SIGMOD Record, Vol. 31, No. 2, Sept. 2002

SQL/MED — A Status Report

Jm Médton
Oracle, Sandy, UT 84093
jim.meton@acm.org

Guest Column Introduction

In March, 2001, we delivered a (partly) guested
column covering the topic of Management of
Externd Daa[1]. The column you are reading right
now reports on the on-going development of the
SQL/MED standard and is authored by all but one of
the authors of that earlier column.

Wetrust that our readerswill benefit from this
update on an interesting and important part of SQL.

Jim Mdton and Andrew Eisenberg

Introduction

Asdiscussed in [1], anew part of the SQL standard,
known as SQL/MED came into exisence in early
2001. (MED stands for “Management of External
Data’.) SQL/MED offers syntax extensionsto SQL
aswell asa st of routines for usein developing and
managing applications that access both SQL dataand
non-SQL (also known as externd) data.

SQL/MED specifications can be divided into two
broad parts. Thefirgt part, caled the wrapper
interface, offersfacilitiesto view externd data
managed by one or more externd sources (formaly
known as foreign servers) smply asaset of SQL
tables (formally known as foreign tables). Externd
data may be stored in file systems, in HTML-
formatted web pages, in XML documents, or in some
other specidized repositories. The second part of
SQL/MED, cdled datalinks, offersfacilitiesto let an
SQL-server control the management of referentia
integrity, recovery, and authorization of dataresiding
in one or morefile systems.

The wrapper interface provides the ability to use
the SQL interface to access non-SQL dataand, if
desired, to join that datawith SQL data. An
gpplication issuing an SQL query to an SQL-server
supporting the wrapper interface can reference both
tables managed by that SQL-server and foreign tables
known to that SQL-server. The SQL-server is
responsible for decomposing such aquery into
multiple fragments, connecting to one or more
software entities (formally known as foreign-data

Jan-Eike Michds
Vanja Josfovski
Krishna Kulkarni
Peter Schwarz
{janeike, vanja, krishnak} @usibm.com
schwarz@a maden.ibm.com

wrappers) that interface with the foreign servers
responsible for managing the data that correspondsto
foreign tables referenced in the query, devising an
execution plan for each fragment, initiating the
execution of those plans, receiving the result data from
each of the foreign-data wrappers, and finally
completing the query execution and returning the result
to the gpplication.

The interaction between the SQL-server and a
foreign-data wrapper is based on a request/reply
paradigm. The SQL-server builds arequest representing
the query fragment. Theforeign-data wrapper anayzes
the request and returns areply that describes that
portion of the request that can be handled by theforeign
server. The SQL-server must compensate for any part
of the query fragment that cannot be executed by a
foreign server.

Figure 1— Components of the Wrapper Interface

Foreign- '
Data I
Wrapper

|
[
|
' SQL- SQL/MED
: Server AP
|
[

Implementation-dependent API

Foreign
Server

Foreign Data
(Foreign
Tables)

The wrapper interfaceillustrated in Figure 1
incudes SQL extensionsfor defining foreign servers,
foreign tables, and foreign-data wrappers and two
digtinct sets of routines: foreign-data wrapper interface
SQL-server routines and foreign-data wrapper
interface wrapper routines (together commonly called
foreign-data wrapper interface routines). Whilean
SQL-server conformant to SQL/MED must implement

the SQL extensons and the foreign-data wrapper
interface SQL-server routines, afordgn-data wrapper
conformant to SQL/MED must implement the
foreign-datawrapper interface wrapper routines.
FHgure 1 (which originaly appeared in adightly
different formin[1]) depictsthe reationships among
NL-sarvers, foreign-datawrappers, and foreign
svers.

Datalinks are useful for gpplicationsthat require
referentid integrity, recovery, and authorization
mechanisms, typically provided by database
management systems, for the data stored in externd
fileswithout the need to store their contents directly
in the database. Applications using datalinks are
expected to access the data stored in files using the
native interface of file systemsrather than viaSQL.
This part of the specification depends on a software
entity (formally called a datalinker) that interfacesto
afile system. The datdinks part of the specification
consigs of an SQL built-in datatype, DATALINK,
and asst of built-in operators to operate on val ues of
DATALINK type. Figure2 (which dso origindly
gppeared in adightly different formin [1]) depicts
the relationships among the SQL-server, the
datdinker, afile sysem and a“datdinked” filel.

