
Design and Implementation of an
Extensible Database Management System

Supporting User Defined Data Types and Functions

V. Linnemann, K. Kflspert, P.Dadam, P.Plstor,
Ft. Erbe, A. Kernper*, N. Sildkamp, G. Walch, M. Wallrath’

IBM Sclentlflc Center Heidelberg, Tlergartenstrasse 15
D-6900 Heldelberg, West Germany

’ University of Karlsruhe, FakultM fOr lnformatlk
D-7500 Karlsruhe, West Germany

Abstract

Current query languages for relational databases
usually are fixed, i.e. they provide only a fixed set
of data types and operations. It is usually not pos-
sible to extend this set by user defined data types
or functions. This is a major drawback especially in
advanced applications like engineering applications
or office automation. In these areas special data
types and special functions are needed quite fre-
quently, e.g. a data type for matrices and a function
for matrix multiplication. Since matrices and matrix
multiplication are not provided in conventional
query languages, the user has to model matrices
by low level constructs as, for example, byte
strings, and to write a rather cumbersome applica-
tion program in a conventional programming lan-
guage for interpreting these byte strings as matri-
ces and for multiplying them. Another example of
a missing function is even as simple as the square
root function. Therefore, a mechanism is needed
that allows the user to define his own data types
and functions and add them somehow to the DBMS
such that they can be used within the query lan-
guage in the same way as a normal built-in function
on basic data types. This paper describes an ex-
tension mechanism for data types and functions
that has been implemented at the IBM Scientific
Center in Heidelberg. The mechanism is based
upon HDBL, an SQL based query language for
complex objects. The functions themselves are

Permission to copy without fee all or part of this material is
granted ~ovided that the copies are not made or distrhted for
direct commercial advantage, the VLDB copyright notice Md
the title of the publication and its date appear. Imd notice is given
chat copying is by permission of the Very Large Data Base
Endowment. To copy otherwise. or to republish. raquires a fee
and/or special permission from the Endowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 294

written in a conventional programming language, in
our case PASCAL, thus allowing to formulate gen-
eral algorithms. One important aspect is the inter-
face between the data types of the DBMS on the
one side and the data types of the programming
language on the other side. In our case, this map-
ping is more complicated than in other approaches
because our type system supports complex objects
directly and not via long strings as other authors
do. Moreover, we use the PASCAL type system to
a large extend in order to allow type checking at
compile time.

1. Introduction

Current database management systems (DBMSs)
and their database languages only offer a fixed set
of data types and operations. Whenever the set of
data types supported by the DBMS is insufficient for
a given application, the system has to be “misused”
in some way to handle the new type of data. Ex-
amples of that kind are large numerical vectors and
matrices, long texts, geometrical data, image data,
etc. In such cases the DBMS is used just as a “byte
container”. As a consequence, search predicates
on the contents of these fields are usually not sup-
ported. The manipulation of these attribute values
by the DBMS’s DML can only be performed in a
very rudimentary way. Moreover, a high depend-
ency between the physical data representation and

The work described in this paper was done within
the R2D2 (A Relational Robotics Database System
with Extensible Data Types) project. R2D2 is a
cooperaNon project (started in 1986) between
the IBM Scientific Center Heidelberg and the
University of Karlsruhe. FakuM filr lnformatik

the application programs is again re-established. -
To lessen this kind of dependency was one of the
major reasons why DBMSs have been developed.

Several ongoing research projects attempt to over-
come limitations of current DBMSs by more pow-
erful data models. Some of them support a richer
set of basic data structures based on or influenced
by nested relations or by variants of the entity-re-
lationship model (/HL82, Da87, DaK686, La84,
RKB85, SS86, PaSc87, Ha87, AB84, Di86, VKC86/).
Others try to solve the problem by staying with a
more rigid basic data model but by supporting
some kind of dynamic references. This is done in
POSTGRES /RoSt87, St87, St86a, St86b, St84/ by in-
troducing procedures as attribute values. These
procedures consist, among others, of POSTQUEL
statements, the database language of POSTGRES.
Procedures as attribute values provide a powerful
extension to the relational data model. In /St87/ it
is shown how procedures as attribute values can
be used to model complex objects.

Even with more powerful data structures offered,
there will always remain cases, especially in novel
application areas, where some new type of data
cannot adequately be supported. Though some of
the data structures offered by an advanced DBMS
may be useful for efficiently storing the data, the
search capabilities provided by the DBMS will usu-
ally be unsatisfactorily. Missing functions are not
only a problem for “strange” data types. Assume
for example the square root of a speclttc field or a
specific group of fields. In a standard query lan-
guage for a relational database, as for example
SQL /Ch76, Ch81, IBM81/, one cannot express this
problem because square root operations are usu-
ally not provided. The only way for the user is to
forget about the query language and to write a
rather cumbersome application program in a pro-
gramming language. This is, of course, only possi-
ble if an interface to a programming language is
provided.

One solution for this specific problem would be, of
course, to ask the implementor of the DMBS to add
the square root to the query language. But then the
next user may ask for another function, e.g. matrix
inversion. It obviously does not make sense to
keep adding functions to the query language from
the very beginning because there will always be
applications which need other functions. What is
really needed is a mechanism that allows the user
to specify a new function and to provide appropriate
interfaces to the query language. That is, to make
the DBMS itself extensible by user defined data
types and operations.

Currently, the area of extended data base technol-
ogy is quite heavily investigated. Some of the work
reported in the literature shall be reviewed shortly.

The ‘PETERLEE RELATIONAL TEST VEHICLE’ (PRTV
/To76/), which is known as one of the first running
prototypes of a relational DBMS, had already a
simple mechanism for so-called ‘user extensions’:
The user could provide his own procedures (written
in PUI) which could then be used in query state-
ments and called by the DBMS at run time. Since
PRTV tables were always in first normal form (INF),
complex (hierarchical) data structures as procedure
input and output could not be processed.

Galileo /AC085/ is a strongly-typed, interactive
conceptual language for database applications de-
signed, among others, to support the abstraction
mechanisms of modern programming languages.
The main contributions of Galileo are a flexible type
system, the inclusion of type hierarchies and a me-
chanism to support abstract data types.

TAXIS /MBW80/ is a language for the design of in-
teractive information systems. It offers, among oth-
ers, database management facilities which are in-
tegrated into a single language through the con-
cepts of class, property, and the IS-A relationship.

