

SQL/MED — A Status Report

Jim Melton

Oracle, Sandy, UT 84093
jim.melton@acm.org

Jan-Eike Michels
Vanja Josifovski
Krishna Kulkarni
Peter Schwarz

{janeike, vanja, krishnak}@us.ibm.com
schwarz@almaden.ibm.com

Guest Column Introduction
In March, 2001, we delivered a (partly) guested
column covering the topic of Management of
External Data [1]. The column you are reading right
now reports on the on-going development of the
SQL/MED standard and is authored by all but one of
the authors of that earlier column.

We trust that our readers will benefit from this
update on an interesting and important part of SQL.

Jim Melton and Andrew Eisenberg

Introduction
As discussed in [1], a new part of the SQL standard,
known as SQL/MED came into existence in early
2001. (MED stands for “Management of External
Data”.) SQL/MED offers syntax extensions to SQL
as well as a set of routines for use in developing and
managing applications that access both SQL data and
non-SQL (also known as external) data.

SQL/MED specifications can be divided into two
broad parts. The first part, called the wrapper
interface, offers facilities to view external data
managed by one or more external sources (formally
known as foreign servers) simply as a set of SQL
tables (formally known as foreign tables). External
data may be stored in file systems, in HTML-
formatted web pages, in XML documents, or in some
other specialized repositories. The second part of
SQL/MED, called datalinks, offers facilities to let an
SQL-server control the management of referential
integrity, recovery, and authorization of data residing
in one or more file systems.

The wrapper interface provides the ability to use
the SQL interface to access non-SQL data and, if
desired, to join that data with SQL data. An
application issuing an SQL query to an SQL-server
supporting the wrapper interface can reference both
tables managed by that SQL-server and foreign tables
known to that SQL-server. The SQL-server is
responsible for decomposing such a query into
multiple fragments, connecting to one or more
software entities (formally known as foreign-data

wrappers) that interface with the foreign servers
responsible for managing the data that corresponds to
foreign tables referenced in the query, devising an
execution plan for each fragment, initiating the
execution of those plans, receiving the result data from
each of the foreign-data wrappers, and finally
completing the query execution and returning the result
to the application.

The interaction between the SQL-server and a
foreign-data wrapper is based on a request/reply
paradigm. The SQL-server builds a request representing
the query fragment. The foreign-data wrapper analyzes
the request and returns a reply that describes that
portion of the request that can be handled by the foreign
server. The SQL-server must compensate for any part
of the query fragment that cannot be executed by a
foreign server.

Figure 1 — Components of the Wrapper Interface

SQL-
Server

SQL/MED
API

Foreign
Server

Foreign Data
(Foreign
Tables)

Implementation-dependent API

Foreign-
Data

Wrapper

The wrapper interface illustrated in Figure 1

includes SQL extensions for defining foreign servers,
foreign tables, and foreign-data wrappers and two
distinct sets of routines: foreign-data wrapper interface
SQL-server routines and foreign-data wrapper
interface wrapper routines (together commonly called
foreign-data wrapper interface routines). While an
SQL-server conformant to SQL/MED must implement

the SQL extensions and the foreign-data wrapper
interface SQL-server routines, a foreign-data wrapper
conformant to SQL/MED must implement the
foreign-data wrapper interface wrapper routines.
Figure 1 (which originally appeared in a slightly
different form in [1]) depicts the relationships among
SQL-servers, foreign-data wrappers, and foreign
servers.

Datalinks are useful for applications that require
referential integrity, recovery, and authorization
mechanisms, typically provided by database
management systems, for the data stored in external
files without the need to store their contents directly
in the database. Applications using datalinks are
expected to access the data stored in files using the
native interface of file systems rather than via SQL.
This part of the specification depends on a software
entity (formally called a datalinker) that interfaces to
a file system. The datalinks part of the specification
consists of an SQL built-in data type, DATALINK,
and a set of built-in operators to operate on values of
DATALINK type. Figure 2 (which also originally
appeared in a slightly different form in [1]) depicts
the relationships among the SQL-server, the
datalinker, a file system and a “datalinked” file1.