Figure2— Datalink-related relationships

N Datalinker

.

Datalinked
File

An extensive description of both the wrapper
interface and datainks specification as Sandardized
in[2] can befoundin[1].

Whiletheinitid verson of the SQL/MED
specification published in early 2001 provided a
fairly complete set of facilities to access and manage
externa data, additiona work by the standardization
committeesin the last two years promises a much

File
Manager

1A “datdinked” fileisafilethat isreferenced by a
vaue stored inaDATALINK column.

richer standard. In fact, [1] hinted at the limitations of
theinitia verson and possible extensionsto the
specification to overcome those limitetions. The
primary focus of this article isto explain these new
extensions. Though this new version is not published
yet (it is currently in the Final Committee Draft, or
FCD, stage of the 1SO standardization processand is
expected to be published in early 2003), no significant
changes are expected to occur between now and its
eventud publication date. In the remainder of this
paper, werefer to the SQL/MED specification
published in 2001 [2] as the previous version of
SRL/MED and the SQL/MED specification currently in
FCD stage[3] asthe current version of SQL/MED .

We describe the enhancements to the wrapper
interface in next section and the extensonsto detalinks
in the section titled * Enhancements to Datalinks”.

Enhancements to the Wrapper
Interface

Asdescribed in [1], communication between an SQL-
server and aforegn-data wrapper can occur in either
two modes. decomposition mode or pass-through mode.
Further, in decomposition mode, a query is broken into
multiple fragments by the SQL-server, eech to be
executed by a particular foreign server. Theinteraction
between an SQL-server and aforeign-data wrapper in
decomposition mode occursin two phases: planning
phase and execution phase. During the planning phase,
the SQL-server and aforeign-data wrapper
cooperatively produce an execution plan for agiven
query fragment, while during the execution phase the
agreed-upon plan is executed by each of the foreign-
data wrappers and the resulting datais returned to the
SQL-sarver.

There are essentialy three major enhancementsto
the wrapper interface in the current version of
SQL/MED:

1. Theability for an SQL-server to communicate
complex query requests to foreign-data wrappers.

2. Theability for an SQL-server to communicatethe
query context (that is, information to identify
requests belonging to the same query) to foreign-
datawrappers.

3. Theahility for an SQL-sarver to ask foreign-data
wrappers for query execution cogts.

All these extensions affect the query-planning phasein

decomposition mode. We describe below each of these

enhancementsin detail.

The examples used in the following sections use
the smple schema, containing two foreign tables,
managed by asingle foreign server, shown in Example
1

Example 1— Sample schema

EMP (nane VARCHAR(16) ,
street VARCHAR(30),
phone VARCHAR(10) ,
city_id I NTEGER,
resume VARCHAR(32000));

CITY (id | NTECER,
| ongi tude FLOAT,
latitude FLOAT,
name VARCHAR(30) ,
st at e_nanme VARCHAR(30));

Communicating complex query
requests

With the wrapper interface specified in the previous
version of SQL/MED, an SQL-server was limited to
communicate query requests of theform SELECT
<col um |i st> FROM FTN,where FTNisthe
name of aforeign table and each dement of

<col umm | i st > refersto acolumn of that table.
In this scenario, aforeign server was assumed to be
primarily adata source. However, there are many
cases where aforeign server can provide
computationa power aswell as being a source of
data. A foreign server can provide either a subset of
the functiondity of an SQL-server or the
functiondity of aforeign server can overlgp the
functiondity of an SQL-server. In these cases, it may
often be more efficient to pass complex queriesfor
execution by foreign servers. The wrapper interface
in the current version of SQL/MED isenhancedina
number of ways to take advantage of the features
supported by foreign servers.

Queries containing WHERE clauses
Thewrapper interface in the previous version of
SQL/MED does not alow an SQL-server to
communicate queries containing a WHERE clause to
foreign-datawrappers. The wrapper interfacein the
current version is enhanced with four new routinesto
ded with the WHERE clause and its Boolean
expressions. Example 2illustratesthe use of sucha
mechanism:;

Example 2— Query with WHERE clause

SELECT resune
FROV EMP
VWHERE nane = 'John Doe';

The advantage of letting the foreign server
execute the predicatesis pretty obvious. In the above
example, the foreign-datawrapper can return asingle
resume to the requesting SQL-server insteed of

returning the resumes and the names of dl the
employeesfor the SQL-server to perform the selection.
Thiswill reduce the amount of data sent to the SQL-
server tremendoudy, leading to better performance. On
the other hand, if the foreign server is unable to perform
the sdlection, the foreign-datawrapper will exclude the
predicate from the reply, signding to the SQL-server
that it must compensate by applying the predicatein the
QL engine

In addition to better performance, the ability to
pass queries containing predicates can actudly makea
larger number of foreign servers accessible. For
example, some foreign servers may not be ableto
provide their data without a unique key. Such foreign
servers cannot be made accessible using the wrapper
interface of the previous version.

