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Abstract 

Current query languages for relational databases 
usually are fixed, i.e. they provide only a fixed set 
of data types and operations. It is usually not pos- 
sible to extend this set by user defined data types 
or functions. This is a major drawback especially in 
advanced applications like engineering applications 
or office automation. In these areas special data 
types and special functions are needed quite fre- 
quently, e.g. a data type for matrices and a function 
for matrix multiplication. Since matrices and matrix 
multiplication are not provided in conventional 
query languages, the user has to model matrices 
by low level constructs as, for example, byte 
strings, and to write a rather cumbersome applica- 
tion program in a conventional programming lan- 
guage for interpreting these byte strings as matri- 
ces and for multiplying them. Another example of 
a missing function is even as simple as the square 
root function. Therefore, a mechanism is needed 
that allows the user to define his own data types 
and functions and add them somehow to the DBMS 
such that they can be used within the query lan- 
guage in the same way as a normal built-in function 
on basic data types. This paper describes an ex- 
tension mechanism for data types and functions 
that has been implemented at the IBM Scientific 
Center in Heidelberg. The mechanism is based 
upon HDBL, an SQL based query language for 
complex objects. The functions themselves are 
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written in a conventional programming language, in 
our case PASCAL, thus allowing to formulate gen- 
eral algorithms. One important aspect is the inter- 
face between the data types of the DBMS on the 
one side and the data types of the programming 
language on the other side. In our case, this map- 
ping is more complicated than in other approaches 
because our type system supports complex objects 
directly and not via long strings as other authors 
do. Moreover, we use the PASCAL type system to 
a large extend in order to allow type checking at 
compile time. 

1. Introduction 

Current database management systems (DBMSs) 
and their database languages only offer a fixed set 
of data types and operations. Whenever the set of 
data types supported by the DBMS is insufficient for 
a given application, the system has to be “misused” 
in some way to handle the new type of data. Ex- 
amples of that kind are large numerical vectors and 
matrices, long texts, geometrical data, image data, 
etc. In such cases the DBMS is used just as a “byte 
container”. As a consequence, search predicates 
on the contents of these fields are usually not sup- 
ported. The manipulation of these attribute values 
by the DBMS’s DML can only be performed in a 
very rudimentary way. Moreover, a high depend- 
ency between the physical data representation and 
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the application programs is again re-established. - 
To lessen this kind of dependency was one of the 
major reasons why DBMSs have been developed. 

Several ongoing research projects attempt to over- 
come limitations of current DBMSs by more pow- 
erful data models. Some of them support a richer 
set of basic data structures based on or influenced 
by nested relations or by variants of the entity-re- 
lationship model (/HL82, Da87, DaK686, La84, 
RKB85, SS86, PaSc87, Ha87, AB84, Di86, VKC86/). 
Others try to solve the problem by staying with a 
more rigid basic data model but by supporting 
some kind of dynamic references. This is done in 
POSTGRES /RoSt87, St87, St86a, St86b, St84/ by in- 
troducing procedures as attribute values. These 
procedures consist, among others, of POSTQUEL 
statements, the database language of POSTGRES. 
Procedures as attribute values provide a powerful 
extension to the relational data model. In /St87/ it 
is shown how procedures as attribute values can 
be used to model complex objects. 

Even with more powerful data structures offered, 
there will always remain cases, especially in novel 
application areas, where some new type of data 
cannot adequately be supported. Though some of 
the data structures offered by an advanced DBMS 
may be useful for efficiently storing the data, the 
search capabilities provided by the DBMS will usu- 
ally be unsatisfactorily. Missing functions are not 
only a problem for “strange” data types. Assume 
for example the square root of a speclttc field or a 
specific group of fields. In a standard query lan- 
guage for a relational database, as for example 
SQL /Ch76, Ch81, IBM81/, one cannot express this 
problem because square root operations are usu- 
ally not provided. The only way for the user is to 
forget about the query language and to write a 
rather cumbersome application program in a pro- 
gramming language. This is, of course, only possi- 
ble if an interface to a programming language is 
provided. 

One solution for this specific problem would be, of 
course, to ask the implementor of the DMBS to add 
the square root to the query language. But then the 
next user may ask for another function, e.g. matrix 
inversion. It obviously does not make sense to 
keep adding functions to the query language from 
the very beginning because there will always be 
applications which need other functions. What is 
really needed is a mechanism that allows the user 
to specify a new function and to provide appropriate 
interfaces to the query language. That is, to make 
the DBMS itself extensible by user defined data 
types and operations. 

Currently, the area of extended data base technol- 
ogy is quite heavily investigated. Some of the work 
reported in the literature shall be reviewed shortly. 

The ‘PETERLEE RELATIONAL TEST VEHICLE’ (PRTV 
/To76/), which is known as one of the first running 
prototypes of a relational DBMS, had already a 
simple mechanism for so-called ‘user extensions’: 
The user could provide his own procedures (written 
in PUI) which could then be used in query state- 
ments and called by the DBMS at run time. Since 
PRTV tables were always in first normal form (INF), 
complex (hierarchical) data structures as procedure 
input and output could not be processed. 