In addition to procedures consisting of POSTQUEL
statements, POSTGRES /RoSt87, St87, St86a, St86b,
St8U also supports procedures written in a con-
venttonal programming language as, for example
LISP or C. Moreover, the concept of abstract data
types is supported by POSTGRES, but only on a
rather low level as far as the representation of an
abstract data type is concerned. The representation
is an unstructured storage area. Only the length of
the area is given, i.e. there Is no strong typing as
far as the representation of an abstract data type is
concerned. This is also the method for passing
parameters to functions written in LISP or C /St86a/.

PROBE /Da87, G087/ distinguishes between entities
and functions. Access to the attribute values of an
entity is only provided by invoking the correspond-
Ing function. Functions can be system provided
functions or user detlned functions.

The STARBURST project /Sch86, LMP87/ is investi-
gating, among others, how to design the DBMS ar-
chitecture such that storage alternatives for re-
lations and “foreign” indexes can be supported.

GENESIS /Bat86/ and EXODUS /Ca86/ are, in es-
sence, soffware engineering tools for configurating
a DBMS according to a given specification. GEN-
ESIS, for example, relies on database components
whose interfaces have been standardized in such
a way that they become exchangeable. One goal
of EXODUS is to provide kernel DBMS facilities and
software tools for the semi-automatic generation of
application-specific DBMSs. Under the assumption
that in the future there will exist large libraries of
application area oriented data types and respective
functions which can be optionally added to a data-

295

base kernel (customization), tools like GENESIS or
EXODUS will be very helpful if not even mandatory
to configure these systems.

“Extensibility” of a DBMS has several aspects. One
is, how to make new data types and functions
available to the user. That is, how to reflect them in
the query language and in the application program
interface. Another aspect is how to implement
these functions. That is, how to program them
(“what is the reference basis?“), how to “plug” them
into the system, and how to actually execute them
at run-time. A third aspect is how to support also
user defined indexes within the DBMS, how to
evaluate them during query optimization and exe-
cution, and how to integrate them into the system’s
concurrency control and recovery mechanisms.

In the R*D* project we are currently mainly con-
centrating on the first two issues. In /KLW87/ the
concept of abstract data types on top of nested re-
lations is described. Our paper describes the ex-
tensibility of the underlying DBMS by user defined
data types and functions and how they are reflected
in its query language. The functions themselves
are written in a conventional programming lan-
guage, in our case in PASCAL, to allow for general
algorithms. The underlying DBMS is a further de-

~ velopment of the Advanced information Manage-
ment Prototype, called AIM-P in the sequel for
short. AIM-P is an experimental DBMS developed
at the IBM Heidelberg Scientific Center since 1983
for application oriented research purposes in ad-
vanced application areas (cf. e.g. /DaK686, KDG87,
Lu84, Lu85, Pi87/). AIM-P has been extended ac-
cording to R*D*‘s needs. The link between AIM-P’s
database language and a user defined function is
provided by mapping the data model of AIM-P to
appropriate PASCAL structures and vice versa. It
should be noted that the approach is not restricted
to PASCAL. Any programming language which
supports static types could be used as well, for ex-
ample MODULA /Wi83/.

The paper is organized as follows: Section 2 dis-
cusses possible alternatives for adding types and
functions to a DBMS by concentrating on the alter-
natives: static types versus dynamic types. More-
over, the relationship between abstract data types
and so called encapsulated types is discussed.
Section 3 recalls some database language con-
structs which are necessary for understanding sec-
tion 4 which in turn is the central part of the paper.
It describes by examples the function extension
mechanism we have implemented. Implementation
details are discussed in section 5. Section 6 gives
some conclusions and an outlook for future work.

2. Static Types Versus Dynamic Types,
Abstract Data Types Versus
Encapsulated Types

If one talks about types and functions, there are two
main alternatives: The types may be static or dy-
namic, i.e. the types of the parameters and the re-
sult of a function may be statically known, or they
may vary dynamically. In POSTGRES lRoSt87, St87,
StaGa, St86b/ , even the type of a tuple in a table
may vary from tuple to tuple. This results from the
fact that each function stored in an attribute value
may produce a value of an arbitrary type. Opposed
to a “normal” attribute, the structure (value type) is
therefore not known prior to the access to the attri-
bute value and to the execution of it (that is the
function/procedure it contains). This approach
provides a lot of flexibility. On the other hand, only
dynamic type checking can be provided, i.e. type
errors show up only at run time. To write an appli-
cation program for processing tables with tuples of
unpredictable types is rather difficult and error
prone. Therefore, we think that for the “standard”
user more secure mechanisms should be provided.
Moreover, optimization is easier if types are known.

Improved security and efficiency can be achieved
by binding functions to static types. On the data-
base programming language side, probably the
most significant contributions supporting static
types were PASCAL/R /Schm77/ and Galileo
/ACOBS/. By using static types, the result type of a
function can be determined respectively derived at
function definition time. Thus it can be described
in the catalog (cf. Sect. 5.1.2). By doing so, the data
structures returned when executing a function are
already known at compile time of the application
program. Hence, there are no “surprises” at exe-
cution time.

For these reasons we have decided for R*D* to bind
the functions with respect to their parameters and
return values to static types. Therefore, only type
compatible attribute values, constants, and query
expressions can be passed as actual parameter to
these functions.

In R*D* functions are not limited to basic data types
like integer, real, string, etc. A function can be de-
fined on any data structure supported by AIM-P;
even a complete table as data type is allowed.
Therefore more emphasis than in the flat table case
had to be put on providing a reasonable basis for
the implementation of these functions.

At this point some comments should be made on
abstract data types. We feel that the database ker-
nel should provide more than pure abstract data
types. Binding of functions to only one type is too
narrow because there are applications where a

296

function belongs to two or more types. Consider,
for example, the problem of converting the value of
one abstract data type to a value of another ab-
stract data type. This conversion function belongs
to both abstract data types. If only pure abstract
data types are supported, the conversion function
has to be added artificially to one of the two ab-
stract data types. Therefore, we decided to directly
support only the information hiding concept of ab-
stract data types by introducing so called encapsu-
lated types. The structure of encapsulated types is
not known to the user, values of an encapsulated
type can be accessed and changed only by appro-
priate functions. Functions can refer to several en-
capsulated types. Encapsulated types are similar to
the concept of hidden types introduced by the pro-
gramming language MODULA /Wi83/. The concept
of abstract data types is, in a sense, a special case
of encapsulated types because an abstract data
type is an encapsulated type together with functions
restricted to this type.