Queries containing multiple table references in

FROM clauses

Though the wrapper interface in the previous version of
SQL/MED could dedl with multiple table referencesin
the FROM clause, the previous version restricted the
queries flowing from an SQL-server to aforeign-data
wrapper to contain exactly onetable referencein the
FROM clause. That restriction has now been lifted, so
queries containing multiple table referencesin the
FROM clause can be communicated to individud
foreign-data wrappers. Example 3 illustrates the use of
such amechanism:

Example 3— Multi-table query

SELECT CITY.id, CITY.latitude,
CI TY. | ongi t ude
FROM EMP, CITY
VWHERE EMP. nane = 'Jane Doe' and
EMP.city _id = CITY.id;

Using the wrapper interface in the previous version of
SQL/MED, the SQL-sarver would have needed to
transmit two query fragmentsto the foreign-data
wrapper, each retrieving rows from one of the foreign
tables used in the query. With the enhanced interface
supported in the current version of SQL/MED, the
entire query can be sent in asingle request, assuming
the foreign server is able to perform joins and predicate
evauations. If aforeign server isunable to parform the
join, it will indicate so by excluding onetablereference
and the join predicate from the reply. Here again, the
SQL-server must compensate for the capability that the
foreign server lacks and perform the join after
retrieving the necessary data from the foreign server.

Queries containing complex value
expressions in SELECT and WHERE clauses

The wrapper interface in the previous version of
SQL/MED limitsthe value expressions contained in
the SELECT dause of the queries flowing from an
SQL-server to foreign-data wrappers to column
references only. The wrapper interface in the current
verson of SQL/MED is enhanced to alow complex
value expressions both in the SELECT and the
WHERE dlause of the queries. Vaue expressions can
now be column references, congtants, or parameters,
al connected by one or more operators’. Example 4
illustrates the use of such amechanism:

Example 4 — Query with operators

SELECT nane || ' ' || phone
FROM EMP
WHERE nane = 'John Doe';

Conceptualy, va ue expressions are mode ed as typed
operator trees. Interna nodes of thetreesare
operators, while the leaf nodes represent column
references, condants, or parameters. (A parameter
vaue expression is ussful for performing nested loop
joinswith theinner table being aforeign table)) Each
operator node has a st of child nodes (sub-
expressions). The wrapper interface is enhanced with
Sx additiona routinesthat are used to traverse the
operator trees.

In the current version of SQL/MED, theforeign-
datawrapper must either agreeto evauaeavaue
expresson asawhole, or to rgect it. For example, if
the foreign-data wrapper was asked to evaluate an
expresson such as“(C1+C2)*C3” (C1, C2, and C3
dl being columns of aforeign table), it may either
commit to evaluate the whole expression or indicate
that it cannot evauate the expression at al, butitis
not alowed to commit to the evauation of just
(C1+C2).

Queries containing user-defined function
invocations in value expressions

It is often possible for aforeign server to offer
functiondity that is similar to that provided by an
SQL-server. In patticular, it is possiblefor aforeign
server to offer an executable function that is
equivaent to auser-defined SQL-invoked function
that exists at an SQL-server. In some cases, it may be
more efficient to execute the function at the foreign
server rather than at the SQL-server. The current
version of SQL/MED offersamechanism cdled
“routine mapping” to enable SQL-serversto choose

2The term operatorsincudes both SQL built-in
operators and user-defined functions.

the best option for executing a specific function
referenced in the query.

A routine mapping associates an SQL-invoked
function with aroutine at aforeign server. Generic
options provide the necessary information for the
foreign-data wrapper to identify the function when it
encountersit during query processing.

Routine mappings are created at an SQL-server via
aCREATE ROUTINE MAPPING statement, which is
given the signature of an SQL-invoked function that
exigts at the SQL-server and the name of aforeign
server, as shown in Example 5.