Galileo /AC085/ is a strongly-typed, interactive 
conceptual language for database applications de- 
signed, among others, to support the abstraction 
mechanisms of modern programming languages. 
The main contributions of Galileo are a flexible type 
system, the inclusion of type hierarchies and a me- 
chanism to support abstract data types. 

TAXIS /MBW80/ is a language for the design of in- 
teractive information systems. It offers, among oth- 
ers, database management facilities which are in- 
tegrated into a single language through the con- 
cepts of class, property, and the IS-A relationship. 

In addition to procedures consisting of POSTQUEL 
statements, POSTGRES /RoSt87, St87, St86a, St86b, 
St8U also supports procedures written in a con- 
venttonal programming language as, for example 
LISP or C. Moreover, the concept of abstract data 
types is supported by POSTGRES, but only on a 
rather low level as far as the representation of an 
abstract data type is concerned. The representation 
is an unstructured storage area. Only the length of 
the area is given, i.e. there Is no strong typing as 
far as the representation of an abstract data type is 
concerned. This is also the method for passing 
parameters to functions written in LISP or C /St86a/. 

PROBE /Da87, G087/ distinguishes between entities 
and functions. Access to the attribute values of an 
entity is only provided by invoking the correspond- 
Ing function. Functions can be system provided 
functions or user detlned functions. 

The STARBURST project /Sch86, LMP87/ is investi- 
gating, among others, how to design the DBMS ar- 
chitecture such that storage alternatives for re- 
lations and “foreign” indexes can be supported. 

GENESIS /Bat86/ and EXODUS /Ca86/ are, in es- 
sence, soffware engineering tools for configurating 
a DBMS according to a given specification. GEN- 
ESIS, for example, relies on database components 
whose interfaces have been standardized in such 
a way that they become exchangeable. One goal 
of EXODUS is to provide kernel DBMS facilities and 
software tools for the semi-automatic generation of 
application-specific DBMSs. Under the assumption 
that in the future there will exist large libraries of 
application area oriented data types and respective 
functions which can be optionally added to a data- 

295 



base kernel (customization), tools like GENESIS or 
EXODUS will be very helpful if not even mandatory 
to configure these systems. 

“Extensibility” of a DBMS has several aspects. One 
is, how to make new data types and functions 
available to the user. That is, how to reflect them in 
the query language and in the application program 
interface. Another aspect is how to implement 
these functions. That is, how to program them 
(“what is the reference basis?“), how to “plug” them 
into the system, and how to actually execute them 
at run-time. A third aspect is how to support also 
user defined indexes within the DBMS, how to 
evaluate them during query optimization and exe- 
cution, and how to integrate them into the system’s 
concurrency control and recovery mechanisms. 

In the R*D* project we are currently mainly con- 
centrating on the first two issues. In /KLW87/ the 
concept of abstract data types on top of nested re- 
lations is described. Our paper describes the ex- 
tensibility of the underlying DBMS by user defined 
data types and functions and how they are reflected 
in its query language. The functions themselves 
are written in a conventional programming lan- 
guage, in our case in PASCAL, to allow for general 
algorithms. The underlying DBMS is a further de- 

~ velopment of the Advanced information Manage- 
ment Prototype, called AIM-P in the sequel for 
short. AIM-P is an experimental DBMS developed 
at the IBM Heidelberg Scientific Center since 1983 
for application oriented research purposes in ad- 
vanced application areas (cf. e.g. /DaK686, KDG87, 
Lu84, Lu85, Pi87/). AIM-P has been extended ac- 
cording to R*D*‘s needs. The link between AIM-P’s 
database language and a user defined function is 
provided by mapping the data model of AIM-P to 
appropriate PASCAL structures and vice versa. It 
should be noted that the approach is not restricted 
to PASCAL. Any programming language which 
supports static types could be used as well, for ex- 
ample MODULA /Wi83/. 

The paper is organized as follows: Section 2 dis- 
cusses possible alternatives for adding types and 
functions to a DBMS by concentrating on the alter- 
natives: static types versus dynamic types. More- 
over, the relationship between abstract data types 
and so called encapsulated types is discussed. 
Section 3 recalls some database language con- 
structs which are necessary for understanding sec- 
tion 4 which in turn is the central part of the paper. 
It describes by examples the function extension 
mechanism we have implemented. Implementation 
details are discussed in section 5. Section 6 gives 
some conclusions and an outlook for future work. 

2. Static Types Versus Dynamic Types, 
Abstract Data Types Versus 
Encapsulated Types 

If one talks about types and functions, there are two 
main alternatives: The types may be static or dy- 
namic, i.e. the types of the parameters and the re- 
sult of a function may be statically known, or they 
may vary dynamically. In POSTGRES lRoSt87, St87, 
StaGa, St86b/ , even the type of a tuple in a table 
may vary from tuple to tuple. This results from the 
fact that each function stored in an attribute value 
may produce a value of an arbitrary type. Opposed 
to a “normal” attribute, the structure (value type) is 
therefore not known prior to the access to the attri- 
bute value and to the execution of it (that is the 
function/procedure it contains). This approach 
provides a lot of flexibility. On the other hand, only 
dynamic type checking can be provided, i.e. type 
errors show up only at run time. To write an appli- 
cation program for processing tables with tuples of 
unpredictable types is rather difficult and error 
prone. Therefore, we think that for the “standard” 
user more secure mechanisms should be provided. 
Moreover, optimization is easier if types are known. 

