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Abstract

Recently, extensions for relational database management systems
(DBMS) have been proposed to support also hierarchical structures
(complex objects) These extensions have been mamly implemented
on top of an exisung DBMS Such an approach leads to many disad-
vantages not only from the conceptual powmnt of view but also from
performance aspects This paper reports on a 3-year effort to design
and prototype a DBMS to support a generahzed relational data model,
called extended NF? (Non First Normal Form) data model which
treats flat relations, lists, and hierarchical structures in a umform way
The logical data model, a language for this model, and alternatives for
storage structures to implement generalized relations are presented and
discussed

1 Introduction

Due to growing demands in improved product quality, increased pro-
ductivity, and faster reaction on market demands, the number of 1n-
stalled systems for computer asded design (C4AD) and computer arded
manufacturing (CAM) has grown very fast during the last years To
manage ther data, these systems generally use only the file system
provided by the underlymg operating system However, as both the
number of installed systems 1n a company and the number of people
in CAD/CAM projects increase and the demand for mnteraction
among systems and among people grows, these systems begin to run
mnto problems like lack of data independence, insufficient recovery, and
mussing or madequate concurrency control, problems with which one
was faced more than two decades ago in business or commercial data
management and related areas Searching for solutions to these prob

lems has led to the development of database management systems
(DBMS), which today are mnstalled in practically all commercial and
business data processing environments Currently there 1s a strong
mterest 1 moving towards computer integrated manufacturing
(CIM), meaning the tegration of CAD, CAM, and busimness admin-
istration  CIM requires, however, that all kinds of data - at least all
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commonly relevant kinds of data - are accessible n an miegrated
fashion within one (not necessarily physically one) system It 1s rather
obvious that this problem can only be solved by applying advanced
database technology

For the business admimstration area, such advanced database tech-
nology 1s - at least partially - already available today, namely relational
database systems Systems like SQL/DS /IBM1/, DB2 /IBM2/, and
INGRES /§t76/ provide a high degree of data independence for ap-
plication programs, can combine the stored data in a very flexible way,
and offer query languages which are relatively easy to learn and to use

However, the facilities the relational data model offers to describe the
logical structure of data and dependencies between data are rather
poor, too poor for CAD/CAM/CIM environments Especially CAD
objects very often require deeply nested hserarchical structures and a
lot of different tuple types (relations) to represent all the necessary 1n-
formation (see /LP83, Ka85/, for example) For semantical (concep-
tual) as well as for performance reasons (data clustering, avoidance of
unnecessary joins) such complex objects {HIL.82/ cannot simply be
"flattened” and stored just as ordinary relations That 15, a DBMS
should provide a facility to dwrectly support Aerarchical structures

In /HL82, LP83/ it has been reported how one can extend a relational
database system to support hierarchical structures more efficiently

Ths has been done by adding some new predefined attnbute types and
system generated keys (to express hierarchical relationships and to
speed up joins), and by providing a special interface with appropnate
new operators (to msert, retrieve, update, and delete complex objects)

The advantage of this approach 1s that only few parts of the existing
DBMS have to be changed in order to support complex objects The
disadvantage 1s, however, that using this approach, complex objects
are a “special ammal” for the underlying DBMS which cannot be
treated 1n the same way as the usual (flat) objects That 1s, projections,
selections (partial retnieval), and clustering of complex objects are not
supported 1 the same way as for flat objects To avoid thus disad-
vantage and to enable a really integrated view on flat and complex
objects, a common data model which covers (umfies) both types of
data 1s mandatory

An elegant way to integrate flat relations and hierarchical structures
within one data model without giving up the elegancy and expressive
power of high level relational query languages 1s to generalize the re-
lational data model The key 1dea 1s to allow relations to occur as at-
tnibute values of tuples in relations As this means to give up the first
normal form requirement, we have called relations of that kind Non
First Normal Form (NF?) relations /JS82, PHHS83, SP82, Sch85/
(sometimes they are also called “relations with relation valued attn-
butes” /Jae85a, Jac85b, SS86/)



The main 1ssue of this paper 1s to explan the concept of NF? relations
from a user’s pomt of view as well as under implementation aspects
We will give an outhne of a generalized relational query language de-
signed to support NF? relations, and we will report on the underlymg
DBMS prototype which has been implemented within the Advanced
Information Management II (AIM-II) project at the IBM Heidelberg
Scientific Center As an extension of the “pure” NF? data model, the
AIM-II prototype also supports ordered tables (/iszs) which are con-
sidered very useful for instance m CAD/CAM applications /Lo82/
We therefore call our data model extended NF? data model

With the completion of the first runming version of our prototype after
3 years of work, the AIM-II project has come to a stage where a ret-
rospection on design and implementation of the system seems to be
appropnate Since this paper, however, cannot discuss 1n detail all as-
pects of the DBMS prototype, we have included quite a number of
references to papers which describe certain topics i the required
depth

The remainder of this paper s organized as follows In Section 2 ex-
tended NF? relations are explamned from a user’s pomnt of view A
powerful query language for the extended NF? data model 1s described
in Section 3 In Section 4 aspects of complex object implementation
(storage structures, addressing concepts, etc ) are discussed Section 5
provides some final remarks on the main 1ssues of this paper and on
future directions in the AIM-II project

2 User’s View of NF2 Tables

Let us first make some remarks on our terminology Throughout this
paper, the term “table” will be used as a generalization of “relation”
(- unordered table) and “hst” (— ordered table) - In the following,
we will only consider complex objects with Aerarchical structure
Therefore, we need not distinguish between “complex”, “hierarchucal”,
and “NF?” tables (Note Our tuple name concept (see Section 4 3)
also allows network structures i complex objects) - Finally, the
terms “flat” table and “INF” table (1¢ table in first normal form) will
be used as synonyms