One of the main goals of R*D* is to provide an en-
vironment where adding of new functions to the
underlying DBMS should be possible without re-
quiring much database specific knowledge. Espe-
cially, it should not require knowledge about inter-
nals of the underlying DBMS, especially the internal
data representation. Every experienced application
programmer should be able to program these
functions. In order to make this a safe task, the
functions should be implemented with program-
ming language structures which represent the cor-
responding data model types as “naturally” as
possible. This means that a tuple, for example,
should be mapped to a record structure rather than
to a byte string with offset pointers.

To understand our approach for solving the function
implementation problem, a brief explanation of the
underlying data model has to be given first.

3. Data Model and Language

The data model supported by the Advanced Infor-
mation Management Prototype is an object-or-
iented generalization of Non-First-Normal-Form
(NF*) respectively “nested” relations. It has an
SQL-like language interface, the Heidelberg Data
Base Language (HDBL) /PT86, PA88, Pi87/.

The obJect types HDBL can deal with are:

set valued, list valued, tuple valued or atomic.

Atomic data types are: DATE, REAL, INTEGER,
BOOLEAN, CHARACTER, STRING and SURRO-
GATE. The elements or attributes of any object type
(except for objects consisting just of an atomic va-

lue) can again be of any of the types listed above.
That is, the attributes of a tuple valued object, for
example, can be either atomic, or set valued, or list
valued, or again tuple valued. Objects need not
occur as elements of a table. A list of lists of REAL
values (which is a two dimensional matrix) can oc-
cur as element in another list or set or as attribute
value within a tuple or as a single standing object
(having an object name). Figure 1.a shows a
graphical representation of this data model; both
the 1NF data model and the pure NF* data model
are special cases of this more general data model.

As we will use HDBL statements later on to show
the embedding of user defined functions and types,
we give here a brief introduction into this language.
A comprehensive treatment of this subject can be
found in /PT88, PA86, Pi87/.

The following example shows a CREATE statement
and some simple queries. The example will later
on also serve as reference basis for the discussion
of user defined data types and functions. To make
explanation not unnecessarily complicated we have
selected a rather simple structure. It should be
clear, however, that HDBL can deal with much more
complex structures and operations on those (pro-
jection, selection, join) as well.

As an example we use a part of a geographic in-
formation system which allows to store information
about specific properties. Each property is defined
by the boundaries which are given by a list of
points. We can create a corresponding table in
HDBL as follows:

CREATE properties
([id: ttring(lO),

owners: { [name: string(30),
share: real J },

points: c [x-c: real,
y-c: real] >] }

END

Sets are indicated by curly brackets ({...}), tuples
by square brackets ([...I), and lists (ordered sets)
by sharp brackets (< . ..>) lALPS88l. Thus, the
properties example represents a set of tuples. Each
tuple has three attributes: The first one, called ‘id’,
is an identifier of the property. ‘id’ is a string, i.e. a
flat attribute in the conventional sense. The second
one, ‘owners’, represents all the owners of the
property. ‘owners’ is a set of tuples. Each tuple
contains the name of an owner and the percentage
of the ownership. The third one, called ‘points’,
represents the boundary of the property. It is a list
of tuples. Each list element represents a limiting
point. A list element Is a tuple containing the x and
y coordinates of the limiting point. For example, the
property depicted by the picture

297

(394) (784)

cl

id: 'SQUARE'
owners: 'Miller, Jim', 50 percent

'Miller, Jane', 50 percent

ho) (798)

can be modelled by the following properties table
entry:

id { owners } < points >

name share x-c y-c

SQUARE Miller, Jim 5o.e 3.G 4.0
Miller, Jane 5e.e 7.8 4.8

7.8 El.8
3.8 El.8

In HDBL, the information about properties ‘1234’
and ‘5676’ can be retrieved by

SELECT p FROM p IN properties
WHERE p.ld = '1234' OR p.id = '5678'

If one is only interested in the owners of the speci-
fied properties, one can formulate the following
projection:

SELECT [p.owners] FROM p IN properties
WHERE p.id - '1234' OR p,id - '5678'

If one is interested in all properties such that a
specific point occurs in the limltlng points, one can
express this in HDBL as follows:

SELECT p FROM p IN properties
WHERE EXISTS (point IN p.points):

point.x-c = 13.7 AN0 point.y-c = 39.8

In addition to queries, HDBL provides operations for
changing tables (ASSIGN, INSERT and DELETE).
ASSIGN assigns a new value to a specific field

whereas INSERT Inserts one or several elements
into an existing set or list. DELETE deletes one ele-
ment or a whole set or list. Assume, for example,
that a property share is split into two parts. This can
be expressed by the following two HDBL state-
ments:

ASSIGN owner.percentage * 9.5
TO owner.percentage
FROM owner IN p.owners, p IN properties
WHERE p.id = 'XYZ' AND owner.name = 'Hr. X'

INSERT { [name: ‘Hr. Y’,
percentage: owner.percentage])

INTO p.owners
FROM p IN properties, ovmer IN p.owners
WERE p.id = 'XYZ' AND owner,name = 'Mr. X'

4. User Defined Types and Functions

Although being quite powerful, HDBL does not Al-
low certain queries. One group of queries involves,
among others, the computation of the transitive
closure of a relation. This problem could be solved
by introducing recursive queries over nested re-
lations /Ll87/. Another group of queries involves the
computation of arbitrary functions involving, among
others, mathematical expressions. Assume, for
example, the query:

“Find all properties such that the length of
the boundary is larger than a certain value.”

This query cannot be expressed in current HDBL
because it involves looping over all limiting points
and the computation of the square root. One sol-
utlon to solve problems of that kind is to use the
application program interface /ESW67, EW87/ for
fetching the objects of interest and to perform the
computation itself in the application program.

RELATION
(SET)

tuples

RELATION
(SET)

tuples

VALUES
atomic
values

atomic
values

a) HDBL Data Model

(Extended NF’ Data Model)
b) NF* Data Model c) 1NF Data Model

Figure 1. Data Model Comparlaon: HDBL, INF, NP: Terms written in capital letters indicate legal object types.
Objects of these types can be created within the data model with a CREATE statement.

