concept from ∆, that we indicate as δx.

Assume we have a rational extension 〈AD, T 〉 of 〈A, T ,D〉 that can be generated
using a sequence of elements ofO. The following procedure allows to define a sequence
s of the elements ofO s.t. 〈AD, T 〉 can be generated using s, i.e., 〈AD, T 〉 = 〈AsD, T 〉.

Take each element ofO and associate to it the strongest default concept in∆ consis-
tent with the knowledge base 〈A, T 〉 (call it γx). Look for an individual x s.t. δx = γx,
and consider x the first element of the sequence s. Update A with δx(x), and repeat
the procedure, until every individual has been associated to a default formula. With
this procedure we can generate a sequence over the dominion of the individuals that
generates 〈AD, T 〉 from 〈A, T ,D〉.

Since there is no sequence s that can generate 〈A′, T 〉, the above procedure has to
fail, that is, at some point it will not be possible to associate to any x a default γx s.t.
δx = γx. That means that, for all the remaining x, δx 6= γx; for each such x, either
δx � γx or γx � δx. The first case is not possible, since 〈A′, T 〉 would be inconsistent
(γx has to be a maximally consistent default). Hence γx � δx and δx 6= γx for all
the remaining x. In such a case, 〈A′, T 〉 would not be a rational extension of 〈AD, T 〉,
since we could have another consistent model with stronger defaults associated to some
individuals.

Proposition 2. Given K and a linear order s of the individuals in K, the consequence
relation `sr satisfies the following properties:

(REFDL) 〈A, T , ∆〉 `sr ·C(a) for every C(a) ∈ A Reflexivity

(LLEDL)
〈A ∪ {D(b)}, T ,D〉 `sr ·C(a) � D ≡ E

〈A ∪ {E(b)}, T ,D〉 `sr ·C(a)
Left Logical Equivalence

(RWDL)
〈A, T ,D〉 `sr ·C(a) � C v D

〈A, T ,D〉 `sr ·D(a)
Right Weakening

(CTDL)
〈A ∪ {D(b)}, T ,D〉 `sr ·C(a) 〈A, T ,D〉 `sr ·D(b)

〈A, T ,D〉 `sr ·C(a)
Cautious Transitivity (Cut)

(CMDL)
〈A, T ,D〉 `sr ·C(a) 〈A, T ,D〉 `sr ·D(b)

〈A ∪ {D(b)}, T ,D〉 `sr ·C(a)
Cautious Monotonicity

(ORDL)
〈A ∪ {D(b)}, T ,D〉 `sr ·C(a) 〈A ∪ {E(b)}, T ,D〉 `sr ·C(a)

〈A ∪ {D t E(b)}, T , ∆〉 `sr ·C(a)
Left Disjunction

(RMDL)
〈A, T ,D〉 `sr ·C(a) 〈A, T ,D〉 6`sr ·¬D(b)

〈A ∪ {D(b)}, T ,D〉 `sr ·C(a)
Rational Monotonicity



Proof. For REFDL, LLEDL and RWDL the proof is quite immediate. For CTDL and
CMDL, assume 〈A, T ,D〉 `sr D(y), that is 〈AsD, T 〉 � D(y). Hence, for every δi ∈ ∆
and every individual z ∈ O, δi(z) is consistent with 〈A, T 〉 iff it is consistent with 〈A∪
{D(y)}, T 〉, and the procedure associates to each individual the same default formula
either we start withA or withA∪{D(y)}. So we have that 〈AsD∪{D(y)}, T 〉 = 〈(A∪
{D(y)})sD, T 〉 and 〈AsD∪{D(y)}, T 〉 � C(x) iff 〈(A∪{D(y)})sD, T 〉 � C(x). Since �
satisfies CT and CM , we have that 〈AsD, T 〉 � C(x) iff 〈(A∪ {D(y)})sD, T 〉 � C(x),
that is, 〈A, T ,D〉 `sr ·C(x) iff 〈A ∪ {D(y)}, T ,D〉 `sr ·C(x).