Although the (extended) NF? data model has been introduced m
Section 1 pnmanly as a tool to support advanced apphcations (some-
tumes called non-standard applications |HR83/) m CAD/CAM/CIM
environments, this data model can also be extremely useful in the area
of office automation Assuming that the reader 15 probably more fa-
mubar with office automation than with CAD/CAM/CIM, we decided
to take all our examples from this area

Assume now that one wants to model a hierarchical structure, say
DEPARTMENTS, with department number (DNO), manager num-
ber (MGRNO), projects (PROJECTS), budget (BUDGET), and
equipment (EQUIP) at the top level, and with EQUIP telling quantity
(QU) and type (TYPE) for every tem PROJECTS 1n turn represents
all projects in a department, with project number (PNO), project
name (PNAME), and project members (MEMBERS) For every
member the employee number (EMPNO) and the function (FUNC-
TION) shall be shown In an IMS database this could be modelled
by defining the segment types and parent child relations as shown 1n
Fig 1 To retneve an object of this type “navigational” language con-
structs like “get next” (GN) and “get next within parent” (GNP) etc
/Da81/ have usually to be used which are completely different from
the high level language constructs used in relational database systems
To represent the information of Fig 1 i first normal form (INF) ta-
bles would require at least 4 tables (as an example see Tables 1 to 4)

As already mentioned in the introduction, the NF? data model 1s a
generalized relational data model which allows relations to have re-

357

lations as attribute values Using the NF? approach one can model the
DEPARTMENTS hierarchy as shown in Table § (A very similar
graphical representation 1s also used in /Sh84, SLTC82/) Table 5
reads as folows DEPARTMENTS 1s an unordered table (1€ a re-
lation) having 5 “top-level” attnbutes, namely DNO, MGRNO,
PROJECTS, BUDGET, and EQUIP (In our figures unordered ta-
bles (relations) are marked by putting their names into curly brackets
({ }) while ordered tables (lists) are marked by < > ) The atin-
butes DNO, MGRNO, and BUDGET are atomic while the two other
attnbutes are again relations (1e non-atomuc) PROJECTS 15 an
NF? relation having 3 top-level atinbutes PNO, PNAME, and
MEMBERS While PNO and PNAME are atomic, MEMBERS 1s
not, eic Note, that the attnbute values of BUDGET are bound to a
department - not to a project The same holds for EQUIP EQUIP 1s
a flat (1NF) relation describing quantity (QU) and type (TYPE) of
equipment used 1n a spectfic department PROJECTS, MEMBERS,
and EQUIP are all unordered tables (1¢ relations) There 1s neither
an 1mplicit nor an explicit correspondence between a project or one
of 1ts members and some kind of equipment 1n this table We assume
that employee numbers in the DEPARTMENTS table are always
umque, whereas project numbers need not be umque (incidentally, 1n
Table 5 they are)

Another example of an NF? table, which shows an “wner” table AU-
THORS, 1s Table 6 (REPORTS) AUTHORS 1s an ordered table (1 e
a hst) having just one attnibute (NAME) The attnbute DESCRIP-
TORS 15 also an “mner” table but unordered As a matter of fact,
every table can be defined to be either ordered or unordered, depend-
ing on the users’ needs It 1s easy to see that “normal” tables, 1 e tables
m first normal form hke Tables 1 to 4, are just special cases of NF?
tables

3. Query Language for NF2 Tables

In designing an appropnate query language for NF? tables we have
taken the same approach as with the relations themselves We have
used the concept of an existing relational query language
(SEQUEL/SQL /Ch76, IBM1/ with its SELECT-FROM-WHERE
constructs) and have generalized 1t analogously to our generalized re-
lations In the case of NF? tables where attnbute values may again be
tables (relations or lists) one needs a mechamism (in the SELECT
clause) to describe the result structure of a query Another mechamsm
(in the FROM clause) 1s needed to describe from which attnibute(s)
on which nesting level(s) the source data shall come from

Due to lack of space we can give here no detailed discussion of our
NF? query language Instead, we try to ilustrate how 1t works and
how 1t looks like, using some selected examples (a more detailed de-
scnption of the NF? language can be found in /PT85/ and /PA86/)

Example 1

This example shows how to retrieve all tuples of an NF? table and
to wimplicitly overtake the result structure from the structure of the
source table Assuming Table 5 being a stored table, we can stmply
write

SELECT x DNO, x MGRNO x PROJECTS, x BUDGET, x EQUIP
FROM  x IN DEPARTMENTS

or by using the usual shorthand notation

SELECT *
FROM  DEPARTMENTS

Example 2

This example shows how to retrieve all tuples of an NF? table and
to expheitly define the result structure Assume again that Table 5 1s
a stored table and that we want to pose a query whach just shows the
same structure also for the result table When exphcitly defining this



structure our query would look like the one shown in Fig 2 A good
mental model to understand the bindings of tuple vanables (range
vanables) 15 to associate them with a loop which runs over all tuples
of the relation they are bound to In the query shown in Fig 2, x”
18 bound to DEPARTMENTS That 1s, “x” 1s one time bound to the
tuple describing department number 314, one time to the tuple de-
scnbing department number 218, etc For a given binding of “x”, the
bindings of the tuple vanables "y* and “v” are known as well, namely
"y” 18 associated with the attribute value of x PROJECTS (which 13
agamn a table), and “v” 18 associated with x EQUIP (which 15 also a
table) If “x” 1s bound to the tuple describing department 314 then *y”
will be bound at one tune to the tuple of the “inner” table which de-
scribes project number 17, at another time to the tuple describing
project number 23 (Remark As there are only two projects 1n de-
partment 314 the "inner” loop associated with “y* will terminate after
having processed projects 17 and 23) For a given binding of “x” (say
to department 314) and a given binding of “y” (say to project 23) the
binding of the tuple vanable “z” 1s known, too, etc