298

Especially for computations which are needed fre-
quenty, especially if they are needed in various ap-
plications (think, for example, just a square root or
standard deviation function is missing) this ap-
proach is too cumbersome. Hence a mechanism
should be provided to make the DBMS itself exten-
sible by user defined functions such that they be-
come part of the DBMS’s query language. This
section describes how this has been achieved in
the Advanced Information Management Prototype

For the user, the most obvious solution to the query:
Find all properties such that the length of the
boundary is larger than a certain value, would be
to define a function ‘get-length’ which computes the
length of a boundary and then use this function in
the following HDBL statement:

SELECT p FROM p IN propcrtlcs
WHERE get-length(p.points) > 123456.7

It should be possible to program ‘get-length’ in a
programming language like PASCAL. One impor-
tant point has to be solved for that end: The world
of PASCAL types has to be connected to the world
of HDBL types, because PASCAL functions like
‘get-length’ require parameters of PASCAL type. In
our approach, this is accomplished as follows: A
special DECLARE TYPE statement is added to HDBL
which allows the user to define types which can be
used in CREATE statements or within other DE-
CLARE TYPE statements. Once a type has been
declared, the system will generate corresponding
PASCAL representations (type declarations) for this
type. For example, the statement

DECLARE TYPE point
[x-c: real,

y-c: real]
END

defines a type ‘point’ as a tuple with an x coordi-
nate and a y coordinate. The translation of the DE-
CLARE TYPE statement results in the generation of
a corresponding PASCAL type declaration as fol-
lows (cf. Sect. 5.3 for the details):

TYPE point - RECORD
x-c: real;
y-c: real

END;

By the statement
DECLARE TYPE boundary < point > END

a type boundary is defined to be a list of points. For
this HDBL type the following PASCAL types would
be generated:

TYPE boundarySR = ARRAY [1..65535] OF point;
boundary - RECORD

ACT-ELEH: k.65535;
ALO-ELEH: k.65535;
val : fboundary$R;

END;

These types need some explanations: Since PAS-
CAL like many other programming languages does
not support dynamic arrays, “special solutions”
have to be used to overcome the problems of re-
presenting variable long lists or sets. In our exam-
ple, a default limit of 65535 is used, since no limit
was given in the declare statement. The compo-
nents ‘ACT-ELEM’, ‘ALO-ELEM’ and ‘val’ simulate
a dynamic array. In the val component, the list el-
ements are stored. ‘ACT-ELEM’ indicates the c&r-
rent length of the list. ‘ALO-ELEM’ is needed for
storage allocation. This is described in more detail
in Sect. 5.3.3. With these types, the ‘properties’ ta-
ble can now be defined as

CREATE properties
{ [Id: strlng(lO),

owners: ([rmne: string(36),
percentage: real J),

points: boundary
13

END

From the database point of view this statement is
equivalent to the first CREATE statement, since the
types are not declared to be encapsulated, If a type
is declared to be encapsulated, the internals of a
value of such a type are known only to the functions
which have a value of such a type as a parameter.
For example, by the declaration

DECLARE TYPE boundary < point > ENC END

‘boundary’ is declared to be encapsulated, i.e. the
elements of a boundary list cannot be accessed di-
rectly but only by functions which have a ‘boundary’
as a parameter.

After having declared the necessary types, we can
introduce our function ‘get length’. This is done in
two steps: First, ‘get-length’ is made known to the
database system by the statement

DECLARE FUNCTIDN get-length(b: boundary): real

In a second step, the body of the function is written
in PASCAL by using an auxiliary function
‘line-length’:

299

FUNCTION line-length(pl,pZ: point): real;
VAR x,y: real:
BEGIN

x := p2.x-c - pl.x-c; y 1. pt.y-c - pl.y-ci
line-length := SDRT(x*x + y*y);

END;

FUNCTION get_length(b: boundary): real:
VAR len: real; 1: integer;
BEGIN
WITH b 00
BEGIN

IF ACT-ELEN <= 2
THEN BEGIN

len := 6.0;
error-exit(....) /* WRONG DATA: boundary must

have at least 3 points */
END

ELSE BEGIN
lcn := line~lcngth(valf[ACT~ELEN], valt[l]);

FOR 1:-l TO ACT ELEN-1 DO
len := len + Tine-length(valt[i], valt[i+IJ)

END
END;
get-length := len

END;

This PASCAL program is now compiled by the
PASCAL compiler and added to the database soft-
ware. More details are given in Sect. 5. ‘get-length’
can now be used within HDBL whereever a real
value (= value type of the result) is allowed. One
example was already given:

SELECT p FROM p IN properties
WHERE get-length(p.points) a 123456.7

Another example uses ‘get-length’ for the con-
struction of an attribute value. it gives the proper-
ties table together with the lengths of the bounda-
ries:

SELECT [id : p.id, Owners: p.owners, points: p.points,
length: get-length(p.points)]

FROM p IN properties

In the next example, we want to change our ‘prop-
erties’ table such that the name is split in first name
and last name. For this example, we use another
alternative for defining types, namely a DERIVE
TYPE statement which derives a type from an ex-
isting table. We declare types for the owners as
foiiows:

DECLARE TYPE new-owner
[first-name: string(3B), last-name: string(M),

percentage: real]
END

DERIVE TYPE old-owner AS o
FROM o IN pr.owners, pr IN properties

The system generates the following PASCAL types:

TYPE new-owner = RECORD
first-name: string(30);
last-name: string(39);
percentage: real

END;

TYPE old-owner = RECORD
name: string(3B);
percentage: real

END;

A function for splitting names is made known to the
system by

DECLARE FUNCTION name-split (old: old-owner): new-ormer

The corresponding PASCAL implementation can be
sketched as follows:

FUNCTION name-split (old: old-owner): new-owner;
VAR result: new-owner;
BEGIN

result.last~name :-
result.first-name :=
result.percentage := old.percentage;
name-split := result

END:

Now we can create our new table:

CREATE nm_properties
([id: string(lB),

owners: { nrw~ounrr)
points: < [x-c: real,

y-c: real] >

and convert the old table as follows:

INSERT
SELECT [id : old-prop.id,

owners: SELECT name-split(old-owner)
FROM old-owner IN old-prop.owners,

points: oldgrop.points]
FROH old-prop IN properties

INTO new_properties

5. Implementation of Types and
Functions

in the following we will explain how user defined
data types and functions have actually been impie-
mented within the DBMS. We address database
catalog extensions (Sect. 5.1) the run time man-
agement of user defined functions and type in-
stances (Sect. 5.2) and - finally - the PASCAL data
structures chosen to map the HDBL types into
(Sect. 5.3).