For ORDL, assume that 〈A ∪ {D(y)}, T ,D〉 `sr ·C(x), 〈A ∪ {E(y)}, T ,D〉 `sr
·C(x), and that y is in the nth position in the sequence s. So, for the first n−1 elements
of s the association with the default-formulae is the same in both the models. For y,
assume that the procedure assigns δi(y) in case D(y), and δj(y) in case E(y). We
can have δi = δj , � δi v δj , or � δj v δi. In the first case the procedure for the
assignment of the defaults continues in the same way in both the knowledge bases, and
is the same also if we haveDtE(y), that is, 〈A∪{D(y)}, T ,D〉, 〈A∪{E(y)}, T ,D〉,
and 〈A ∪ {D t E(y)}, T ,D〉 are completed exactly with the same defaults, obtaining,
respectively, the ABoxes (A ∪ {D(y)})sD = A′ ∪ {D(y)}, (A ∪ {E(y)})sD,= A′ ∪
{E(y)}, and (A ∪ {D t E(y)})sD = A′ ∪ {D t E(y)}, for some ABox A′. So we
have thatA′ ∪{D(y)} � C(x) andA′ ∪{E(y)} � C(x), and, since � satisfies OR, we
obtain A′ ∪ {D tE(y)} � C(x), that is, 〈(A ∪ {y : D tE})sD, T 〉 � C(x). If δi � δj
and DtE(y), the procedure associates to y the strongest of the two defaults, that is, δi.
Since δi is not consistent withE(y), in every following consistency check the procedure
will be forced to consider that D(y) holds, and the assignment of the defaults to the
individuals will proceed as in the case where D(y) holds, and 〈A∪{DtE(y)}, T ,D〉
will entail the same formulae as 〈A ∪ {D(y)}, T ,D〉. Analogously, if δj � δi, the
default-assumption extension of 〈A∪{DtE(y)}, T ,D〉 will correspond to the one of
〈A ∪ {E(y)}, T ,D〉.

Finally, forRMDL,D(y) is consistent with 〈AsD, T 〉, so the presence ofD(y) in the
knowledge base does not influence the association of the defaults to the individuals, and
AsD ⊆ (A ∪ {D(y)})sD. Eventually, 〈AsD, T 〉 � C(x) implies 〈(A ∪ {D(y)})sD, T 〉 �
C(x), i.e. 〈A ∪ {y : D}, T ,D〉 `sr ·C(x).

Proposition 3. Deciding 〈A, T ,D〉 `sr ·C(a) in ALC is an ExpTime-complete
problem.

Proof. ABox decision in ALC is ExpTime-complete. 〈A, T ,D〉 is a knowledge base
s.t. D is partitioned into D0, . . . ,Dn and in the ABox are named m individuals (|O| =
m). Given a sequence s of the individuals in O, to decide if 〈A, T ,D〉 `sr ·C(a) we
need to do for each individual inO at most n ABox consistency checks to decide which
default we can associate to that particular individual, and, eventually, once we have
associated to each individual the strongest default possible, we have to check if C(a)
is a classical consequence of the rational ABox extension. Hence, in the worst case we
need (n∗m)+1 classicalALC decision steps, hence the complexity remains ExpTime-
complete.

Proposition 4. The inference relation `r does not satisfy (RMDL).



Proof. Consider the knowledge base 〈A,D〉 s.t.A = {r(a, b)} andD = D0∪D1, with
D0 = {> <∼A u ∀r.¬A,> <∼B} and D1 = {¬A <∼ ¬B,¬∀r.¬A <∼B}. We can define
two sequences on the individuals, s = 〈a, b〉 and s′ = 〈b, a〉, each of them defining a
different rational extension, with `r=`sr ∩ `s

′

r . We have that 〈A,D〉 `r B(a), since in
both the extensions B(a) holds (in `sr because of the axiom > <∼B and in `s′r for the
axiom ¬∀r.¬A <∼B) while we have 〈A,D〉 6`r A(a), since 〈A,D〉 6`s′r A(a). However,
〈A ∪ {¬A(a)},D〉 6`r B(a), since 〈A ∪ {¬A(a)},D〉 6`sr B(a).

Proposition 5. In the presence of a knowledge base 〈A, T ,D〉 that has a single ra-
tional ABox extension, checking the unicity of the rational ABox extension and whether
〈A, T ,D〉 `sr ·C(a) is an ExpTime-complete problem in ALC.

Proof. It works as in Proposition 4. We need at worst n∗m classical decision procedures
to associate to each individual a default concept, then another one to check the overall
consistency of the new knowledge base, and eventually, in case it is consistent, a last
one to decide whether C(a) is a classical consequence of the rational ABox extension
just defined. All in all, (n ∗m) + 2 ExpTime-complete decision procedures.

Lemma 1. A knowledge base 〈A, T ,D〉 is consistent iff 〈A, T 〉 6|= > v ⊥ and 6|=d
T u

d
D v ⊥.

Proof. ⇒: Assume 〈A, T ,D〉 is consistent i.e. there is a ranked modelR = {∆,≺, ·R}
satisfying 〈A, T ,D〉. Moreover, assume that 〈A, T 〉 |= > v ⊥. Clearly cannot be the
case.