Example 3

Here we show how to create a complex table structure based on flat
source tables (“nest” operation /Jae85a, Jac85b/) Assume Tables 1 to
4 are stored tables and that we want to get a result structure hike Table
5 The resulting query 18 shown in Fig 3

Example 4

This example demonstrates how to create a flat result table based
on a complex source table ("unnest” operation [Jae85a, Jae85b/) It
also shows the use of a projection, since the attnbutes BUDGET and
EQUIP of the source table are not used for the construction of the
result table (cf Table 7)

SELECT x DNO x MGRNO, y PNO, y PNAME, 2 EMPNO z FUNC1ION
TROM  x IN DEPARTMENTS, y IN x PROJECTS, z IN y MEMBERS

For comparison The same query against Tables 1 to 3 would appear
as follows
SELECT x DNO, x MGRNO, y PNO y PNAME, z EMPNO z FUNCTION
FROM  x IN DEPARTMENTS INF y IN PROJECTS INF

z IN MEMBERS-INF
WHERE x DNO = y DNO AND y PNO = z PNO

AND y DNO = 2z DNO

As you can see, the “flat table query” 1s more difficult to formulate
than the query against the hierarchical table The example also shows
that hierarchical tables can be used to store pre-computed (matenal-
1zed) yoins /SS81/ as well

Example §

Consider the following query posed against ['able 5 “List DNO,
MGRNO, and BUDGET of all departments which use a PC/AT *
This query - which shows the use of an EXISTS clause - can be ex-
pressed as follows
SELECT x DNO x MGRNO, x BUDGET
FROM  x IN DEPARTMENTS
WHERE EXISTS y IN x EQUIP y TYPE = PC/AT

The output would be a flat table with 3 atomuc attnibutes

Example 6

To demonstrate the use of an ALL clause 1n a query, we look at the
following problem “List DNO, MGRNO, and BUDGET of all de-
partments 1n Table 5 which have only consultants as employees ” This
can be expressed as follows
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SELECT x DNO x MGRNO, x BUDGET
FROM  x IN DEPARTMENTS
WHERE ALL y IN x PROJECTS
ALL z IN y MEMBERS FUNCTION='Consultant’

Stnce MEMBERS 15 a subtable of PROJECTS, and PROJECTS 1n
tum 1s a subtable of DEPARTMENTS, two ALL clauses are needed,
one for PROJECTS and one for MEMBERS For the contents of
the DEPARTMENTS table as shown in Table 5, the result set of this
query 1s empty, since there 1s no department which fulfills the condi-
tion 1n the WHERE clause

Example 7

Assume now that we have a flat table EMPLOYEES-INF (cf Ta-
ble 8) with employee number (EMPNO), last name (LNAME), first
name (FNAME), and sex (SEX) as attnibutes The
EMPLOYEES-INF table shall contain one tuple for each project
member and manager stored in Table 5 Using Table 5 and
EMPLOYEES-INF as input tables, the following query shall be for-
mulated “List all employees with employee number (EMPNOQ), last
name (LNAME), first name (FNAME), sex (SEX), and function
(FUNCTION) grouped by department On department level show
department number (DNO) and manager number (MGRNO) ~

To answer this query one has to compute a join between MEMBERS
(in the DEPARTMENTS table) and EMPLOYEES-INF  The re-
sulting query 1s shown in Fig 4 (Note This example shows also that
jomn attnbutes need not be on the same level in the hierarchy of the
affected source tables )

One can also express more than one join condition within a query
expression For example, one could formulate the above query such
that the manager’s name and sex are retrieved instead of MGRNO
Thus 18 shown in Fig §

Example 8

Consider now Table 6 Assume one wants to see the list of authors,
and the titles of all reports where ‘Jones’ appears as the first author
As the AUTHORS attribute 1s an ordered table (1€ a list), the query
can be expressed as follows
SELECT x AUTHORS, x TITLE
FROM  x IN REPORTS
WHERE x AUTHORS[1] = Jones’

Note that the resulting table 1s not flat because AUTHORS 1s a non-
atomuc attnbute

Besides a query language, one also needs facilities to mnsest, update,
and delete (complex) objects as well as DDL support to define the
structure of new tables Because of space limitations 1n this paper we
refer to /PT85/ and /PA86/ where these topics are explaned n detail

The language presented i this section 1s just one way to deal with the
extended NF? data model It 1s not our intention to claim that 1t 1s the
best language for this data model one could think of Especially for end
users one would like to have an easier language, maybe 1n the style of
Query-by-Example (QBE /IBM4, Z177/) However, the kind of lan-
guage we have presented here allows to utilize the full power of the
extended NF? data model and allows also to specify the structure of
the result table totally independent from the structure of the source
table(s) Other, more sumple languages, would have to show this ex-
pressive power first if they would claim to be “better” under all aspects

Especially for handling large complex objects 1n the CAD/CAM/CIM
area, a switable application programmung nterface (API) 1s required
We are currently implementing such an API which 1s similar to Lone’s
approach /Lo84/ It imbeds both DDL and DML statements of the



extended NF? data model into a high level programming language A
DDL/DML pre-compiler 1s under construction which translates the
mmbedded NF? statements into subroutine calls These subroutine calls
finally 1nvoke the AIM-II run-time system for execution