Improved security and efficiency can be achieved 
by binding functions to static types. On the data- 
base programming language side, probably the 
most significant contributions supporting static 
types were PASCAL/R /Schm77/ and Galileo 
/ACOBS/. By using static types, the result type of a 
function can be determined respectively derived at 
function definition time. Thus it can be described 
in the catalog (cf. Sect. 5.1.2). By doing so, the data 
structures returned when executing a function are 
already known at compile time of the application 
program. Hence, there are no “surprises” at exe- 
cution time. 

For these reasons we have decided for R*D* to bind 
the functions with respect to their parameters and 
return values to static types. Therefore, only type 
compatible attribute values, constants, and query 
expressions can be passed as actual parameter to 
these functions. 

In R*D* functions are not limited to basic data types 
like integer, real, string, etc. A function can be de- 
fined on any data structure supported by AIM-P; 
even a complete table as data type is allowed. 
Therefore more emphasis than in the flat table case 
had to be put on providing a reasonable basis for 
the implementation of these functions. 

At this point some comments should be made on 
abstract data types. We feel that the database ker- 
nel should provide more than pure abstract data 
types. Binding of functions to only one type is too 
narrow because there are applications where a 
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function belongs to two or more types. Consider, 
for example, the problem of converting the value of 
one abstract data type to a value of another ab- 
stract data type. This conversion function belongs 
to both abstract data types. If only pure abstract 
data types are supported, the conversion function 
has to be added artificially to one of the two ab- 
stract data types. Therefore, we decided to directly 
support only the information hiding concept of ab- 
stract data types by introducing so called encapsu- 
lated types. The structure of encapsulated types is 
not known to the user, values of an encapsulated 
type can be accessed and changed only by appro- 
priate functions. Functions can refer to several en- 
capsulated types. Encapsulated types are similar to 
the concept of hidden types introduced by the pro- 
gramming language MODULA /Wi83/. The concept 
of abstract data types is, in a sense, a special case 
of encapsulated types because an abstract data 
type is an encapsulated type together with functions 
restricted to this type. 

One of the main goals of R*D* is to provide an en- 
vironment where adding of new functions to the 
underlying DBMS should be possible without re- 
quiring much database specific knowledge. Espe- 
cially, it should not require knowledge about inter- 
nals of the underlying DBMS, especially the internal 
data representation. Every experienced application 
programmer should be able to program these 
functions. In order to make this a safe task, the 
functions should be implemented with program- 
ming language structures which represent the cor- 
responding data model types as “naturally” as 
possible. This means that a tuple, for example, 
should be mapped to a record structure rather than 
to a byte string with offset pointers. 

To understand our approach for solving the function 
implementation problem, a brief explanation of the 
underlying data model has to be given first. 

3. Data Model and Language 

The data model supported by the Advanced Infor- 
mation Management Prototype is an object-or- 
iented generalization of Non-First-Normal-Form 
(NF*) respectively “nested” relations. It has an 
SQL-like language interface, the Heidelberg Data 
Base Language (HDBL) /PT86, PA88, Pi87/. 

The obJect types HDBL can deal with are: 

set valued, list valued, tuple valued or atomic. 

Atomic data types are: DATE, REAL, INTEGER, 
BOOLEAN, CHARACTER, STRING and SURRO- 
GATE. The elements or attributes of any object type 
(except for objects consisting just of an atomic va- 

lue) can again be of any of the types listed above. 
That is, the attributes of a tuple valued object, for 
example, can be either atomic, or set valued, or list 
valued, or again tuple valued. Objects need not 
occur as elements of a table. A list of lists of REAL 
values (which is a two dimensional matrix) can oc- 
cur as element in another list or set or as attribute 
value within a tuple or as a single standing object 
(having an object name). Figure 1.a shows a 
graphical representation of this data model; both 
the 1NF data model and the pure NF* data model 
are special cases of this more general data model. 

As we will use HDBL statements later on to show 
the embedding of user defined functions and types, 
we give here a brief introduction into this language. 
A comprehensive treatment of this subject can be 
found in /PT88, PA86, Pi87/. 

The following example shows a CREATE statement 
and some simple queries. The example will later 
on also serve as reference basis for the discussion 
of user defined data types and functions. To make 
explanation not unnecessarily complicated we have 
selected a rather simple structure. It should be 
clear, however, that HDBL can deal with much more 
complex structures and operations on those (pro- 
jection, selection, join) as well. 

As an example we use a part of a geographic in- 
formation system which allows to store information 
about specific properties. Each property is defined 
by the boundaries which are given by a list of 
points. We can create a corresponding table in 
HDBL as follows: 

CREATE properties 
( [ id: ttring(lO), 

owners: { [ name: string(30), 
share: real J }, 

points: c [ x-c: real, 
y-c: real ] > ] } 

END 

Sets are indicated by curly brackets ({...}), tuples 
by square brackets ([...I), and lists (ordered sets) 
by sharp brackets (< . ..>) lALPS88l. Thus, the 
properties example represents a set of tuples. Each 
tuple has three attributes: The first one, called ‘id’, 
is an identifier of the property. ‘id’ is a string, i.e. a 
flat attribute in the conventional sense. The second 
one, ‘owners’, represents all the owners of the 
property. ‘owners’ is a set of tuples. Each tuple 
contains the name of an owner and the percentage 
of the ownership. The third one, called ‘points’, 
represents the boundary of the property. It is a list 
of tuples. Each list element represents a limiting 
point. A list element Is a tuple containing the x and 
y coordinates of the limiting point. For example, the 
property depicted by the picture 