Example5— Creating a routine mapping

CREATE ROUTI NE MAPPI NG FN1_AT_FS1
FOR SCH. FUNL(VARCHAR, | NTEGER)
SERVER FS1
OPTI ONS (REMOTE_NAME ' FN1',

REMOTE_SCHEMA ' TEST')

Example 6 illustrates the use of a mapped function:
Example 6 — Using routine mappings

SELECT resune
FROM EMP
WHERE funl(nanme, city_id) = 100;

The vaue expression corresponding to the function
invocation in the WHERE clause carriesthe
information about the routine mapping. The foreign-
datawrapper recaving the above query can then use the
routine mapping information to figure out the specific
function that needs to be executed by the foreign server.

Aswith other objectsin the SQL-environment, a
routine mapping can be modified if the vaue of a
generic option changes, or it can be completely dropped
if the mgpping is no longer needed (for example, when
the function implementation ceasesto exist either
locally or remotely).

Communicating the query context
During the planning of acomplex query involving
severd foreign tables from the same foreign server
joined by predicates, an SQL-server may generate
severd requests to the corresponding foreign-data
wrapper. These requests will likely referencethe same
vaue expressions and predicates from the query. Often,
the analysis of avaue expression (or parts of it) is
independent of the other expressions and can be reused
between requests. In order to dlow for such reuse, the
wrapper interface is enhanced to provide anew routine
cdled Advancel ni t Request () - Thisroutine
contains all the parametersof | ni t Request ()
routine provided in the previous version of SQL/MED
and an additiona parameter called

QueryContextHandle, representing the query context.
All calsto Advancel ni t Request () withthe
same handle as the argument for
QueryContextHandle parameter represent fragments
of the same query.

Communicating query execution
costs

Evauating a query over datain the SQL-sarver and a
<t of foreign servers requires complex query

planning. While SQL-servers differ in their query
planning ability, there are Some common basic
features. Most of the modern SQL-servers plan queries
by examining severd different query execution plans,
estimating the time needed to execute each and

picking the one with the shortest execution time. In
order to expand this paradigm on queries over datain
foreign tables, the SQL-server needsto acquire
edimates for the query fragments executed by the
foreign savers. Both the size of the result set of the
query fragment execution and the query execution

time are the minimum required information to perform
the query planning. By way of illustration, consider
following query in Example 7.

Example7— A Query with a Join

SELECT CITY. | ati tude,
CI TY. | ongi t ude
FROM EMP, CITY
WHERE EMP.city_id = CITY.id;

There are several ways for the SQL-server to
execute this query. If the foreign server is capable of
performing joins, then the whole query can be sent to
theforeign server. If for each employee thereisonly
onecity, thisisafeasible execution strategy. If, on
the other hand, each employeeislisedin uptoten
cities, theresult size will be up to ten timesthesize
of the employee table. Much less datawill be shipped
if the SQL-server first receives the datafrom both
foreign tables, and then performs the join operation
internaly. Other join methods are possible using
parameterized queries, order information, and so
forth.

Since the SQL-server has no knowledge of the
execution modd used in aparticular foreign server,
the foreign-datawrapper needsto provide the
estimates for the result set Sze and execution timein
order for the SQL-server to produce an efficient
execution plan. SQL/MED favors an estimation
mode based on execution time and result Sze
estimates, as opposed to the traditiona database
model where the “query cost” isdivided into CPU,
1/O, and network operations. In the latter case, the
edtimates might be hard to get when the foreign

sarver isathird-party system with design unknown to
the foreign-data wrapper writer.

Thewrapper interface in the current version of
SQL/MED is enhanced with four new routines that
return an estimate of the cardinaity of the query resuilt,
an estimate of the cost to execute the entire result of the
query, an estimate of the cost to execute and return just
the first row of the result, and the estimated cost of re-
executing the query.

Wrapper interface in action

In this section, we present an example query involving
joinsand predicatesto illustrate the enhanced wrapper
interface. Assume an application issuesto an SQL-
server the query seenin Example 8.

Example8— A More Complex Query

SELECT CITY.id, CITY.latitude,
CITY. | ongi t ude
FROM EMP, CITY
VWHERE EMP. nane = ' Jane Doe' and
EMP.city id = CITY.id;

Assumefurther that both the EMP and CITY tables
are managed by the same foreign server and the
corresponding foreign-data wrapper is able to dedl with
multiple table referencesin the FROM clause and can
perform predicates of the form *column_name =
congtant” and “column_name = column_name’.