Figure 2 — Datalink-related relationships

Object

SQL-server

Datalinker

File
Manager Datalinked

File

An extensive description of both the wrapper

interface and datalinks specification as standardized
in [2] can be found in [1].

While the initial version of the SQL/MED
specification published in early 2001 provided a
fairly complete set of facilities to access and manage
external data, additional work by the standardization
committees in the last two years promises a much

1 A “datalinked” file is a file that is referenced by a
value stored in a DATALINK column.

richer standard. In fact, [1] hinted at the limitations of
the initial version and possible extensions to the
specification to overcome those limitations. The
primary focus of this article is to explain these new
extensions. Though this new version is not published
yet (it is currently in the Final Committee Draft, or
FCD, stage of the ISO standardization process and is
expected to be published in early 2003), no significant
changes are expected to occur between now and its
eventual publication date. In the remainder of this
paper, we refer to the SQL/MED specification
published in 2001 [2] as the previous version of
SQL/MED and the SQL/MED specification currently in
FCD stage [3] as the current version of SQL/MED .

We describe the enhancements to the wrapper
interface in next section and the extensions to datalinks
in the section titled “Enhancements to Datalinks”.

Enhancements to the Wrapper
Interface
As described in [1], communication between an SQL-
server and a foreign-data wrapper can occur in either
two modes: decomposition mode or pass-through mode.
Further, in decomposition mode, a query is broken into
multiple fragments by the SQL-server, each to be
executed by a particular foreign server. The interaction
between an SQL-server and a foreign-data wrapper in
decomposition mode occurs in two phases: planning
phase and execution phase. During the planning phase,
the SQL-server and a foreign-data wrapper
cooperatively produce an execution plan for a given
query fragment, while during the execution phase the
agreed-upon plan is executed by each of the foreign-
data wrappers and the resulting data is returned to the
SQL-server.

There are essentially three major enhancements to
the wrapper interface in the current version of
SQL/MED:
1. The ability for an SQL-server to communicate

complex query requests to foreign-data wrappers.
2. The ability for an SQL-server to communicate the

query context (that is, information to identify
requests belonging to the same query) to foreign-
data wrappers.

3. The ability for an SQL-server to ask foreign-data
wrappers for query execution costs.

All these extensions affect the query-planning phase in
decomposition mode. We describe below each of these
enhancements in detail.

The examples used in the following sections use
the simple schema, containing two foreign tables,
managed by a single foreign server, shown in Example
1.

Example 1 — Sample schema

EMP (name VARCHAR(16),
 street VARCHAR(30),
 phone VARCHAR(10),
 city_id INTEGER,
 resume VARCHAR(32000));

CITY (id INTEGER,
 longitude FLOAT,
 latitude FLOAT,
 name VARCHAR(30),
 state_name VARCHAR(30));

Communicating complex query
requests
With the wrapper interface specified in the previous
version of SQL/MED, an SQL-server was limited to
communicate query requests of the form SELECT
<column list> FROM FTN, where FTN is the
name of a foreign table and each element of
<column list> refers to a column of that table.
In this scenario, a foreign server was assumed to be
primarily a data source. However, there are many
cases where a foreign server can provide
computational power as well as being a source of
data. A foreign server can provide either a subset of
the functionality of an SQL-server or the
functionality of a foreign server can overlap the
functionality of an SQL-server. In these cases, it may
often be more efficient to pass complex queries for
execution by foreign servers. The wrapper interface
in the current version of SQL/MED is enhanced in a
number of ways to take advantage of the features
supported by foreign servers.