297 



(394) (784) 

cl 

id: 'SQUARE' 
owners: 'Miller, Jim', 50 percent 

'Miller, Jane', 50 percent 

ho) (798) 

can be modelled by the following properties table 
entry: 

id { owners } < points > 

name share x-c y-c 

SQUARE Miller, Jim 5o.e 3.G 4.0 
Miller, Jane 5e.e 7.8 4.8 

7.8 El.8 
3.8 El.8 

In HDBL, the information about properties ‘1234’ 
and ‘5676’ can be retrieved by 

SELECT p FROM p IN properties 
WHERE p.ld = '1234' OR p.id = '5678' 

If one is only interested in the owners of the speci- 
fied properties, one can formulate the following 
projection: 

SELECT [p.owners] FROM p IN properties 
WHERE p.id - '1234' OR p,id - '5678' 

If one is interested in all properties such that a 
specific point occurs in the limltlng points, one can 
express this in HDBL as follows: 

SELECT p FROM p IN properties 
WHERE EXISTS (point IN p.points): 

point.x-c = 13.7 AN0 point.y-c = 39.8 

In addition to queries, HDBL provides operations for 
changing tables (ASSIGN, INSERT and DELETE). 
ASSIGN assigns a new value to a specific field 

whereas INSERT Inserts one or several elements 
into an existing set or list. DELETE deletes one ele- 
ment or a whole set or list. Assume, for example, 
that a property share is split into two parts. This can 
be expressed by the following two HDBL state- 
ments: 

ASSIGN owner.percentage * 9.5 
TO owner.percentage 
FROM owner IN p.owners, p IN properties 
WHERE p.id = 'XYZ' AND owner.name = 'Hr. X' 

INSERT { [ name: ‘Hr. Y’, 
percentage: owner.percentage ] ) 

INTO p.owners 
FROM p IN properties, ovmer IN p.owners 
WERE p.id = 'XYZ' AND owner,name = 'Mr. X' 

4. User Defined Types and Functions 

Although being quite powerful, HDBL does not Al- 
low certain queries. One group of queries involves, 
among others, the computation of the transitive 
closure of a relation. This problem could be solved 
by introducing recursive queries over nested re- 
lations /Ll87/. Another group of queries involves the 
computation of arbitrary functions involving, among 
others, mathematical expressions. Assume, for 
example, the query: 

“Find all properties such that the length of 
the boundary is larger than a certain value.” 

This query cannot be expressed in current HDBL 
because it involves looping over all limiting points 
and the computation of the square root. One sol- 
utlon to solve problems of that kind is to use the 
application program interface /ESW67, EW87/ for 
fetching the objects of interest and to perform the 
computation itself in the application program. 

RELATION 
(SET) 

tuples 

RELATION 
(SET) 

tuples 

VALUES 
atomic 
values 

atomic 
values 

a) HDBL Data Model 

(Extended NF’ Data Model) 
b) NF* Data Model c) 1NF Data Model 

Figure 1. Data Model Comparlaon: HDBL, INF, NP: Terms written in capital letters indicate legal object types. 
Objects of these types can be created within the data model with a CREATE statement. 
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Especially for computations which are needed fre- 
quenty, especially if they are needed in various ap- 
plications (think, for example, just a square root or 
standard deviation function is missing) this ap- 
proach is too cumbersome. Hence a mechanism 
should be provided to make the DBMS itself exten- 
sible by user defined functions such that they be- 
come part of the DBMS’s query language. This 
section describes how this has been achieved in 
the Advanced Information Management Prototype 

For the user, the most obvious solution to the query: 
Find all properties such that the length of the 
boundary is larger than a certain value, would be 
to define a function ‘get-length’ which computes the 
length of a boundary and then use this function in 
the following HDBL statement: 

SELECT p FROM p IN propcrtlcs 
WHERE get-length(p.points) > 123456.7 

It should be possible to program ‘get-length’ in a 
programming language like PASCAL. One impor- 
tant point has to be solved for that end: The world 
of PASCAL types has to be connected to the world 
of HDBL types, because PASCAL functions like 
‘get-length’ require parameters of PASCAL type. In 
our approach, this is accomplished as follows: A 
special DECLARE TYPE statement is added to HDBL 
which allows the user to define types which can be 
used in CREATE statements or within other DE- 
CLARE TYPE statements. Once a type has been 
declared, the system will generate corresponding 
PASCAL representations (type declarations) for this 
type. For example, the statement 

DECLARE TYPE point 
[ x-c: real, 

y-c: real ] 
END 

defines a type ‘point’ as a tuple with an x coordi- 
nate and a y coordinate. The translation of the DE- 
CLARE TYPE statement results in the generation of 
a corresponding PASCAL type declaration as fol- 
lows (cf. Sect. 5.3 for the details): 

TYPE point - RECORD 
x-c: real; 
y-c: real 

END; 