Then assume that 〈A, T 〉 6|= > v ⊥ but |=
d
T u

d
D v ⊥. Hence there is no

object x in∆ s.t.
d
T u

d
D(x) is satisfied. Consider o to be one of the minimal objects

in R w.r.t. ≺: since R  ¬(
d
T u

d
D)(o) there is whether a strict inclusion axiom

C v D ∈ T s.t. C u ¬D(o) (impossible, since R is a model of T ) or a defeasible
inclusion axiom C <∼D ∈ D s.t. C u ¬D(o), and, since o is one of the most preferred
objects inR,R cannot be a model of 〈A, T ,D〉.
⇐: Assume 〈A, T 〉 6|= > v ⊥ and 6|=

d
T u

d
D v ⊥. Then there can be an object

o satisfying
d
T u

d
D, and we construct a model of 〈A, T ,D〉 using such an object in

the following way. Since 〈A, T 〉 6|= > v ⊥, 〈A, T 〉 has a model; add to such a model
an object o s.t.

d
T u

d
D(o), and add also all the objects which existence is forced by

o, and indicate withO the set of all the objects in such a model; impose o ≺ a for every
a ∈ O/{o}.

Now consider all the axioms C <∼D in D. For each of them, do the following. If
C uD(o), do nothing, else check if there is some individual satisfying C u¬D. If there
is no such individual, do nothing, otherwise create a new individual o′ s.t.CuD(o′), andd
T u

d
D(o′). The existence of an object satisfying CuD is guaranteed: if 6|= C v ⊥

and 6|= ¬C tD v ⊥, then we have also that 6|= C uD v ⊥. It’s easy to see that that is
the case. Assume that 6|= C v ⊥, 6|= ¬C tD v ⊥, but |= C uD v ⊥. It means that
|= C v ¬D, that in turn implies that C <∼⊥ is a preferential consequence of C <∼D,
i.e. C <∼D ∈ D∞, while we assume D∞ =∞.

Now define a preference relation in which o is preferred to all the just created indi-
viduals o′, and each o′ is preferred to all the individuals in O/o. If the creation of new
individuals is forced by the creation of the individuals o′, just place them as the less
preferred ones.



Lemma 2. Let 〈A, T ,D〉 be a consistent knowledge base. Then there is at least a mini-
mal ranked model of 〈T ,D〉 satisfying A.

Proof. LetM = {∆,≺, ·I} be a minimal ranked model of 〈T ,D〉 andM′ = {∆′, ·I′}
be a model of 〈A, T 〉 (we assume that∆∩∆′ = ∅, otherwise rename the objects appro-
priately). Now define a modelM∗ where the domain is ∆ ∪∆′ and the interpretation
is ·I ∪ ·I′ . About the preference relation, position the individuals from ∆′ according to
their ranking w.r.t. 〈T ,D〉. This ranked interpretation is 〈T ,D〉-compatible, since it is
the extension of a 〈T ,D〉-compatible ranked interpretation, and it is a minimal model
of D that also satisfies A.

Proposition 6. Given a knowledge base 〈A, T ,D〉, each inference relation `sr defined
by a sequence s on the elements of O corresponds to the consequence relation |=≤h
for some h, and the other way around. The inference relation `r, corresponding to the
intersection of all `sr generated by 〈A, T ,D〉, corresponds to the consequence relation
|=≤.

Proof. In the proofs for Section 5 in [6] we prove that, given a knowledge base 〈T ,D〉,
in the minimal ranked models there is a correspondence between the height of the ob-
jects and their ranking, that is, if an object x has a height i, then the model associates to
x the default δi. Hence, given all the minimal models of a knowledge base 〈A, T ,D〉
s.t. all the individuals in O have the same height in each model, i.e., the models defin-
ing |=≤h , we take under consideration all the models that associate to each individual
x ∈ O a specific default concept δi, s.t. it is not possible to associate a stronger de-
fault to each of them. This corresponds to the notion of rational ABox extension that,
by Proposition 1, corresponds to the inference relation `sr generated by some sequence
s. In the other direction, given a knowledge base 〈A, T ,D〉 and an inference relation
`sr, it corresponds to a rational ABox extension of 〈A, T ,D〉, and we can define the
corresponding class of minimal models using the procedure in Lemma 2.

The correspondence between `r and |=≤ is an immediate consequence.

Proposition 7 〈A, T ,D〉 `r ·C(a) iff 〈A[a], T ,D〉 `sr ·C(a) for every ordering s of
the individuals in A[a].

Proof. Assume 〈A[a], T ,D〉 6`sr ·C(a) for some s. Let s′ be a sequence of the individ-
uals named inA obtained using s as initial segment. Hence we have that 〈A, T ,D〉 6`s′r
·C(a), that implies 〈A, T ,D〉 6`r ·C(a).

Now assume 〈A, T ,D〉 6`r ·C(a). Hence, for some sequence s, 〈A, T ,D〉 6`sr
·C(a). Let s′ be a restriction of s to the individuals named in A[a]; then we have that
〈A, T ,D〉 6`s′r ·C(a).
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