4. Implementation of NF2 Tables

4 1 Storage Structures for NF2 Objects

There are, of course, many different ways to store hierarchically

structured objects Some of them, well-known since more than a dec-

ade, are used 1n existing database management systems

® IMS storage structures IMS provides four different storage
structures for hierarchical database objects, known as HSAM,
HISAM, HDAM, and HIDAM /Da81/

® CODASYL|DBTG storage structures Since any hierarchical ob-
ject can be seen as a composition of (possibly many) 1n re-
lationships, the implementation techmques for COSETs /Sch74/
can be used for NF? objects as well Therefore, hsts, chans, and
pointer arrays together with additional options (attached/detached
where appropriate) are also candidates for the implementation of
objects in NF? tables

In Lorie’s proposal "a complex object 1s implemented as a senes of
tuples logically hnked together” /LP83, p 116/ The tuples are stored
as part of normal, flat tables with additional attributes not seen by the
user These attnbutes (entwrely managed by the system) contan the
pointer values used for chaining between tuples inside a complex ob-
ject Chuld, sibling, father, and root pointers are used for that purpose
The main advantage of this approach 1s that 1t can quite easily be im-
plemented on top of an existing DBMS (in Lore’s case System R)
without having to do major changes 1n that system (cf Section 1)

In the AIM-II project we had the opportunity to build a totally new

DBMS from scratch Therefore, much more emphasis could be put

on the integration of complex object management into deeper, more

appropnate layers of the system This was done in particular to gain

performance compared to an “on top” solutton The following de-

mands manly guided our implementation of hierarchical objects

¢ Data clustering should be supported on the complex object level
Since a complex object 1s often processed as a whole (for instance
deleted, copied, or sent to a workstation) 1t 18 rather important
that all 1ts data are stored on a relatively small page set and not
distributed among too many database pages or even different da-
tabase segments

e Data on the one hand and structural information (such as pointer
lists) on the other hand should be separated If this rule 1s stnctly
observed, "navigation” 1n a complex object (e g to retneve a cer-
tain element of a list) can be done on the structural information
without having to access the data at all

*  Fast processing (insertion, retnieval, update, and deletion) should
not only be supported for complex objects as a whole but for ar-
bitrary parts of these objects as well It should not be necessary,
for instance, to scan a complex object more or less entirely if only
one piece of data 1n that object 1s needed for further processing
by the user

Before going into the details of storage structure alternatives and es-

pecially explamming the implementation that we have chosen for

AIM-II, some more remarks on the termunology are necessary In the

extended NF2 data model we would like to distinguish between

e (NF? or INF) tables (unordered tables — relations, ordered ta-
bles — lists),

¢ (complex or flat) obyects,

e (NF? or INF) subtables,

®  (complex or flat) subobjects
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If we look at Table 5 again, these terms can be explamed by the fol-

lowing examples

*  DEPARTMENTS as a whole 1s an NI table (or a relation since
there 18 no orderng of tuples)

® Departments 314, 218, and 417 are complex objects (projects,
members, and equipment included)

®  There are two subtables (subrelations) 1n each of these complex
objects PROJECTS, which 1s hierarchically structured (NF?),
and EQUIP, which 1s flat (INF)

® The PROJECTS subtable (subrelation) in department 314 con-
tans two complex subobjects, projects 17 and 23 The EQUIP
subtable (subrelation) n department 314 contans three flat sub-
objects, stems 3278, PC/AT, and PC

® The MEMBERS subtable (subrelation) i project 17 contains
three flat subobyects, employees 39582, 56019, and 69011

As mentioned above, an essential demand for the implementation of
complex objects in AIM-II was to separate structural mformation
from data Therefore, we decided to implement a so-called M Di-
rectory (MD) for each complex object The Mim Directory 1s a tree
which contamns all the structural information of a complex object but
not 1ts data The MD layout corresponds exactly to the hierarchical
structure of the complex object The MD 1s composed of MD
subtuples (nodes i the MD tree) which are linked via pomters A
subtuple 1s the basic storage unit, like a tuple or a record in “tradi-
tional” database systems Besides MD subtuples, we also need data
subtuples to store the data of a complex object In fact, all “first level”
atomuc attribute values of a complex object/subobject and all atomic
attribute values of a flat object/subobject are stored in one data
subtuple (For example (cf Table 5) The data subtuple ‘314 56194
320,000° contamns all “first level” atomuc attribute values of department
314 (- complex object), and the data subtuple ‘17 CGA’ contains
all “first level” atomic attnibute values of project 17 (- complex sub-
object) ‘39582 Leader’ and ‘2 3278 are also data subtuples (of flat
subobjects in MEMBERS and EQUIP, respectively) } Obviously, if
an object or subobject 1s flat, 1t 18 completely stored in one data
subtuple Hence, a flat (1NF) table does not have Mim Directonies for
1ts objects at all It 1s important to see that data subtuples do not
contain any structural information about the complex objects they
belong to

There are several alternatives (see SS1 to SS3 in Fig 6) how to im-

plement the Mim Directonies for complex objects Common to all

these alternatives 1s that they always use a “special” MD subtuple

(called root MD subtuple) as the root of the MD tree Besides pointers,

1t contains some additional information (see below) about the complex

object as a whole For the other levels of the MD tree, one must come

to a decision whether

1  to use MD subtuples both for subtables and for complex subob-
Jects (— SS1, Fig 6a),

2 to use MD subtuples only for complex subobjects (— SS2, Fig
6b),

3 to use MD subtuples only for subtables (— SS3, Fig 6c)