By the statement 
DECLARE TYPE boundary < point > END 

a type boundary is defined to be a list of points. For 
this HDBL type the following PASCAL types would 
be generated: 

TYPE boundarySR = ARRAY [ 1..65535 ] OF point; 
boundary - RECORD 

ACT-ELEH: k.65535; 
ALO-ELEH: k.65535; 
val : fboundary$R; 

END; 

These types need some explanations: Since PAS- 
CAL like many other programming languages does 
not support dynamic arrays, “special solutions” 
have to be used to overcome the problems of re- 
presenting variable long lists or sets. In our exam- 
ple, a default limit of 65535 is used, since no limit 
was given in the declare statement. The compo- 
nents ‘ACT-ELEM’, ‘ALO-ELEM’ and ‘val’ simulate 
a dynamic array. In the val component, the list el- 
ements are stored. ‘ACT-ELEM’ indicates the c&r- 
rent length of the list. ‘ALO-ELEM’ is needed for 
storage allocation. This is described in more detail 
in Sect. 5.3.3. With these types, the ‘properties’ ta- 
ble can now be defined as 

CREATE properties 
{ [ Id: strlng(lO), 

owners: ( [ rmne: string(36), 
percentage: real J ), 

points: boundary 
13 

END 

From the database point of view this statement is 
equivalent to the first CREATE statement, since the 
types are not declared to be encapsulated, If a type 
is declared to be encapsulated, the internals of a 
value of such a type are known only to the functions 
which have a value of such a type as a parameter. 
For example, by the declaration 

DECLARE TYPE boundary < point > ENC END 

‘boundary’ is declared to be encapsulated, i.e. the 
elements of a boundary list cannot be accessed di- 
rectly but only by functions which have a ‘boundary’ 
as a parameter. 

After having declared the necessary types, we can 
introduce our function ‘get length’. This is done in 
two steps: First, ‘get-length’ is made known to the 
database system by the statement 

DECLARE FUNCTIDN get-length(b: boundary): real 

In a second step, the body of the function is written 
in PASCAL by using an auxiliary function 
‘line-length’: 
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FUNCTION line-length(pl,pZ: point): real; 
VAR x,y: real: 
BEGIN 

x := p2.x-c - pl.x-c; y 1. pt.y-c - pl.y-ci 
line-length := SDRT( x*x + y*y ); 

END; 

FUNCTION get_length(b: boundary): real: 
VAR len: real; 1: integer; 
BEGIN 
WITH b 00 
BEGIN 

IF ACT-ELEN <= 2 
THEN BEGIN 

len := 6.0; 
error-exit(.... ) /* WRONG DATA: boundary must 

have at least 3 points */ 
END 

ELSE BEGIN 
lcn := line~lcngth(valf[ACT~ELEN], valt[l]); 

FOR 1:-l TO ACT ELEN-1 DO 
len := len + Tine-length(valt[i], valt[i+IJ) 

END 
END; 
get-length := len 

END; 

This PASCAL program is now compiled by the 
PASCAL compiler and added to the database soft- 
ware. More details are given in Sect. 5. ‘get-length’ 
can now be used within HDBL whereever a real 
value (= value type of the result) is allowed. One 
example was already given: 

SELECT p FROM p IN properties 
WHERE get-length(p.points) a 123456.7 

Another example uses ‘get-length’ for the con- 
struction of an attribute value. it gives the proper- 
ties table together with the lengths of the bounda- 
ries: 

SELECT [ id : p.id, Owners: p.owners, points: p.points, 
length: get-length(p.points) ] 

FROM p IN properties 

In the next example, we want to change our ‘prop- 
erties’ table such that the name is split in first name 
and last name. For this example, we use another 
alternative for defining types, namely a DERIVE 
TYPE statement which derives a type from an ex- 
isting table. We declare types for the owners as 
foiiows: 

DECLARE TYPE new-owner 
[ first-name: string(3B), last-name: string(M), 

percentage: real ] 
END 

DERIVE TYPE old-owner AS o 
FROM o IN pr.owners, pr IN properties 

The system generates the following PASCAL types: 

TYPE new-owner = RECORD 
first-name: string(30); 
last-name: string(39); 
percentage: real 

END; 

TYPE old-owner = RECORD 
name: string(3B); 
percentage: real 

END; 

A function for splitting names is made known to the 
system by 

DECLARE FUNCTION name-split (old: old-owner): new-ormer 

The corresponding PASCAL implementation can be 
sketched as follows: 

FUNCTION name-split (old: old-owner): new-owner; 
VAR result: new-owner; 
BEGIN 

result.last~name :- . . . . 
result.first-name := . . . . 
result.percentage := old.percentage; 
name-split := result 

END: 

Now we can create our new table: 

CREATE nm_properties 
( [ id: string(lB), 

owners: { nrw~ounrr ) 
points: < [ x-c: real, 

y-c: real ] > 

and convert the old table as follows: 

INSERT 
SELECT [ id : old-prop.id, 

owners: SELECT name-split(old-owner) 
FROM old-owner IN old-prop.owners, 

points: oldgrop.points ] 
FROH old-prop IN properties 

INTO new_properties 

5. Implementation of Types and 
Functions 

in the following we will explain how user defined 
data types and functions have actually been impie- 
mented within the DBMS. We address database 
catalog extensions (Sect. 5.1) the run time man- 
agement of user defined functions and type in- 
stances (Sect. 5.2) and - finally - the PASCAL data 
structures chosen to map the HDBL types into 
(Sect. 5.3). 