5.1 Types and Functions in the Database
Catalog

5.1.1 The ObJect Catalog of AIM-P

The database catalog of AIM-P is composed of

300

three parts: the object catalog, the type catalog, and
the function catalog. The last two catalogs reflect
the extensions of our system by types and func-
tions, the first one was the catalog in the initial
version of AIM-P.

The object catalog records descriptive information
- meta data - about all database objects, i.e. - in the
HDBL data model - about sets, lists, tuples, and
scalars (cf. Figure 1).

The object catalog itself is again an HDBL object (in
fact a table). Each tuple in that table contains some
general information about the related database ob-
ject as a whole (‘one-object-descrlptlon’), such as
its external and internal name, its creator and cre-
ation date, etc. The most important part of the ob-
ject catalog, however, is the attribute description,
which is a list of tuples where each tuple
(‘one-attribute-descrlptlon’) describes exactly one
attribute. Via the attribute description the catalog
manager of the DBMS keeps also track of the par-
ent-child relationships between attributes on differ-
ent levels, i.e. the attribute description reflects the
hierarchical structure within a database object of
arbitrary size and complexity.

5.1.2 Catalog Extensions for Types and Functions

Information about types and functions is maintained
in two separate tables, a type catalog and a func-
tion catalog.

As explained in Sect. 4, any flat or nested HDBL
structure (list, set, tuple, scalar) may be used in
exactly the same way both in a type declaration
(DECLARE TYPE . . . or DERIVE TYPE . ..) and in a
database object declaration (CREATE . ..). It is
therefore not surprising that the structure of the
type catalog is quite similar to that of the object
catalog. Especially the attribute description is done
in exactly the same way.

For each user defined data type the catalog man-
ager records, again, the internal and external
name, the creator and creation date, etc. The cor-
responding PASCAL data structure is automatically
derived from the type declaration (see Sect. 5.3)
and could be stored in the type catalog. Moreover,
several ‘use counts’ are provided to keep track of
a type’s usage in other types, in functions, and in
database objects. We will come back to the se-
mantics of these use counts at the end of this sub-
section.

In the function catalog the DBMS keeps track of the
names and the interface descriptions (parameter
names and types) of all user defined functions. Pa-
rameters of functions - as well as the function result
- may either be of basic HDBL types (BOOLEAN,
INTEGER, REAL, etc.) or of user defined types. The
basic HDBL types are always implicitly known to

the DBMS; the user defined types must have been
explicitly declared before they can be used in a
function definition.

Certain attributes in the function catalog, like
‘function-result-type’ and ‘parameter-type’, are
used by the DBMS at DML parsing time to check the
applicability of a given function in a DML statement.
These type specifications for function input and
output are also used to trigger implicit type con-
versions (as far as possible) if the actual and formal
parameters do not fully match. A ‘parameter-name’
attribute is also provided to automatically generate
the corresponding PASCAL function declaration to
be used in a function implementation.

Our type and function concept had to be designed
and implemented such that the DBMS is able to
keep track of all interdependencies between types,
functions, and database objects. These interde-
pendencies can be expressed in the following dia-
gram:

r--l&-J
t

The figure reads as follows: Types may be used in
the declaration of objects, functions, and (other)
types. A consequence is that whenever a type shall
be dropped the DBMS must check whether that type
is still somewhere in use (in objects, functions, or
types). We decided to permit type drop operations
only if the type to be dropped is not (anymore) in
use. An alternative would have been to implicitly
drop also those objects, functions, and types where
the type to be dropped is currently used by; we be-
lieve, however, that for the normal user the effects
of such ‘cascading drop operations’ would be
rather unpredictable and therefore extremely un-
safe.

5.2 Handling of User Defined Functions
and Type Instances at Run Time

5.2.1 Function Dispatcher

Obviously, user defined functions cannot be ‘hard-
wired’ since neither the function names nor the
number and kind of parameters are known when
the DBMS code is written. Extensibility means that
new user deflned functions can be brought into the
DBMS at any time. The DBMS must be able to call
these functions and to provide the proper set of

301

parameters. It would not be really satisfying if one
had to change the DBMS source code every time
when the user defines a new function. A mech-
anism is therefore required in the DBMS to call any
function with any set of parameters. We call that
mechanism the function dispatcher.

In the following the function dispatcher will be
briefly explained by presenting the scenario in
which a function call within a DML statement is ac-
tually processed by the DBMS:

When the DML statement is parsed the parser
checks whether the specified function exists or not.
This is done via a look up operation in the function
catalog (Sect. 5.1.2). The parser also checks the
applicability of the function in the given context of
the DML statement, i.e. whether actual and formal
parameters really match in number and type (if ne-
cessary type conversions are prepared).

At DML execution time the function must actually
be called by the DML evaluator (run time evaluation
part of the DML processor) and the required pa-
rameters must be passed. This function call is done
indirectly via a call to the function dispatcher. The
function dispatcher gets basically three input pa-
rameters, namely the function name, the number
of parameters and an address vector with one ad-
dress for each parameter.

The function dispatcher has some internal book-
keeping (function address table) to keep track of all
function names and function start addresses.
Whenever a new user defined function is brought
into the system its function name and interface de-
scription are not only recorded in the function cat-
alog, but also in the function address table.

The function dispatcher - written in assembly lan-
guage - takes the given function name to look up
the corresponding function start address and then
executes this function. The address vector pro-
vided by the caller is passed to the function.

Once the user defined function has been executed
the result is returned to the function dispatcher and
- finally -to the DML evaluator where that result can
be used e.g. as input for another function, for dis-
play at the screen, or for use in predicate evalu-
ation, etc.