Note, that we did not mention flat subobjects 1n thus hist Of course,
we need some structural information about flat subobjects, too (e g
their length), but this information can eastly be stored in the respective
data subtuples

In Fig 6, MD subtuples are drawn as rectangles whereas data
subtuples are ovals For our examples, we always use department 314
of Table §

Fig 6a shows storage alternative SS/ Besides the root MD subtuple,
there 15 one MD subtuple per subtable and one MD subtuple per
complex subobject The “D” and “C” values in the MD subtuples stand



for pomters, with "D” as a data pomter (MD subtuple — data
subtuple) and “C” as a child pointer (MD subtuple - MD subtuple)

At the root level of thus MD tree, there 1s one "D” pointer refernng to
that data subtuple which contains all “first level” atomuc attribute val-
ues of department 314 (DNO=314, MGRNO= 56194,
BUDGET = 320,000), and there are two “C” pointers referring to the
MD subtuples of subtables PROJECTS and EQUIP, respectively

"DCC” 1s the only entry in the root MD subtuple As a consequence,
the root MD subtuple 1s of fixed length (regarding the number of
pointers) as long as there are no structural changes in the NF? table
(e g addition of new non-atomic attributes) The MD subtuples for
PROJECTS and EQUIP at the level below the root are of vanable
length They contan one ponter for each project and equipment, re-
spectively Clearly, the number of projects i a department as well as
the amount of equipment can change over time At the next lower
level of the MD tree, the MD subtuples are of fixed length again (un-
der the above assumption concerning the absence of structural
changes) Finally, at the lowest level of the MD tree n Fig 6a, vanable
length MD subtuples represent the nstances of the MEMBERS sub-
table whach 13 1n first normal form

Obviously, the layout of storage structure SS1 1s really symmetric,
since nesther subtables nor complex subobjects are preferred or dis-
criminated regarding the allocation of MD subtuples One disadvan-
tage 1n this proposal 1s, however, that 1t results in a comparatively
large Mimi Directory tree with many small nodes This 1s because MD
subtuples for complex subobjects are usually short compared to MD
subtuples for subtables In real-world applications (in the CAD/CAM
area, for mstance), a complex object or subobject will usually have just
a few non-atomic attributes (say up to 10) whereas a subtable may
consist of thousands of tuples In this case, MD subtuples of complex
subobjects will contan up to 10 pomters while MD subtuples of
subtables will contain up to several thousand pomnters To avoid thus
drawback the two other storage structures shown in Fig 6, SS2 and
§S3, integrate fixed length and vanable length MD subtuples so that
all (short) fixed length MD subtuples (except the root MD subtuple
1n the SS3 proposal, which 1s still of fixed length, regarding the number
of pointers) disappear

Figs 6b and 6c can now be interpreted as follows

s In Fig 6b all (vaniable length) MD subtuples which belong to
subtables (in Fig 6a) have been moved upward and mtegrated
mto the (formerly fixed length) MD subtuples of complex sub-
objects On the highest level of the MD tree, this integration has
been done into the root MD subtuple As a consequence, 52
contains - besides the root MD subtuple - one (varniable length)
MD subtuple per complex subobject

e In Fig 6c all (fixed length) MD subtuples which belong to com-
plex subobjects (in Fig 6a) have been moved upward and mte-
grated mto the MD subtuples of subtables As a consequence,
S$S3 contamns - besides the root MD subtuple - one (vanable
length) MD subtuple per subtable

It 15 quite easy to show that there are always more MD subtuples in
SS3 than 1 8S2 Therefore, an order SS1 > SS3 > SS2 can be es-
tabhshed concerning the number of MD subtuples required For the
selection of an 1mplementation, however, 1t cannot be the only goal
just to mummize the number of nodes (MD subtuples) m the MD tree
since other critema like storage space, access time, etc have to be
considered as well /DGW8S/ In AIM-II, storage structure SS3 has
been chosen for the implementation of complex objects since it seems
to be a farly good compromise between SS1 and SS2, not only con-
cerning the size of the MD tree In the current state of the implemen-
tation of our system, however, 1t cannot be said whether 883 was
really the best choice under all possible circumstances (see also
/Kue86/) For all three storage structures (SS1 to §S3), the integration
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of ordered subtables (/sts) can be done easly just by using the se-
quence of entries 1n the MD subtuples to represent the sorting order
1n a hst

The reader should note now that our demands concerming

®  separation of structural information and data,

e  support for fast processing of arbitrary parts (subtables, subob-
jects, etc ) of a complex object

are fulfilled by all of our proposals The first demand mentioned at the

beginmung of this section (data clustering on the complex object level),

however, has not been discussed yet This will be done 1 the follow-

ing All what 13 said below does not only work 1 the context of stor-

age structure SS3 (chosen for AIM-II), but for the two other

alternatives (SS! and SS2) as well

Each complex object gets 1ts own local address space The local ad-
dress space of a complex object 1s represented by a page list stored 1n
the root MD subtuple (not shown 1in Fig 6) This page list contans
the page numbers of all pages where (data or MD) subtuples of the
complex object are currently stored Whenever new subtuples in a
complex object have to be stored (or existing subtuples have to be
extended), the page hist i the root MD subtuple 1s scanned to find a
page with enough free space for the new data Only if thus search op-
eration fails (not enough free space avalable in the local address
space), a page outside the complex object’s local address space is used
to store the data, then, the number of the newly selected page 1s added
to the page hist This strategy directly supports data clustering 1n a
complex object since new data are usually stored 1n pages which al-
ready contawn data of this complex object