5.1 Types and Functions in the Database 
Catalog 

5.1.1 The ObJect Catalog of AIM-P 

The database catalog of AIM-P is composed of 
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three parts: the object catalog, the type catalog, and 
the function catalog. The last two catalogs reflect 
the extensions of our system by types and func- 
tions, the first one was the catalog in the initial 
version of AIM-P. 

The object catalog records descriptive information 
- meta data - about all database objects, i.e. - in the 
HDBL data model - about sets, lists, tuples, and 
scalars (cf. Figure 1). 

The object catalog itself is again an HDBL object (in 
fact a table). Each tuple in that table contains some 
general information about the related database ob- 
ject as a whole (‘one-object-descrlptlon’), such as 
its external and internal name, its creator and cre- 
ation date, etc. The most important part of the ob- 
ject catalog, however, is the attribute description, 
which is a list of tuples where each tuple 
(‘one-attribute-descrlptlon’) describes exactly one 
attribute. Via the attribute description the catalog 
manager of the DBMS keeps also track of the par- 
ent-child relationships between attributes on differ- 
ent levels, i.e. the attribute description reflects the 
hierarchical structure within a database object of 
arbitrary size and complexity. 

5.1.2 Catalog Extensions for Types and Functions 

Information about types and functions is maintained 
in two separate tables, a type catalog and a func- 
tion catalog. 

As explained in Sect. 4, any flat or nested HDBL 
structure (list, set, tuple, scalar) may be used in 
exactly the same way both in a type declaration 
(DECLARE TYPE . . . or DERIVE TYPE . ..) and in a 
database object declaration (CREATE . ..). It is 
therefore not surprising that the structure of the 
type catalog is quite similar to that of the object 
catalog. Especially the attribute description is done 
in exactly the same way. 

For each user defined data type the catalog man- 
ager records, again, the internal and external 
name, the creator and creation date, etc. The cor- 
responding PASCAL data structure is automatically 
derived from the type declaration (see Sect. 5.3) 
and could be stored in the type catalog. Moreover, 
several ‘use counts’ are provided to keep track of 
a type’s usage in other types, in functions, and in 
database objects. We will come back to the se- 
mantics of these use counts at the end of this sub- 
section. 

In the function catalog the DBMS keeps track of the 
names and the interface descriptions (parameter 
names and types) of all user defined functions. Pa- 
rameters of functions - as well as the function result 
- may either be of basic HDBL types (BOOLEAN, 
INTEGER, REAL, etc.) or of user defined types. The 
basic HDBL types are always implicitly known to 

the DBMS; the user defined types must have been 
explicitly declared before they can be used in a 
function definition. 

Certain attributes in the function catalog, like 
‘function-result-type’ and ‘parameter-type’, are 
used by the DBMS at DML parsing time to check the 
applicability of a given function in a DML statement. 
These type specifications for function input and 
output are also used to trigger implicit type con- 
versions (as far as possible) if the actual and formal 
parameters do not fully match. A ‘parameter-name’ 
attribute is also provided to automatically generate 
the corresponding PASCAL function declaration to 
be used in a function implementation. 

Our type and function concept had to be designed 
and implemented such that the DBMS is able to 
keep track of all interdependencies between types, 
functions, and database objects. These interde- 
pendencies can be expressed in the following dia- 
gram: 

r--l&-J 
t 

The figure reads as follows: Types may be used in 
the declaration of objects, functions, and (other) 
types. A consequence is that whenever a type shall 
be dropped the DBMS must check whether that type 
is still somewhere in use (in objects, functions, or 
types). We decided to permit type drop operations 
only if the type to be dropped is not (anymore) in 
use. An alternative would have been to implicitly 
drop also those objects, functions, and types where 
the type to be dropped is currently used by; we be- 
lieve, however, that for the normal user the effects 
of such ‘cascading drop operations’ would be 
rather unpredictable and therefore extremely un- 
safe. 

5.2 Handling of User Defined Functions 
and Type Instances at Run Time 

5.2.1 Function Dispatcher 

Obviously, user defined functions cannot be ‘hard- 
wired’ since neither the function names nor the 
number and kind of parameters are known when 
the DBMS code is written. Extensibility means that 
new user deflned functions can be brought into the 
DBMS at any time. The DBMS must be able to call 
these functions and to provide the proper set of 
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parameters. It would not be really satisfying if one 
had to change the DBMS source code every time 
when the user defines a new function. A mech- 
anism is therefore required in the DBMS to call any 
function with any set of parameters. We call that 
mechanism the function dispatcher. 

In the following the function dispatcher will be 
briefly explained by presenting the scenario in 
which a function call within a DML statement is ac- 
tually processed by the DBMS: 

When the DML statement is parsed the parser 
checks whether the specified function exists or not. 
This is done via a look up operation in the function 
catalog (Sect. 5.1.2). The parser also checks the 
applicability of the function in the given context of 
the DML statement, i.e. whether actual and formal 
parameters really match in number and type (if ne- 
cessary type conversions are prepared). 