5.2.2 The Type Instance Loader/Unloader

In order to provide the actual (input) parameter set
for user defined functions, AIM-P must be able to
load (complex) type instances from the database
into the respective Pascal structures. In our exam-
ple in Sect. 4, where an instance of type ‘boundary’
is input for the function ‘get-length’, the required
‘boundary’ data - which are a list of ‘point’ tuples -
must be read from the database and must thereby

be transformed into the Pascal representation. This
is both done by the type Instance loader.

Moreover, AIM-P must also be able to unload
(complex) type instances from a Pascal represen-
tation (back) to the database. An example was also
given In Sect. 4: The result data of the ‘name-split’
function, which are of type ‘new-owner’, are finally
inserted into the database. Data transformation
from the Pascal representation to the database for-
mat and writing to the database are done by the
type Instance unloader.

The type instance loader and unloader shield the
higher level DBMS components from details of type
instance implementation, such as storage allo-
cation, address and pointer representation, Pascal
data layout, etc. For the AIM-P query processor
there is functionally no difference between
loading/unloading a simple scalar value (e.g. a 4
We INTEGER) on the one hand and
loading/unloading a large, complex type instance
of size 4 MB on the other hand: Both is done via a
single call to the type instance loader/unloader
which is - in case of data loading - also responsible
for storage space allocation.

The type instance loader and unloader are fully ca-
talog driven: They have both the information about
an obJect’s database format (via the ob)ect catalog)
and about its Pascal format (via the type catalog).
They can thereby - on the fly - perform the neces-
sary convemlons between the database format and
the respective Pascal format. These conversions
are not restricted to atomic data occurrences (e.g.
transformation of an INTEGER vector in the data-
base to a REAL vector in Pascal and vice versa);
other transformations such as LIST (n) * SET (m)
etc. can be done as well.

5.3 Generation of PASCAL Data Structures
for HDBL Types

When creating PASCAL data structures for HDBL
types, three different strategies are conceivable:

User deflned PASCAL structures: The user who
deflnes a new type may specify whatever PASCAL
data structure he would like to see for that type. To
gain efficiency, to save storage space, and to write
compact program code, the user can therefore tai-
lor the PASCAL structure to the operations to be
performed on that structure. A major disadvantage
of this approach is, however, that no general map-
ping mechanism can be provided by the DBMS to
transform data from the internal database format to
the PASCAL format and vice versa. The user would
have to implement these mapping routines himself,
a task that is both cumbersome and extremely er-
ror-prone; incorrect mapping routines could even

302

destroy the database. We therefore did not follow
that approach.

System defined PASCAL structures: One standard
PASCAL equivalent is defined for each HDBL con-
struct, i.e. for sets, lists, tuples, and scalars (cf.
Figure 1). For any user defined type the DBMS can
therefore automatically generate the PASCAL
equivalent for that type. The mapping algorithm to
transform data from the internal database format to
the PASCAL format and vice versa is also fixed
(catalog driven) and can thus be provided by the
DBMS; no user driven transformation is required.
An obvious disadvantage of system defined PAS-
CAL structures is that the user has no means for
optimization and customization; the user deflned
functions have to be coded on - and tailored to -the
PASCAL data structures as they are provided by
the DBMS.

User customized PASCAL structures: In principle,
there are again standard PASCAL equivalents for
HDBL types, as in case of system defined PASCAL
structures. To a certain degree, however, the user
may customize these PASCAL structures in a sense
that the DBMS offers him a number of different
PASCAL equivalents for each basic HDBL con-
struct. A HDBL list, for instance, could be repres-
ented in PASCAL via an array, pointer array, or
linked list implementation. Among these different
choices the user may now select the most appro-
priate PASCAL data structures for his personal
needs. Since customized PASCAL structures are
not fully user defined but still DBMS controlled,
general mapping routines can be provided by the
DBMS and need not be manually coded by the user.

The approach of user customized PASCAL struc-
tures seems to be a fairly good compromise be-
tween user defined PASCAL structures on the one
side (which require too much manual interaction)
and system defined PASCAL structures on the other
side (which are sometimes not appropriate for the
Implementation of specific algorithms). In our sys-
tem, the last two approaches are supported. Further
details on customization can be found in /KKLW87/.

Whenever a new type is defined (via DECLARE
TYPE . . . or DERIVE TYPE . ..). an equivalent PASCAL
declaration is created as well which can then be
embedded into the source code of PASCAL func-
tions working with that type. Some small examples
for these PASCAL data structures have already
been shown in Sect. 4 (see e.g. PASCAL types
‘boundary’ and ‘point’).

In the following subsections further examples for
HDBL types and their PASCAL equivalents will be
given together with a set of more general rules how
to create system defined PASCAL data structures
for given HDBL type definitions.

5.3.1 PASCAL Types for Basic HDBL Types and
Previously Defined Types

For a type declaration
DECLARE TYPE user~defined~name any-type-name END

the corresponding PASCAL type declaration is

TYPE user-defined-name = any-type-name;

For example, for the declaration

DECLARE TYPE my-own-real REAL END

a PASCAL declaration with the contents

TYPE my-own-real = REAL:

is created.

5.3.2 PASCAL Types for HDBL Tuples

Assume now a HDBL tuple type definition with at-
tribute names a, and type names 1,:

DECLARE TYPE user-defined-name
[a, : tl, . . . , an : tn]

A PASCAL record type serves as the programming
language construct to map a HDBL tuple type into:

TYPE user-defined-name - RECORD -

END;'
: t,; . . .; a : t " n

Instead of the type names t,, the user may also
specify any other DDL construct, e.g. another HDBL
tuple, as the following example of nested tuples il-
lustrates:

DECLARE TYPE nested-tuples
[attribute-l : REAL,

attribute-2 : [attribute-3 : INTEGER,
attribute-4 : CHAR]]

END

Two PASCAL types are created for the two tuples
in that HDBL type definition:

TYPE nested-tuplesSattribute_2 *
RECORD

attribute-3 : INTEGER;
attribute-4 : CHAR

END;

nested-tuples I

RECORD
attribute-l : REAL:
attribute-2 I nested-tuplesSattribute_2

END:

Nested-tuples$attribute-2 is a system generated
PASCAL type name.