The term “local address space” will become clearer when we look at
the implementation of “D” and “C” pomnters Since “D” and "C”
pointers need only be valid inside a complex object (local pornters), it
18 quite obvious to use the page list m the root MD subtuple also for
addressing purposes So-called Mim TIDs are used as “D” and “C”
pointers m our implementation Like the well-known TIDs /As76/,
Mimu TIDs consist of two parts a page number and a slot number In
a TID the page number 1s mterpreted relatively to the begimning of the
database segment so that arbitrary pages in that segment can be ad-
dressed However, this 1s not necessary for Min1 TIDs 1n a complex
object The page number 1n a Mt TID 1s always mterpreted rela-
twvely to the begmning of the complex object’s local address space
Thus, for an access via Mt TID 1§ (1 1s the page number, j 1s the slot
number) the “local” page number 1 must be translated into a “real”
("global”) page number 1 This number 18 taken from position 1 mn the
page list Subsequently, the respective data or MD subtuple can be
accessed via slot § 1n page 1 of the database segment

To keep the pomnters m the Mim Directortes stable duning DB proc-
essing, existing Mim TIDs must not be changed when pages are added
to or removed from a complex object’s local address space When a
page number 1s removed from the page hist, the “gap” 1n the hst caused
by the deletion 1s not closed immediately When a page number 1s
added to the page list, either a “gap” (created by a deletton) 1s used or
- ff there 1s no “gap” - the page list 1s extended at 1ts end Due to thus
strategy, other page numbers do not change their position n the page
hist and existing Mim TIDs are not affected at all

Addressing via Mim TIDs mnstead of TIDs has two advantages

e  First, Mim TIDs can be somewhat smaller than TIDs This saves
storage space in the Mim Directory and thus speeds up complex
object processing ("navigation” in the MD tree, etc )

®  When a complex object has to be moved to another place 1n the
database or sent to a workstation (checked-out), this can easily
be done at the page level, 1e without having to look at the
subtuples individually No changes are required for “D” and “C”



pomters smce Mim TIDs refer to positions i the page hist and
not mn the database segment As a consequence, only the page hst
must be updated to reflect the complex object’s new page set

42 Access Paths for NF2 Objects
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18 considerably more complex than for INF tables /Se79, JK84,

OHS5/

¢ Large hierarchical objects have to be processed mnstead of small
flat ones

e Non-tnivial operations have to be performed to transform flat
objects into hierarchical ones and vice versa, to evaluate EXISTS
and ALL clauses in query statements, etc (cf Section 3)

¢ Jomns between different levels mn different NF? tables have to be
handled properly (cf Section 3, too)

Altogether, the increased complexity comes from the fact that the ex-
tended NF? data model and 1ts query language are far more powerful
than “traditional” relational data models and query languages In this
paper we will not discuss query optumization and access path selection
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of address information on query optimization

Conceptually, an mdex entry 1s an ordered pair <key, address hst >
where the components of the address hst (addrj, , addr;) refer to
those objects which contamn the ‘key’ as an attnbute value In System
R, for mstance, addresses are simply TIDs, 1¢ the structure of an mn-
dex entry 18 <key, TlDl, , TIDg> - In the following, we refer
agan to Table 5 and Fig 6¢ (storage structure SS3) Let us assume
that an index for FUNCTION 1s required The question 1s how ad-
dresses addr, mn this index should really look like

A first approach could be to use TIDs of data subtuples as addresses
addr, in the index Then, addresses 1n the index for FUNCTION are
TIDs of data subtuples in the MEMBERS subtable As an example,
one index entry 13 <’Consultant’, TID of data subtuple '56019 Con-
sultant’, TID of data subtuple ‘89921 Consultant’, TID of data
subtuple ‘44512 Consultant’> For an assessment of this approach,
let us look at the following query

SELECT x DNO

FROM  x IN DEPARTMENTS

WHERE EXISTS y IN x PROJECTS
EXISTS z IN y MEMBERS z FUNCTION = Consultant

This query retrieves the department numbers of all departments with
at least one consultant (two EXISTS clauses are needed since MEM-
BERS 18 a subtable of PROJECTIS, and PROJECTS in turn 18 a
subtable of DEPARTMENTS) For Table 5, the final result contans
DNOs 314 and 218 Using the mndex for FUNCTION and ‘Consult-
ant’ as a key value, the TIDs of the data subtuples “56019 Consultant’,
‘89921 Consultant’, and ‘44512 Consultant’ can be retneved With
these addresses of data subtuples, however, access to the respective
department numbers (314 and 218) cannot be done since - according
to Section 4 1 - there 1s no structural information about the MD tree
(root pornters, father pointers, etc) 1n the data subtuples Neverthe-
less, would 1t really solve our problems if we had these pointers in the
data subtuples? - Usually, there 1s more than one consultant n a
department (cf department 218 m Table 5) Via the index for
FUNCTION, one TID for each consultant can be retrieved From
those TIDs 1t cannot be seen, however, whether they refer to data
subtuples © Consultant’ in the same department or n different ones
Therefore, some complex objects of the DEPARTMENTS table (de-
partment 218 n Table 5) have to be (unnecessanly) accessed more
than once duning query execution only to find out that therr DNO 1s
already known This shows that the straightforward idea of having

361

TIDs of data subtuples as addresses addr, 1n indexes 1s not really suf-
ficient for query optimization