At DML execution time the function must actually 
be called by the DML evaluator (run time evaluation 
part of the DML processor) and the required pa- 
rameters must be passed. This function call is done 
indirectly via a call to the function dispatcher. The 
function dispatcher gets basically three input pa- 
rameters, namely the function name, the number 
of parameters and an address vector with one ad- 
dress for each parameter. 

The function dispatcher has some internal book- 
keeping (function address table) to keep track of all 
function names and function start addresses. 
Whenever a new user defined function is brought 
into the system its function name and interface de- 
scription are not only recorded in the function cat- 
alog, but also in the function address table. 

The function dispatcher - written in assembly lan- 
guage - takes the given function name to look up 
the corresponding function start address and then 
executes this function. The address vector pro- 
vided by the caller is passed to the function. 

Once the user defined function has been executed 
the result is returned to the function dispatcher and 
- finally -to the DML evaluator where that result can 
be used e.g. as input for another function, for dis- 
play at the screen, or for use in predicate evalu- 
ation, etc. 

5.2.2 The Type Instance Loader/Unloader 

In order to provide the actual (input) parameter set 
for user defined functions, AIM-P must be able to 
load (complex) type instances from the database 
into the respective Pascal structures. In our exam- 
ple in Sect. 4, where an instance of type ‘boundary’ 
is input for the function ‘get-length’, the required 
‘boundary’ data - which are a list of ‘point’ tuples - 
must be read from the database and must thereby 

be transformed into the Pascal representation. This 
is both done by the type Instance loader. 

Moreover, AIM-P must also be able to unload 
(complex) type instances from a Pascal represen- 
tation (back) to the database. An example was also 
given In Sect. 4: The result data of the ‘name-split’ 
function, which are of type ‘new-owner’, are finally 
inserted into the database. Data transformation 
from the Pascal representation to the database for- 
mat and writing to the database are done by the 
type Instance unloader. 

The type instance loader and unloader shield the 
higher level DBMS components from details of type 
instance implementation, such as storage allo- 
cation, address and pointer representation, Pascal 
data layout, etc. For the AIM-P query processor 
there is functionally no difference between 
loading/unloading a simple scalar value (e.g. a 4 
We INTEGER) on the one hand and 
loading/unloading a large, complex type instance 
of size 4 MB on the other hand: Both is done via a 
single call to the type instance loader/unloader 
which is - in case of data loading - also responsible 
for storage space allocation. 

The type instance loader and unloader are fully ca- 
talog driven: They have both the information about 
an obJect’s database format (via the ob)ect catalog) 
and about its Pascal format (via the type catalog). 
They can thereby - on the fly - perform the neces- 
sary convemlons between the database format and 
the respective Pascal format. These conversions 
are not restricted to atomic data occurrences (e.g. 
transformation of an INTEGER vector in the data- 
base to a REAL vector in Pascal and vice versa); 
other transformations such as LIST (n) * SET (m) 
etc. can be done as well. 

5.3 Generation of PASCAL Data Structures 
for HDBL Types 

When creating PASCAL data structures for HDBL 
types, three different strategies are conceivable: 

User deflned PASCAL structures: The user who 
deflnes a new type may specify whatever PASCAL 
data structure he would like to see for that type. To 
gain efficiency, to save storage space, and to write 
compact program code, the user can therefore tai- 
lor the PASCAL structure to the operations to be 
performed on that structure. A major disadvantage 
of this approach is, however, that no general map- 
ping mechanism can be provided by the DBMS to 
transform data from the internal database format to 
the PASCAL format and vice versa. The user would 
have to implement these mapping routines himself, 
a task that is both cumbersome and extremely er- 
ror-prone; incorrect mapping routines could even 
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destroy the database. We therefore did not follow 
that approach. 

System defined PASCAL structures: One standard 
PASCAL equivalent is defined for each HDBL con- 
struct, i.e. for sets, lists, tuples, and scalars (cf. 
Figure 1). For any user defined type the DBMS can 
therefore automatically generate the PASCAL 
equivalent for that type. The mapping algorithm to 
transform data from the internal database format to 
the PASCAL format and vice versa is also fixed 
(catalog driven) and can thus be provided by the 
DBMS; no user driven transformation is required. 
An obvious disadvantage of system defined PAS- 
CAL structures is that the user has no means for 
optimization and customization; the user deflned 
functions have to be coded on - and tailored to -the 
PASCAL data structures as they are provided by 
the DBMS. 

User customized PASCAL structures: In principle, 
there are again standard PASCAL equivalents for 
HDBL types, as in case of system defined PASCAL 
structures. To a certain degree, however, the user 
may customize these PASCAL structures in a sense 
that the DBMS offers him a number of different 
PASCAL equivalents for each basic HDBL con- 
struct. A HDBL list, for instance, could be repres- 
ented in PASCAL via an array, pointer array, or 
linked list implementation. Among these different 
choices the user may now select the most appro- 
priate PASCAL data structures for his personal 
needs. Since customized PASCAL structures are 
not fully user defined but still DBMS controlled, 
general mapping routines can be provided by the 
DBMS and need not be manually coded by the user. 

The approach of user customized PASCAL struc- 
tures seems to be a fairly good compromise be- 
tween user defined PASCAL structures on the one 
side (which require too much manual interaction) 
and system defined PASCAL structures on the other 
side (which are sometimes not appropriate for the 
Implementation of specific algorithms). In our sys- 
tem, the last two approaches are supported. Further 
details on customization can be found in /KKLW87/. 