53.3 PASCAL Types for HDBL Sets and Lists

For any HDBL set/list type definition, e.g.
DECLARE TYPE user~defined~name cn FIX element-type> END
DECLARE TYPE user-defined-name cn element-type> END
DECLARE TYPE user~defincd~name (n element-type} END

303

where ‘element-type’ is the name of the element
type and ‘n’ is the maximal (variable length) or ac-
tual (fixed length) number of elements, the PASCAL
representation looks as follows:

TYPE user-defined-name93 - ARRAY [l . . n] OF clement-type;

user-defined-name n

RECORD
ACT-ECEH : 0 . . n;
ALO-ELEH : 0 . . n;
VAL : Tuser-defined-nomeW

END;

ACT-ELEM gives the actual number of elements;
ALO-ELEM gives the number of elements for which
storage space has been allocated (ALO-ELEM r
ACT-ELEM). ALO-ELEM has been introduced since
- in order to save space in main memory -one does
not always want to allocate the array in its maxlmal
length (n) which might be rather large (see also
Sect. 4). In programming languages which directly
support arrays of variable length, this construct
could be simplified.

Instead of the type name ‘element-type’, the user
may again specify any other DDL construct, e.g.
another HDBL set or a tuple, thus defining sets of
sets, sets of tuples, etc. without having to perform
explicit type declarations for the lower level sets
and tuples.

6. Status and Conclusions

In this paper we have described a mechanism for
adding user defined data types and functions to a
DBMS. We have outlined how functions are re-
flected in the query language, how they are to be
implemented, and how they are executed at run-
time. Moreover, we have described the system ex-
tensions performed in order to support these tasks.
Though described for the Advanced Information
Management Prototype, the solution is generally
applicable. At the time being, only functions written
in a programming language are supported. We
have therefore concentrated on those in this paper.
We plan, however, to support functions written in
HDBL as well.

Because the functions are compiled (machine code)
they are nearly as efficient as comparable standard
built-in functions though some extra overhead
caused by in-core data movement and data con-
versions has clearly to be paid for supplying the
functions with their parameter values, and to put
their results back into the DBMS’s internal repre-
sentation.

Supporting compiled instead of interpreted func-
tions certainly increases the risk that a malfunction
of a user provided function may cause the DBMS to
stop. This risk could be avoided by putting the code

of the function into a separate address space, a
solution which has also been suggested for
POSTGRES. This, however, would cause some ad-
ditional performance penalty (task switch). For the
time being, we execute both user defined functions
and normal DBMS code within the same address
space. As rather conventional data structures are
provided to program these functions (no “trick pro-
gramming” is required) and as dynamic storage al-
location and de-allocation is done via dedicated al-
location routines /KKLW87/, this risk seems to be
tolerable.

Acknowledgement

The authors would like to thank A. Blaset, manager of the
IBM Scientific Center in Heidelberg, for the continuous
support of the Advanced Information Management Pro-
ject

References

A884

AC005

ALPS88

Bat86

Ca86

Ch76

Ch81

Da87

DaK(186

S.Abiteboul, N.Bidoit: Non First Normal Form
Relations: An Algebra Allowing Data Restruc-
turing. Rapports de Recherche No 347, lnstitut
de Recherche en lnformatique et en Automa-
tique, Rocquencourt, France, Nov. 1984
A.Albano, L.Cardelli, R.Orsini: Galileo: A
Strongly-Typed, Interactive Conceptual Lan-
guage, ACM Transactions on Database Sys-
tems, Vol. 10, No. 2, June 1985, pp. 230-260
F.Andersen, V.Linnemann, P.Pistor, N.Sildkamp:
Advanced Information Management Prototype:
User Manual for the Online Interface of the
Heidelberg Data Base Language (HDBL) Proto-
type Implementation, Release 2.0, Jan. 1988,
IBM Scientific Center Heidelberg TN 86.01
D.S.Batory et al.: GENESIS: A Reconfigurable
Database Management System. Dept. of Comp.
Science, University of Texas at Austin,
TR-86-07, March 1986
M.J.Carey, D.J.DeWitt, D.Frank, G.Graefe, M.
Muralikrishna , J.E.Richardson, E.J.Shekita: The
Architecture of the EXODUS Extensible DBMS,
Proc. 1986 IEEE Intern. Workshop on Object
;;i;;ted Database Systems, Pacific Grove, pp.

-
D.D.Chamberlin et al.: SEQUEL2: A Unified Ap-
proach to Data Definition, Manipulation and
;;;trr; IBM Journ. Res. Devel. 20 (1976), pp.

-
D.D.Chamberlin et al.: Support for Repetitive
Transactions and Ad Hoc Queries in System R.
ACM TODS, Vol. 6, No.1, March 1981, pp. 70-94
U. Dayal, F.Manola, A.Buchman, U. Chakra-
varthy, D.Goldhirsch, SHeiler, J.Orenstein, A.
Rosenthal : Simplifying Complex Objects: The
PROBE Approach to Modelling and Querying
Them, lnformatik Fachberichte 136, Springer-
Verlag 1987, pp. 17-37
P.Dadam, K.KOspert, F.Andersen, H.Blanken,
R.Erbe, J.GOnauer, V.Lum, P.Pistor, G.Walch: A