Queries containing WHERE clauses
The wrapper interface in the previous version of
SQL/MED does not allow an SQL-server to
communicate queries containing a WHERE clause to
foreign-data wrappers. The wrapper interface in the
current version is enhanced with four new routines to
deal with the WHERE clause and its Boolean
expressions. Example 2 illustrates the use of such a
mechanism:

Example 2 — Query with WHERE clause

SELECT resume
FROM EMP
WHERE name = 'John Doe';

The advantage of letting the foreign server

execute the predicates is pretty obvious. In the above
example, the foreign-data wrapper can return a single
resume to the requesting SQL-server instead of

returning the resumes and the names of all the
employees for the SQL-server to perform the selection.
This will reduce the amount of data sent to the SQL-
server tremendously, leading to better performance. On
the other hand, if the foreign server is unable to perform
the selection, the foreign-data wrapper will exclude the
predicate from the reply, signaling to the SQL-server
that it must compensate by applying the predicate in the
SQL engine.

In addition to better performance, the ability to
pass queries containing predicates can actually make a
larger number of foreign servers accessible. For
example, some foreign servers may not be able to
provide their data without a unique key. Such foreign
servers cannot be made accessible using the wrapper
interface of the previous version.

Queries containing multiple table references in
FROM clauses
Though the wrapper interface in the previous version of
SQL/MED could deal with multiple table references in
the FROM clause, the previous version restricted the
queries flowing from an SQL-server to a foreign-data
wrapper to contain exactly one table reference in the
FROM clause. That restriction has now been lifted, so
queries containing multiple table references in the
FROM clause can be communicated to individual
foreign-data wrappers. Example 3 illustrates the use of
such a mechanism:

Example 3 — Multi-table query

SELECT CITY.id, CITY.latitude,
 CITY.longitude
FROM EMP, CITY
WHERE EMP.name = 'Jane Doe' and
 EMP.city_id = CITY.id;

Using the wrapper interface in the previous version of
SQL/MED, the SQL-server would have needed to
transmit two query fragments to the foreign-data
wrapper, each retrieving rows from one of the foreign
tables used in the query. With the enhanced interface
supported in the current version of SQL/MED, the
entire query can be sent in a single request, assuming
the foreign server is able to perform joins and predicate
evaluations. If a foreign server is unable to perform the
join, it will indicate so by excluding one table reference
and the join predicate from the reply. Here again, the
SQL-server must compensate for the capability that the
foreign server lacks and perform the join after
retrieving the necessary data from the foreign server.

Queries containing complex value
expressions in SELECT and WHERE clauses
The wrapper interface in the previous version of
SQL/MED limits the value expressions contained in
the SELECT clause of the queries flowing from an
SQL-server to foreign-data wrappers to column
references only. The wrapper interface in the current
version of SQL/MED is enhanced to allow complex
value expressions both in the SELECT and the
WHERE clause of the queries. Value expressions can
now be column references, constants, or parameters,
all connected by one or more operators2. Example 4
illustrates the use of such a mechanism:

Example 4 — Query with operators

SELECT name || ' ' || phone
FROM EMP
WHERE name = 'John Doe';

Conceptually, value expressions are modeled as typed
operator trees. Internal nodes of the trees are
operators, while the leaf nodes represent column
references, constants, or parameters. (A parameter
value expression is useful for performing nested loop
joins with the inner table being a foreign table.) Each
operator node has a set of child nodes (sub-
expressions). The wrapper interface is enhanced with
six additional routines that are used to traverse the
operator trees.

In the current version of SQL/MED, the foreign-
data wrapper must either agree to evaluate a value
expression as a whole, or to reject it. For example, if
the foreign-data wrapper was asked to evaluate an
expression such as “(C1+C2)*C3” (C1, C2, and C3
all being columns of a foreign table), it may either
commit to evaluate the whole expression or indicate
that it cannot evaluate the expression at all, but it is
not allowed to commit to the evaluation of just
(C1+C2).

Queries containing user-defined function
invocations in value expressions
It is often possible for a foreign server to offer
functionality that is similar to that provided by an
SQL-server. In particular, it is possible for a foreign
server to offer an executable function that is
equivalent to a user-defined SQL-invoked function
that exists at an SQL-server. In some cases, it may be
more efficient to execute the function at the foreign
server rather than at the SQL-server. The current
version of SQL/MED offers a mechanism called
“routine mapping” to enable SQL-servers to choose

2 The term operators includes both SQL built-in
operators and user-defined functions.

the best option for executing a specific function
referenced in the query.