Whenever a new type is defined (via DECLARE 
TYPE . . . or DERIVE TYPE . ..). an equivalent PASCAL 
declaration is created as well which can then be 
embedded into the source code of PASCAL func- 
tions working with that type. Some small examples 
for these PASCAL data structures have already 
been shown in Sect. 4 (see e.g. PASCAL types 
‘boundary’ and ‘point’). 

In the following subsections further examples for 
HDBL types and their PASCAL equivalents will be 
given together with a set of more general rules how 
to create system defined PASCAL data structures 
for given HDBL type definitions. 

5.3.1 PASCAL Types for Basic HDBL Types and 
Previously Defined Types 

For a type declaration 
DECLARE TYPE user~defined~name any-type-name END 

the corresponding PASCAL type declaration is 

TYPE user-defined-name = any-type-name; 

For example, for the declaration 

DECLARE TYPE my-own-real REAL END 

a PASCAL declaration with the contents 

TYPE my-own-real = REAL: 

is created. 

5.3.2 PASCAL Types for HDBL Tuples 

Assume now a HDBL tuple type definition with at- 
tribute names a, and type names 1,: 

DECLARE TYPE user-defined-name 
[ a, : tl, . . . , an : tn ] 

A PASCAL record type serves as the programming 
language construct to map a HDBL tuple type into: 

TYPE user-defined-name - RECORD - 

END;' 
: t,; . . .; a : t " n 

Instead of the type names t,, the user may also 
specify any other DDL construct, e.g. another HDBL 
tuple, as the following example of nested tuples il- 
lustrates: 

DECLARE TYPE nested-tuples 
[ attribute-l : REAL, 

attribute-2 : [ attribute-3 : INTEGER, 
attribute-4 : CHAR ] ] 

END 

Two PASCAL types are created for the two tuples 
in that HDBL type definition: 

TYPE nested-tuplesSattribute_2 * 
RECORD 

attribute-3 : INTEGER; 
attribute-4 : CHAR 

END; 

nested-tuples I 

RECORD 
attribute-l : REAL: 
attribute-2 I nested-tuplesSattribute_2 

END: 

Nested-tuples$attribute-2 is a system generated 
PASCAL type name. 

53.3 PASCAL Types for HDBL Sets and Lists 

For any HDBL set/list type definition, e.g. 
DECLARE TYPE user~defined~name cn FIX element-type> END 
DECLARE TYPE user-defined-name cn element-type> END 
DECLARE TYPE user~defincd~name (n element-type} END 
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where ‘element-type’ is the name of the element 
type and ‘n’ is the maximal (variable length) or ac- 
tual (fixed length) number of elements, the PASCAL 
representation looks as follows: 

TYPE user-defined-name93 - ARRAY [l . . n] OF clement-type; 

user-defined-name n 

RECORD 
ACT-ECEH : 0 . . n; 
ALO-ELEH : 0 . . n; 
VAL : Tuser-defined-nomeW 

END; 

ACT-ELEM gives the actual number of elements; 
ALO-ELEM gives the number of elements for which 
storage space has been allocated (ALO-ELEM r 
ACT-ELEM). ALO-ELEM has been introduced since 
- in order to save space in main memory -one does 
not always want to allocate the array in its maxlmal 
length (n) which might be rather large (see also 
Sect. 4). In programming languages which directly 
support arrays of variable length, this construct 
could be simplified. 

Instead of the type name ‘element-type’, the user 
may again specify any other DDL construct, e.g. 
another HDBL set or a tuple, thus defining sets of 
sets, sets of tuples, etc. without having to perform 
explicit type declarations for the lower level sets 
and tuples. 

6. Status and Conclusions 

In this paper we have described a mechanism for 
adding user defined data types and functions to a 
DBMS. We have outlined how functions are re- 
flected in the query language, how they are to be 
implemented, and how they are executed at run- 
time. Moreover, we have described the system ex- 
tensions performed in order to support these tasks. 
Though described for the Advanced Information 
Management Prototype, the solution is generally 
applicable. At the time being, only functions written 
in a programming language are supported. We 
have therefore concentrated on those in this paper. 
We plan, however, to support functions written in 
HDBL as well. 

Because the functions are compiled (machine code) 
they are nearly as efficient as comparable standard 
built-in functions though some extra overhead 
caused by in-core data movement and data con- 
versions has clearly to be paid for supplying the 
functions with their parameter values, and to put 
their results back into the DBMS’s internal repre- 
sentation. 

Supporting compiled instead of interpreted func- 
tions certainly increases the risk that a malfunction 
of a user provided function may cause the DBMS to 
stop. This risk could be avoided by putting the code 

of the function into a separate address space, a 
solution which has also been suggested for 
POSTGRES. This, however, would cause some ad- 
ditional performance penalty (task switch). For the 
time being, we execute both user defined functions 
and normal DBMS code within the same address 
space. As rather conventional data structures are 
provided to program these functions (no “trick pro- 
gramming” is required) and as dynamic storage al- 
location and de-allocation is done via dedicated al- 
location routines /KKLW87/, this risk seems to be 
tolerable. 
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