304

Di88

ESW87

Ew87

GO87

Hit87

HL82

IBM81

IBM85

KDG87

KKLW87

KLW87

La84

Li87

LMP87

Lu84

Lu85

DBMS Prototype to Support Extended NF2 Re-
lations: An Integrated View on Flat Tables and
Hierarchies, Proc. ACM SIGMOD Conf., Wash-
ington,D.C., 1986, pp. 356-367
K.R. Dittrich: Object Oriented Database Sys-
tems: The Notion and the Issues, Proc. 1986
IEEE International Workshop on Object Oriented
Database Systems, Pacific Grove, pp. 2-6
R. Erbe, N. Sildkamp, G. Waich: An Application
Program interface For A Complex Object Data-
base, IBM Heidelberg Scientific Center Tech.
Report TR 87.10.008, to appear in Proceedings
of the 3rd Intern. Conference on Data and
Knowledge Bases, Jerusalem, 1988
R. Erbe, G. Waich: An Application Program In-
terface for an NF* Database Language or How
to Transfer Complex Object Data Into an Appli-
cation Program. IBM Heidelberg Scientific
Center, Tech. Rep. TR 87.04.003, April 1987
D.Goldhirsch, J.A.Orenstein: Extensibility in the
PROBE Database System. Data Engineering,
Vol. 10, No. 2, June 1987, pp. 24-31
T.HBrder, K. Meyer-Wegner, B.Mitschang, A.
Sikeler PRIMA: a DBMS Prototype Supporting
Engineering Applications. Proc. VLDB, Brigh-
ton, U.K., September 1987, pp. 433442
R.L.Haskin, R.A.Lorie: On Extending the Func-
tions of a Relational Database System. Proc.
SIGMOD 82, Orlando, June 1982, pp. 207-212
SQL/Data System, Concepts and Facilities, IBM
Corporation, GH 245013, Jan. 1981
PASCAWS Language Reference Manual, IBM
Corporation, Program Number: 5798-PNQ, 1985
K.Kaspert, P.Dadam, J.Gilnauer: Cooperative
Object Buffer Management in the Advanced
Information Management Prototype. Proc.
VLDB, Brighton, U.K., Sept.1987, pp. 483492
A. Kemper, K. K&pert, V. Linnemann, M. Wall-
rath: Pascal Structures for HDBL Types:
Layout, Naming Conventions, Storage Allo-
cation, and Usage in Functions. IBM Heidelberg
Scientific Center Tech. Note TN 87.05, Oct. 1987
A. Kemper, P.C. Lockemann, M.Wallrath: An
Object-Oriented Database System for Engi-
neering Applications. Proc. ACM SIGMOD
Conf., San Francisco, May 1987, pp, 299-311
W.Lamersdorf: Recursive Data Models for
Non-Conventional Database Applications, Proc.
First Intern. IEEE Conference on Data Engi-
neering, Los Angeles, 1984, pp. 143-150
V.Linnemann: Non First Normal Form Relations
and Recursive Queries: An SQL-Based Ap-
proach, Proc. Third IEEE Conference on Data
Engineering, Los Angeles, 1987, pp. 591-598
B. Lindsay, J.McPherson, H.Pirahesh: A Data
Management Extension Architecture, Proc.
;9;M;7D 1987, San Francisco, May 1987, pp.

V.Lum, P.Dadam, R.Erbe, J.Ganauer, P.Pistor,
G.Walch, H.-D.Werner, J.Woodfill: Designing
DBMS Support for the Temporal Dimension.
Proc. SIGMOD ‘84, Boston, Mass., June 1984,
pp. 115-130
V.Lum, P.Dadam, R.Erbe, J.Gunauer, P.Pistor,
G.Waich. H.-D.Werner. J.Woodfrll: Desian of an
Integrated DBMS to Support Advan& Appli-
cations. Proc. Int. Conf. on Foundations of Data

MBW80

PA88

PaSc87

PI87

PT88

RKBES

RoSt87

Sch88

Schm77

SS88

St84

St88a

St88b

St87

To78

VKC88

Organization (Invited Talk), Kyoto, Japan, May
1985, pp. 21-31
J.Mylopoulos, Ph.A.Bernstein, H.K.T.Wong.: A
Language Facility for Designing Database-ln-
tensive Aootications. ACM Trans. on Database
Systems, Vol.5 No.2; June 1980, pp. 185-207
P.Pistor, F.Andersen: Designing a Generalized
NF* Data Model with an SQL-type Language
Interface, Proc. VLDB, Kyoto, Japan, Aug. 1988,
pp. 278-285
H.-B.Paui, H.J.Schek, M.H.Scholl, G.Weikum,
UDeppisch: Architecture and Implementation
of the Darmstadt Kernel System. Proc. SIG-
MOD ‘87, San Francisco, pp. 196-207
P. Pistor: The Advanced Information Manage-
ment Prototype: Architecture and Language
Interface Overview, 3. Journees de Base
Don&es Avancees, Port Camargue, France,
May 1987; also: IBM Heidelberg Scientific
Center Tech. Rep. TR87.06.004, June 1987
P.Pistor, R.Traunmilller: A Database Language
for Sets, Lists, and Tables. Information Sys-
tems Vol. II, No. 4, pp. 323-336
M.A. Roth, H.F.Korth, D.S.Batory: SQUNF: A
Query Language for Y 1 NF Relational Data-
bases. Deptm. Comp. Scienc. Univ. of Texas,
Austin, TR-85-19, Sept. 1985
L.A.Rowe, M.Stonebraker: The Postgres Data
Model, Proc. VLDB, Brighton, U.K., Sept. 1987,
pp. 83-96
P.Schwarz, W.Chang, J.C.Freytag, G.Lohman,
J.McPherson, C.Mohan, H.Pirahesh: Extensi-
bility in the Starburst Database System, IBM
Almaden Research Center, San Jose, Cal., RJ
5211 (54671) 1986, also in Proc. 1986 IEEE In-
tern. Workshop on Object Oriented Database
Systems, Pacific Grove, pp. 85-93
J.W.Schmidt: Some High Level Language Con-
structs for Data of Type Relation, ACM Trans-
actions on Database Systems, Vol. 2, No. 3,
September 1977, pp. 247-261
H.J.Schek, M.Scholl: The Relational Model
with Relation-Valued Attributes, Information
Systems 1988, Vol.1 I, No.2, 1986, pp. 137-147
Stonebraker,M. et al.: Quel as a Data Type,
Proc. ACM SIGMOD Conf., Boston, Mass., June
1984, pp. 208-214
M.Stonebraker: inclusion of New Types in Re-
lational Data Base Systems, Proc. Second In-
tern. Conference on Data Engineering, Los An-
geles, Feb. 1986, pp. 262-269
M.Stonebraker, L.A.Rowe: The Design of Post-
gres, Proc. ACM SIGMOD Conf., Washington,DC
1986, pp. 340-355
MStonebraker, J.Anton, E.Hanson: Extending a
Database System with Procedures, ACM Trans.
on Database Systems, Vol.12, No.3, Sept. 1987.
pp. 350-376
S.J.P. Todd: The Peterlee Relational Test Vehi-
cle - A System Overview, IBM Systems Journal,
Vol. 15, No. 4, 1976, pp. 285-308
P.Valduriez, S.Khoshaftan, G.Copeland: Imple-
mentation Techniques of Complex Objects, .-.

W83

Proc. 12th Intern. Conf. on Very Large Data
Bases, Kyoto, Japan, August 1986, pp. 101-I 10
N.Wirth: Programming in MODUIA-2, Springer
Verlag 1983

305