Asdescribed in [1], the query planning starts with
the SQL-server establishing a connection to the foreign-
datawrapper. Once the connection is established, the
SQL-server invokes the foreign-data wrapper’s
Advancel ni t Request () routine passing ahandle
(aRegquest Handl€) to a structure that describesthe
query as an argument. In genera, an SQL-server might
send different fragments of the origind query for
analysisto the wrapper in the process of the query
planning and optimization. To keep the discussion
simple, assume that the SQL-server asksthe foreign-
datawrapper to plan the entire query.

Oncethe request isrecaived, the foreign-data
wrapper analyzesfirst the FROM clause of the request,
then the WHERE clause and findly the SELECT lit.
Analysis of each clause starts with determining the
number of itemsin the clause. For the FROM clause,
the foreign-datawrapper invokesthe
Get NuniTabl eRef El ens () routinewiththe
RequestHandle as an argument to find out the number
of table references present in the FROM clause. Inthe
above example, the SQL-server returns 2 as the result,
asthere are two table referencesin the FROM clause.
In SQL/MED, Table Reference Handles are used to
represent the table references. The foreign-data wrapper
invokesthe Get Tabl eRef El en{() routinepassing

the Request Handle and an integer value, k, as
arguments, which returnsthe k-th Table Reference
Handle. This handle can then be used as an argument

in theinvocation of routines such as

Get Tabl eRef Tabl eName() toreturnthetable
name and Get TRDHandI e() to obtain adescriptor
that contains the information about the columns and
their data types.

Asdescribed in [1], generic options can be
associated with foreign-sarvers, foreign-data
wrappers, foreign tables, and columns of foreign
tables. These options are essentialy attribute/vaue
pairsthat describe information that is specificto a
given object and are stored at the SQL-server as part
of the metadata about those objects. For example,
eech of thetablesin our example may be associated
withaURL of aweb site, specified asa generic
option. The foreign-data wrapper can retrieve such
generic options by invoking
Get Tabl eOpt ByNane() routineby passinga
Table Reference Handle as an argument.
Furthermore, generic options associated with the
columns of each of the tables can beretrieved usng
the Get Tabl eCol Opt ByName() routine by
passing a Table Reference Handle and column name
as arguments. Since our foreign-data wrapper is
assumed to be able to handle multiple table
referencesin the FROM clause, the FROM clauseis
accepted.

Oncethe FROM clauseis anayzed, the foreign-
datawrapper examinesthe predicatesin the WHERE
dauseby invoking Get NunBool VE() routine
passing Reguest Handle as the argument to find out
the number of predicates; and subsequently invoking
Get Bool VE() routinemultipletimesto retrievethe
Vaue Expression Handle for each such predicate
Expressonsin SQL/MED are uniformly represented
using trees. Each nodein thetreeisavaue
expression and has an asociated Vaue Expression
Handle. There are four kinds of vaue expressons.
operators, column references, parameters and
congtants. The foreign-datawrapper can obtainthe
kind of avaue expresson by caling the
Get Val ueExpKi nd() routinewithaVaue
Expression Handle asthe argument. For each
operator node, the number of operands and their
Vdue Expresson Handles can be obtained invoking
the Get NunmChi | dren() andthe
Get VEChi | d() routines. Each value expression is
typed and the foreign-datawrapper can check the
type of anodeinvoking the Get Val ueExpDesc()
routine that returns a data type descriptor. Inthe
example above, since both Boolean expressons are
of theform our foreign-data wrapper can deal with, it
accepts the WHERE clause.

The foreign-datawrapper then starts analyzing
vaue expressonsin the SELECT list, which begins
with finding the number of expressionsin the SELECT
listinvokingthe Get NuntSel ect El ens () routine
with a Request Handle as the argument. The foreign-
datawrapper then obtains the VVaue Expression Handle
for the k-th select list lement by invoking the
Get Sel ect El em() routinewith the Request Handle
and k as arguments. Routines that apply to value
expressions in the WHERE clause are applicable here
aswell. Inthe above example, al sdlect list dements
are column references and our foreign-data wrapper
accepts dl of them.