A routine mapping associates an SQL-invoked
function with a routine at a foreign server. Generic
options provide the necessary information for the
foreign-data wrapper to identify the function when it
encounters it during query processing.

Routine mappings are created at an SQL-server via
a CREATE ROUTINE MAPPING statement, which is
given the signature of an SQL-invoked function that
exists at the SQL-server and the name of a foreign
server, as shown in Example 5.

Example 5 — Creating a routine mapping

CREATE ROUTINE MAPPING FN1_AT_FS1
 FOR SCH.FUN1(VARCHAR, INTEGER)
 SERVER FS1
 OPTIONS (REMOTE_NAME 'FN1',
 REMOTE_SCHEMA 'TEST')

Example 6 illustrates the use of a mapped function:

Example 6 — Using routine mappings

SELECT resume
FROM EMP
WHERE fun1(name, city_id) = 100;

The value expression corresponding to the function

invocation in the WHERE clause carries the
information about the routine mapping. The foreign-
data wrapper receiving the above query can then use the
routine mapping information to figure out the specific
function that needs to be executed by the foreign server.

As with other objects in the SQL-environment, a
routine mapping can be modified if the value of a
generic option changes, or it can be completely dropped
if the mapping is no longer needed (for example, when
the function implementation ceases to exist either
locally or remotely).

Communicating the query context
During the planning of a complex query involving
several foreign tables from the same foreign server
joined by predicates, an SQL-server may generate
several requests to the corresponding foreign-data
wrapper. These requests will likely reference the same
value expressions and predicates from the query. Often,
the analysis of a value expression (or parts of it) is
independent of the other expressions and can be reused
between requests. In order to allow for such reuse, the
wrapper interface is enhanced to provide a new routine
called AdvanceInitRequest(). This routine
contains all the parameters of InitRequest()
routine provided in the previous version of SQL/MED
and an additional parameter called

QueryContextHandle, representing the query context.
All calls to AdvanceInitRequest() with the
same handle as the argument for
QueryContextHandle parameter represent fragments
of the same query.

Communicating query execution
costs
Evaluating a query over data in the SQL-server and a
set of foreign servers requires complex query
planning. While SQL-servers differ in their query
planning ability, there are some common basic
features. Most of the modern SQL-servers plan queries
by examining several different query execution plans,
estimating the time needed to execute each and
picking the one with the shortest execution time. In
order to expand this paradigm on queries over data in
foreign tables, the SQL-server needs to acquire
estimates for the query fragments executed by the
foreign servers. Both the size of the result set of the
query fragment execution and the query execution
time are the minimum required information to perform
the query planning. By way of illustration, consider
following query in Example 7.

Example 7 — A Query with a Join

SELECT CITY.latitude,
 CITY.longitude
FROM EMP, CITY
WHERE EMP.city_id = CITY.id;

There are several ways for the SQL-server to

execute this query. If the foreign server is capable of
performing joins, then the whole query can be sent to
the foreign server. If for each employee there is only
one city, this is a feasible execution strategy. If, on
the other hand, each employee is listed in up to ten
cities, the result size will be up to ten times the size
of the employee table. Much less data will be shipped
if the SQL-server first receives the data from both
foreign tables, and then performs the join operation
internally. Other join methods are possible using
parameterized queries, order information, and so
forth.

Since the SQL-server has no knowledge of the
execution model used in a particular foreign server,
the foreign-data wrapper needs to provide the
estimates for the result set size and execution time in
order for the SQL-server to produce an efficient
execution plan. SQL/MED favors an estimation
model based on execution time and result size
estimates, as opposed to the traditional database
model where the “query cost” is divided into CPU,
I/O, and network operations. In the latter case, the
estimates might be hard to get when the foreign

server is a third-party system with design unknown to
the foreign-data wrapper writer.