Another anproach for address implementation could be ¢ Tr
appr address impiementation could be to store T/Ds

of root MD subtuples (mstead of TIDs of data subtuples) as addresses
addr, 1n the ndexes Thus, at least, 1s an approprate solution for the
above query
Starting from the root MD subtuple of a complex object n the
DEPARTMENTS table, the department number DNO can be
retrieved easily
¢ It can be seen from the addresses in the index that department 218
15 referenced twice Therefore, multiple access to the same com-
plex object can be avoided

The following query, however, shows that this kind of address infor-
mation 18 not always sufficient
SELECT y PNO
FROM  x IN DEPARTMENTS, y IN x PROJECTS
WHERE EXISTS y IN x PROJECTS

EXISTS z IN y MEMBERS z FUNCTION ='Consultant
This query retrieves the project numbers (not the depariment num-
bers!) of all projects with at least one consultant (PNOs 17 and 25 1n
Table 5) From a pomter to the root MD subtuple of department 314
(te a TID in the index for FUNCTION), for nstance, 1t cannot be
seen whether a consultant 1s working 1 project 17 or in project 23
Therefore, all projects of this department have to be scanned to find
the night one (project 17)

In real-world applications complex objects are usually large, and scans
1n those objects to retrieve certan data should be avoided whenever
possible Therefore, addresses 1n indexes should contan enough n-
formation to locate a certain piece of data directly

From the above observations 1t can be concluded that Aerarchical
addresses are needed, since neither data subtuple addressing (first ap-
proach) nor root MD subtuple addressing (second approach) alone 1s
really sufficient Therefore, an address addr, 1n an index must represent
the path from a root MD subtuple down to a data subtuple, 1n our
case (index for FUNCTION) from the root MD subtuple of a com-
plex object in the DEPARTMENTS table down to a data subtuple
in the MEMBERS subtable - The above statement about hierarchical
addresses 15 still a bit “fuzzy” since 1t doesn’t say how these addresses
should really look like Again, we first want to show that a straght-
forward implementation of hierarchical addresses does not help

Let us assume now that we have indexes for FUNCTION and for
PNO 1 the DEPARTMENTS table (Table 5) As an example we
look at the following query
SELECT x DNO
FROM  x IN DEPARTMENTS
WHERE EXISTS p IN x PROJECTS

y PNO=17 AND

EXISTS z IN y MEMBERS z FUNCTION= Consultant’

Compared to the first query mentioned above, there 1s now an addi-
tional restnction for the project number (PNO=17) Fig 7a shows
storage structure SS3 for department 314 (cf Fig 6¢) P=P1 P2P3
shall be a hierarchical address for PNO=17, F=F1 F2F3F4 a lu-
erarchical address for FUNCTION = "Consultant’ Each of these ad-
dresses represents a path from the root MD subtuple down to a data
subtuple Although we have indexes for both PNO and FUNCTION,
1t can still not be seen from the index information that P and F refer
to the same project Obwiously they do since there 1s a consultant 1n
project 17 of department 314 Unfortunately, the fact that P2 and F2
are equal does not help at all since these pointers refer to an MD
subtuple of a subtable (PROJECTS) and not to an MD subtuple of



a complex subobject (in fact, such an MD subtuple does not exist 1n
storage structure SS3 - see Section 4 1) With this kind of mndex n-
formation there are two reasonable ways for query execution

¢ The index for PNO 1s used to find all projects with project num-
ber 17 (1n our example this 1s just one project but 1n general more
than one will be found since project numbers need not necessanly
be umque) In each of these projects the MEMBERS subtable 1s
scanned to check whether there 1s a consultant or not

The mdex for FUNCTION 1s used to find all consultants For
each consultant 1t 15 checked whether he/she works mn a project
with project number 17 or not

In both cases, the index information can only be used to determine a
superset of the final result set, and this superset must be scanned to
filter out those tuples which are not 1n the final result set It would be
much better here, of course, if one could determine the final result set
directly from the index information without having to scan the data

Fig 7b shows once agan SS3 for department 314, now with a new
unplementation of hierarchical addresses The first part of a hierarchs-
cal address refers to a root MD subtuple (as usual) The rest, however,
refers to data subtuples on a path from this root MD subtuple down
to a certamn data subtuple /Kue86/

The above query can now be executed without having to scan an
mtermediate result set From P2=F2 1t can already be seen that P and
F refer to the same project so that department 314 must be m the final
result set

Generally speaking (cf /BM8S, Kue86/), the following rules must be

observed 1n the implementation of indexes for NF? tables

1 Indexes must contain hierarchical addresses

2 Address components must identify complex subobjects {repres-
ented by data subtuples, 1n our proposal), not subtables

In AIM-II, the first component of an address (¢ g P1 and F1 1n Fig
7b) 1s always a TID whereas all other components are Mint TIDs

4 3 On the Implementation of Tuple Names

Sometimes system supported references across tables are very useful
to erther express dependencies between data items or to allow what
we call “subtuple or data shanng” between different huerarchical struc-
tures In other cases it may be necessary to communicate references
to database objects to application programs for later direct access To
support such requirements as well, we have extended the NF? data
model agamn to support - 1n addition to user defined (foreign) keys -
also system generated keys, called tuple names Tuple names are not
yet implemented in the current verston of the AIM-II prototype but,
as they are part of our data model and language definttion, we intend
to start their implementation n the very near future In the following
we want to summanze some ideas how this implementation 1s
planned

The mmplementation of tuple names (shortly ¢-names) will be very
simlar to the unplementation of addresses 1n index entries (shortly i-
addresses), 1¢ hierarchical addresses will also be used for that purpose
There are at least two reasons for this decision

¢  Handhng of 1-addresses and t-names can be done by the same
system routines

Query optimuization techmques can be apphed, especially when a
large set of t-names has to be processed at a time