Oncethe query isandyzed, the foreign-data
wrapper returns two handles a Reply Handle and an
Execution Handle, as described in [1]. The SQL-server
examines the response from the foreign-data wrapper
by using an interface smilar to the one used by the
foreign-data wrapper to determine the part of the query
thet the foreign-data wrapper iswilling to execute. In
the above example, the SQL-server determines that our
foreign-datawrapper is capable of executingthe entire
query. The SQL-sarver can then ask theforeign-data
wrapper for cost information, perform query
optimization, and then settle on an execution plan. The
SQL-server thaninvokesthe Open() routinewiththe
Execution Handle as the argument to ask the foreign-
data wrapper to initiate the execution. Once the query is
executed, the foreign-data wrapper sendsthe resulting
data to the SQL-server. The communication of the
results to the SQL-server happens via descriptors as
described in[1].

Enhancements to Datalinks

Asdready stated in [1], DATALI NK isan SQL data
typethat dlows storing in an SQL column areference
to afilethat islocated in afile system externd to the
database system.

SQL/MED dlowsavariety of optionsto be
specified for columns and attributes of the DATALI NK
type. With these options, it can be determined how
strictly the SQL-server controlsthefile. The
possibilities range from no contral a al (thefile does
not even haveto exi<t) to full control, where removal of
the datalink value from the database leads to addetion
of the physicd file.

In the previous version of SQL/MED, the datalinks
functionaity supports two modes of “write
permissions’ for datalinks, namely FS (implying “File
System”) and BLOCKED.

When WRITE PERMISSION FSis specified, the
system (that is, the combination of SQL-
implementation, datainker, and file manager) dlows
usersto update afile while thefile remains linked to the
database. However, this mode does not provide file data

recovery, which meansthat, if the disk crashesor a
user needs to restore the database, there is no backup
datato recover. In cases of transaction failure, this
may cause inconsistency between the file dataand
the database data. Moreover, the write access
permission is determined by the file system
permissions currently assigned to thefile WRITE
PERMISSION FS does not support a token-based
access mode like the one provided with READ
PERMISSION DB (implying “DataBase”).

On the other hand, WRITE PERMISSION
BLOCKED provides datarecovery functionality for
an SQL-mediated file (through the means of the
datalinker), aslong asthe RECOVERY optionis
specified as Y ES. However, auser cannot update the
filewhilethefileis currently linked. Updeting the
content of afilethat islinked with the WRITE
PERMISSION BLOCKED requires three distinct
steps:

1. Unlinking thefile
2. Modifying thefile
3. Relinking thefile

It should be noted that while thefileis not linked
to the database in step 2, it is not protected against
unwanted modifications or even deletion. However,
many usage scenarios require the ability to update the
content of afilewhileit is datdinked. The current
version of SQL/MED now includes this functionality,
caled “updateiin-place’. Thisfeature providesthe
ability to use datainked files for such functions as
library check-out and check-in, aswell asaway to
back out any uncommitted file changes and restore to
the previous committed version. One of the key
requirementsisto provide an access control scheme
for accessing datdinked files, as well as a capability
for updating filesin a congstent way. Using datalinks
and this new feature, when a disaster or crash occurs,
the user can rely on the SQL-implementation to
restore dl the data— both SQL-dataand file data—
to aconsistent state.

Update-in-place provides token-based access to
the file smilar to the mechanism used for READ
PERMISSION DB. When READ PERMISSION DB
is specified, the database server controls which users
are authorized to access thefile. File data recovery
can be supported in an implementation-dependent
way, aslong asthe RECOVERY option for the
datalink is specified as YES.

The update-in-place functionality ismade
available by anew WRITE PERMISSION option
called the ADMIN option, followed by either the
keywords REQUIRING TOKEN FOR UPDATE or
the keywords NOT REQUIRING TOKEN FOR
UPDATE. “ADMIN” represents the fact that the
SQL-server and the datalinker together decide
whether agiven user is authorized to update afile.

“REQUIRING TOKEN FOR UPDATE” indicates that
the token, which wasincluded in thefile reference

when the user requested it from the SQL-server, is

needed to update the column containing the datalink

value in question. Conversaly, “NOT REQUIRING
TOKEN FOR UPDATE” indicates that this token is not
needed for the update of the column. Since the update
process involves more than one system (database server
and file server), the sametoken can beused asan
authentication method to indicate who can complete the
whole file update process. On the other hand, to use this
feature, an gpplication hasto remember the token
throughout the process. In the case where gpplications
may aready have their own authentication mechanisms,
one might not want to maintain the token. Using the

NOT REQUIRING TOKEN FOR UPDATE option
may be agood dternative for such applications.