The wrapper interface in the current version of
SQL/MED is enhanced with four new routines that
return an estimate of the cardinality of the query result,
an estimate of the cost to execute the entire result of the
query, an estimate of the cost to execute and return just
the first row of the result, and the estimated cost of re-
executing the query.

Wrapper interface in action
In this section, we present an example query involving
joins and predicates to illustrate the enhanced wrapper
interface. Assume an application issues to an SQL-
server the query seen in Example 8.

Example 8 — A More Complex Query

SELECT CITY.id, CITY.latitude,
 CITY.longitude
FROM EMP, CITY
WHERE EMP.name = 'Jane Doe' and
 EMP.city_id = CITY.id;

Assume further that both the EMP and CITY tables

are managed by the same foreign server and the
corresponding foreign-data wrapper is able to deal with
multiple table references in the FROM clause and can
perform predicates of the form “column_name =
constant” and “column_name = column_name”.

As described in [1], the query planning starts with
the SQL-server establishing a connection to the foreign-
data wrapper. Once the connection is established, the
SQL-server invokes the foreign-data wrapper’s
AdvanceInitRequest() routine, passing a handle
(a Request Handle) to a structure that describes the
query as an argument. In general, an SQL-server might
send different fragments of the original query for
analysis to the wrapper in the process of the query
planning and optimization. To keep the discussion
simple, assume that the SQL-server asks the foreign-
data wrapper to plan the entire query.

Once the request is received, the foreign-data
wrapper analyzes first the FROM clause of the request,
then the WHERE clause and finally the SELECT list.
Analysis of each clause starts with determining the
number of items in the clause. For the FROM clause,
the foreign-data wrapper invokes the
GetNumTableRefElems() routine with the
RequestHandle as an argument to find out the number
of table references present in the FROM clause. In the
above example, the SQL-server returns 2 as the result,
as there are two table references in the FROM clause.
In SQL/MED, Table Reference Handles are used to
represent the table references. The foreign-data wrapper
invokes the GetTableRefElem() routine passing

the Request Handle and an integer value, k, as
arguments, which returns the k-th Table Reference
Handle. This handle can then be used as an argument
in the invocation of routines such as
GetTableRefTableName() to return the table
name, and GetTRDHandle() to obtain a descriptor
that contains the information about the columns and
their data types.

As described in [1], generic options can be
associated with foreign-servers, foreign-data
wrappers, foreign tables, and columns of foreign
tables. These options are essentially attribute/value
pairs that describe information that is specific to a
given object and are stored at the SQL-server as part
of the metadata about those objects. For example,
each of the tables in our example may be associated
with a URL of a web site, specified as a generic
option. The foreign-data wrapper can retrieve such
generic options by invoking
GetTableOptByName() routine by passing a
Table Reference Handle as an argument.
Furthermore, generic options associated with the
columns of each of the tables can be retrieved using
the GetTableColOptByName() routine by
passing a Table Reference Handle and column name
as arguments. Since our foreign-data wrapper is
assumed to be able to handle multiple table
references in the FROM clause, the FROM clause is
accepted.

Once the FROM clause is analyzed, the foreign-
data wrapper examines the predicates in the WHERE
clause by invoking GetNumBoolVE() routine
passing Request Handle as the argument to find out
the number of predicates; and subsequently invoking
GetBoolVE() routine multiple times to retrieve the
Value Expression Handle for each such predicate.
Expressions in SQL/MED are uniformly represented
using trees. Each node in the tree is a value
expression and has an associated Value Expression
Handle. There are four kinds of value expressions:
operators, column references, parameters and
constants. The foreign-data wrapper can obtain the
kind of a value expression by calling the
GetValueExpKind() routine with a Value
Expression Handle as the argument. For each
operator node, the number of operands and their
Value Expression Handles can be obtained invoking
the GetNumChildren() and the
GetVEChild() routines. Each value expression is
typed and the foreign-data wrapper can check the
type of a node invoking the GetValueExpDesc()
routine that returns a data type descriptor. In the
example above, since both Boolean expressions are
of the form our foreign-data wrapper can deal with, it
accepts the WHERE clause.