It will be shown below, however, that there i1s a (mmor) difference
between t-names and 1-addresses
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As explamned m the previous section, each 1-address refers to a data
subtuple, 1€ 1t represents a path from the root MD subtuple of a
complex object down to that data subtuple Therefore, a t-name for a
flat subobject looks exactly like an 1-address for an attnbute value in
that subobject T=T1T2T3 n Fig 8, for mstance, 1s the t-name for
the (flat) ‘56019 Consultant’ tuple in the MEMBERS subtable of
project 17 (cf F=F1F2F3 1n Fig 7b) The t-name for a complex
object as a whole 13 simply the address of the root MD subtuple of that
object In Fig 8, U 1s the t-name for department 314 as a whole

Another question 1s how to implement t-names for complex
subobjects, e g for project 17 in department 314 We plan to use the
data subtuple which contains alt “first level” atomuc attribute values (cf
Section 4 1) of a complex subobject for representing the complex
subobject as a whole In Fig 8, this means that the ‘17 CGA’ data
subtuple represents project 17, and V=V1 V2 13 the t-name for that
complex subobject (A shghtly modified implementation 1s needed for
complex subobjects without atomuc attribute values /Kue86/ )

Till now, only the implementation of t-names for (complex)
objects/subobjects has been explained We also want to have t-names,
however, for subtables Each subtable corresponds to a MD subtuple
which can be used for addressing purposes Therefore, the t-name for
the PROJECTS subtable n Fig 815 W=W1 W2, and X = X1 X2 X3
13 the t-name for the MEMBERS subtable 1n project 17 Obviously,
these “special” t-names are not allowed as 1-addresses so that there 1s
a difference between 1-addresses and t-names

5 Conclusions, Outlook, and Future Plans

The extended NF? data model as outlined in this paper 1s able to in-
tegrate flat and hierarchical tables (tables contaning “complex ob-
jects”) 1n a natural way By doing so, huerarchical tables are an mntegral
part of the data model and need not be treated as “special ammals”
As a consequence, all operations on flat (INF) tables hke nsert, re
tneve, update, and delete are applicable to hierarchical (NF?) tables
as well The same holds for projections and selections We have
shown how a powerful SQL-like high level query language can be used
for retnieval purposes Swce our data model 1s not bound to the 1m-
plementation of hierarchical structures as described mn Section 4, 1t
could, n principle, also be mapped onto an IMS-like system Hence,
the extended NF? data model could also serve as a possible nugration
path for both relational and hierarchical databases to join 1n a common
data model

We intentionally concentrated on the most important features of our
data model and its implementation Thus, we completely neglected the
text support provided in our system which - optionally based on a text
index - supports masked search operations in a quite powerful way
For nstance, to look for all reports (REPNO, AUTHORS, TITLE)
1 Table 6 which are co-authored by “Jones” and which have words
like “computational”, “mmnicomputer”, “computer”, etc 1n the title, the
following query can be posed (and will be supported by the text index
in case that one has been created on TITLE)
SELECT x REPNO, x AUTHORS, x TITLE
FROM  x IN REPORTS
WHERE x TITLE CONTAINS "*comput*

AND EXISTS y IN x AUTHORS y NAME = Jones

More details on this text indexing technique can be found 1n /Sch78,
KSW79, KW81/ Mantenance and concurrency control related 1ssues
are discussed 1n /DPS82, DPS83, DLPS85/

Another very important feature of our system 13 the integrated
temporal support, also called tme version support In fact, we have put
a lot of emphasis on performance 1ssues, storage space requirements,
and related topics comng along with denving and mantaining hustor-



1cal data as an integral - but optional - part of a DBMS (see /DLW84,
Lu84/) Currently we are able to support ASOF (As-of) quertes where
one wants to see a (complex or NF) table or subtable as 1t looked like
at a fixed point 1n time 1n the past If Table 5 had been declared as a
“versioned table”, the following query would deliver all projects which
department 314 has had on January 15th, 1984
SELECT y PNO y PNAME
FROM  x IN DEPARTMENTS ASOF January 15th 1984,

» IN x PROJECTS
WHERE x DNO = 314

Currently we have completed a first version of the DBMS prototype
A description of 1ts architecture can be found 1n /Lu85/ It completely
supports the extended NF? data model That 1s, one can msert, re-
tnieve, update, and delete complex tuples either as a whole or only
parts of them In addition, all kinds of joins between NF? tables are
possible Also text support has become an integral part of the DBMS
History data support 18 available but restricted to the above-mentioned
ASOF quenes “Walk-through-time” quenies which work on time 1n-
tervals are supported at lower system levels (subtuple manager) but
have not been brought up to the language nterface The reason for
thus 15 that there 1s still some ongoing research on how to support
walk-through-time queries on hierarchues 1n the best way (We will
report on this 1n a separate paper /BI86/) The current prototype 18
still a single-user system although 1t has been designed as a multi-user
DBMS One reason 18 that we first concentrated on getting a stable
single-user version and on learning about its applicability and inherent
performance 1ssues Another reason 1s that we are still investigating
advanced concurrency control and update processing techmiques (see
eg /DLPS85/) and we want to finush this first before deciding which
techmique to use 1n our system

Currently we are working to make the prototype more complete by
adding mussing functions and by “streamhmng” it where necessary The
prototype will be extensively used in a collaboration with partners at
the Umiversity of Karlsruhe, West Germany, to explore abstract data
type concepts in a robotics application area This will also include the
1ssue of extensitble DBMS Further research issues for the near future
will be symbolic query transformation and optimization, workstation
support, access path selection, and handling of schema changes
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