In order to write to afilelinked by adatalink vaue,
two new gtring value functions are available that return
acharacter string representation of the dataink vaue
that includes aso awrite token. These functions, caled
DLCOMPLETEWRITE and DLPATHWRITE, are
used by an application to retrieve the URL of thefile
that isto be updated. The former function returnsthe
full URL, while the latter one returns only the file name
and path, without the address of the file server.

In addition to the existing datalink constructor
function DLVALUE, two new datalink value
congtructors are being added to SQL/MED:
DLNEWCOPY and DLPREVIOUSCOPY. The
purpose of the DLNEWCOPY constructor istocregtea
datalink vaue by which the SQL-server can tell that the
content of thefile referenced by that datdink is
different (i.e, the content has changed, but not the
URL) from the value that was previoudy referenced by
the datalink. By contrast, the purpose of the
DLPREVIOUSCOPY constructor isto construct a
dataink value by which the SQL-server knowsthat the
content of the file might have changed, and that the user
is not interested in maintaining the changed file but
would like to revert to thefile that was originally
referenced by the datdink. Each of the two new
datalink constructors has two input parameters. The
first parameter isacharacter string that containsthe
location of the file. The second parameter isan
indicator of whether the write token isincluded in the
first argument; ‘1 indicates that the token isincluded,
while‘0’ meansthat atoken isnot included. The
datalinks constructed with the two new constructors are
only valid in an SQL UPDATE statement.

Examples

Severd examples are shown below that demonstrate the
use of the updatein-place feature. All examples assume

that the table shown in Example 9 has been defined
and popul ated.

Example 9 — Tablefor demongrating update-in-
placefeature

CREATE TABLE EMPLOYEE (

I D | NTEGER NOT NULL,
NANE VARCHAR(20) ,
DEPT_NO SMALLI NT,

TI TLE VARCHAR(50) ,
PHOTO DATALI NK

FI LE LI NK CONTROL
| NTEGRI TY ALL
READ PERM SSI ON DB
VRl TE PERM SSI ON ADM N
REQUI RI NG TOKEN FOR UPDATE
RECOVERY YES
ON UNLI NK RESTORE,
RESUMVE DATALI NK
FI LE LI NK CONTROL
| NTEGRI TY ALL
READ PERM SSI ON DB
VRl TE PERM SSI ON ADM N
NOT REQUI RI NG TOKEN
FOR UPDATE
RECOVERY YES
ON UNLI NK RESTORE,
PRI MARY KEY (D)

)

How to update-in-place

An HR administrator wishes to update the picture of
the employee with ID = 50100. She connectsto the
SQL-server and SELECTsthe PHOTO column to
retrieve the URL, including the write token.

SELECT DLURLCOVPLETEWRI TE(PHOTO)
FROM EMPLOYEE
WHERE | D = 50100;

Assume the returned valueis
“HTTP: / / HR_SRV. XYZ. COM hr/ enp_pi ct/
XXXX; enp50100. gi f ", wherexxxx istheactud
write token (recall that SQL/MED does not specify
the format of write tokens). Thisfile referenceisthen
used to open thefile and copy the new picture over
the existing one. Assuming the new pictureisin
/ hr/tnp/ enp50100. gi f, thefollowing Unix®
shell command accomplishesthistask:

cp /hr/tnp/enmp50100. gi f
[hr/enmp_pict/xxxx; enp50100. gi f

When thefile copy iscompleted, an UPDATE
statement is issued to notify the SQL-server that the
new version of thefileisready to be linked.

UPDATE EMPLOYEE
SET PHOTO = DLNEWCOPY (

"HTTP: / / HR_SRV. XYZ. COM hr/ enp_pi ct/ xx

xX; enmp50100.gif', 1)
WHERE |1 D = 50100;

How to “rollback” unwanted file changes
The HR administrator has updated the new picture asin
the example above. However, she wantsto roll back the
changes, but thefile system (or “file manager” in
SQL/MED terms) has no “undo” option. She canissue
thefollowing UPDATE statement to replace the
modified file by the origind file that was linked to the
datebase earlier.

UPDATE EMPLOYEE
SET PHOTO = DLPREVI QUSCOPY (

"HTTP: // HR_SRV. XYZ. COM hr/ enp_pi ct/ xx

xX; enp50100.gif', 1)
WHERE |1 D = 50100;

T he reader might wonder how the old copy of the
file can be restored when the file manager has no means
to doit. Thisfunctiondity requiresthat the datalinker
and the SQL-server work closgly together to provide
the meansto restore the previous copy. The
functiondity that is needed to accomplish this operation
is not much different from that required to do “point in
time” recovery which isdready included in thefirst
version of SQL/MED.

How the SQL-server interacts with the
Datalinker
Thisexampleillustrates how the SQL-server interacts
with the datalinker to provide the update-in-place
functiondity. Since the interaction between the SQL-
server and the datalinker is not tandardized in
SQL/MED, but isleft implementation-dependent, this
example shows only one possible way in which it could
be done. Different systems might choose to implement
it differently.

The application connects to the SQL-server and
retrievesa URL, with awrite token, for afile:

SELECT DLCOVPLETEWRI TE(PHOTO)
| NTO : url

FROM EMPLOYEE

WHERE I D = 66101

The URL is now stored in the host variable named
url.

The SQL-server checkswith the datalinker to
determine whether the current user has authority to
update the specified file.

If the current user has authority to update the
file, the SQL-server returns afile reference with an
embedded write token. Hereis an example of the
returned value:
“HTTP: / / XYZ. COM a/ b/ xxxx; filel.txt”
where x x x x isthe write token.

The application usesthisfile reference to open
thefile. For example, it might issue the following file
sysem cal inaC program.

fptr =
fopen("/al bl xxxx;filel.txt");

The datdinker intercepts thisfile system call and
checksto see whether the write tokenisvalid. If the
writetoken isvalid, the datalinker allowsthe
“f open” operation to proceed and return apointer to
the file descriptor. The application then usesthat file
descriptor to read/write datato thefile.

When thefile update is completed, the
application UPDATES the same row with the origina
file reference (including the write token) to notify the
SQL-server that the new version of thefileis ready
and any implementation-dependent archiving process
can be started upon COMMIT.

Example 10illustrates the use of the SQL
UPDATE statement.

Example 10 — Updating datalinked value

UPDATE EMPLOYEE
SET PHOTO = DLNEWCOPY(:url, 1)
WHERE I D = 66101,

The SQL-server forwards the request to the
datalinker, which checksthe vaidity of the write
token and possibly triggersthefile archive processto
backup the modified file. Upon successful
completion, the SQL-server returns a successful
completion indication to the application.

SQL/MED’s Future

Even though the current version of SQL/MED
specification adds significant new capabilities
compared to the previous version, the wrapper
interface is till limited to read-only accessto data
managed by foreign servers. Enhancing the wrapper
interface with the ahility to insert, update, and delete
the contents of foreign tablesislikely to be the focus
for the next version of the sdandard. Handling
additiond query capabilities such as grouping and
evauation of aggregate functions by foreign servers
may aso be candidates for future work.

Summary

In this month’ s column, we have reviewed the coming
new version of the SQL/MED standard, outlining new
capabilities that give more powerful accessto foreign
servers and the foreign tables that they manage, aswell
asnew dataink facilities.

Like most stlandards, SQL/MED continuesto
evolve. When the next edition is nearing completion,
we plan to provide yet another update — but don’t
expect thisfor at least another couple of years.

References

[1] J Méton, J.-E. Michels, V. Josifovski, K.
Kulkarni, P. Schwarz, K. Zeidenstein, SQL and
Management of External Data, S GMOD Record,
30(1): 70-77, March 2001
http://ww. acm org/ si gnod/ record/

i ssues/ 0103/ JM St a. pdf

[2] 1SO/NEC 9075-9:2001, Information technology —
Databaselanguage — QL — Part 9:
Management of External Data (SQL/MED),
International Organization for Standardization,
June 2001

[3] FCD (Final Committee Draft) 9075-9:200x,
I nformation technology — Database language —
QL — Part 9: Management of External Data
(SQL/MED), currently under balot
http://sql standards. or g/ SC32/ WG3/

Progr essi on_Docunent s/ FCD/ 4FCD1-
14- XML- 2002- 03. pdf

Web References

[1] International Committee for Information
Technology Standards (INCITS)
http://ww.incits.org/

[2] INCITS Technica Committee H2 (Database)

http://ww. incits.org/tc _home/ h2. ht m

[3] Internationa Organization for Standardization
(1S0)
http://ww.iso.org/

[4] ISO/NECJTC1/SC 32
http://ww.jtclsc32. org/

	q: SIGMOD Record, Vol. 31, No. 2, Sept. 2002