 The foreign-data wrapper then starts analyzing
value expressions in the SELECT list, which begins
with finding the number of expressions in the SELECT
list invoking the GetNumSelectElems() routine
with a Request Handle as the argument. The foreign-
data wrapper then obtains the Value Expression Handle
for the k-th select list element by invoking the
GetSelectElem() routine with the Request Handle
and k as arguments. Routines that apply to value
expressions in the WHERE clause are applicable here
as well. In the above example, all select list elements
are column references and our foreign-data wrapper
accepts all of them.

Once the query is analyzed, the foreign-data
wrapper returns two handles a Reply Handle and an
Execution Handle, as described in [1]. The SQL-server
examines the response from the foreign-data wrapper
by using an interface similar to the one used by the
foreign-data wrapper to determine the part of the query
that the foreign-data wrapper is willing to execute. In
the above example, the SQL-server determines that our
foreign-data wrapper is capable of executing the entire
query. The SQL-server can then ask the foreign-data
wrapper for cost information, perform query
optimization, and then settle on an execution plan. The
SQL-server than invokes the Open() routine with the
Execution Handle as the argument to ask the foreign-
data wrapper to initiate the execution. Once the query is
executed, the foreign-data wrapper sends the resulting
data to the SQL-server. The communication of the
results to the SQL-server happens via descriptors as
described in [1].

Enhancements to Datalinks
As already stated in [1], DATALINK is an SQL data
type that allows storing in an SQL column a reference
to a file that is located in a file system external to the
database system.

SQL/MED allows a variety of options to be
specified for columns and attributes of the DATALINK
type. With these options, it can be determined how
strictly the SQL-server controls the file. The
possibilities range from no control at all (the file does
not even have to exist) to full control, where removal of
the datalink value from the database leads to a deletion
of the physical file.

In the previous version of SQL/MED, the datalinks
functionality supports two modes of “write
permissions” for datalinks, namely FS (implying “File
System”) and BLOCKED.

When WRITE PERMISSION FS is specified, the
system (that is, the combination of SQL-
implementation, datalinker, and file manager) allows
users to update a file while the file remains linked to the
database. However, this mode does not provide file data

recovery, which means that, if the disk crashes or a
user needs to restore the database, there is no backup
data to recover. In cases of transaction failure, this
may cause inconsistency between the file data and
the database data. Moreover, the write access
permission is determined by the file system
permissions currently assigned to the file. WRITE
PERMISSION FS does not support a token-based
access model like the one provided with READ
PERMISSION DB (implying “DataBase”).

On the other hand, WRITE PERMISSION
BLOCKED provides data recovery functionality for
an SQL-mediated file (through the means of the
datalinker), as long as the RECOVERY option is
specified as YES. However, a user cannot update the
file while the file is currently linked. Updating the
content of a file that is linked with the WRITE
PERMISSION BLOCKED requires three distinct
steps:
1. Unlinking the file
2. Modifying the file
3. Re-linking the file

It should be noted that while the file is not linked
to the database in step 2, it is not protected against
unwanted modifications or even deletion. However,
many usage scenarios require the ability to update the
content of a file while it is datalinked. The current
version of SQL/MED now includes this functionality,
called “update-in-place”. This feature provides the
ability to use datalinked files for such functions as
library check-out and check-in, as well as a way to
back out any uncommitted file changes and restore to
the previous committed version. One of the key
requirements is to provide an access control scheme
for accessing datalinked files, as well as a capability
for updating files in a consistent way. Using datalinks
and this new feature, when a disaster or crash occurs,
the user can rely on the SQL-implementation to
restore all the data — both SQL-data and file data —
to a consistent state.

Update-in-place provides token-based access to
the file similar to the mechanism used for READ
PERMISSION DB. When READ PERMISSION DB
is specified, the database server controls which users
are authorized to access the file. File data recovery
can be supported in an implementation-dependent
way, as long as the RECOVERY option for the
datalink is specified as YES.

The update-in-place functionality is made
available by a new WRITE PERMISSION option
called the ADMIN option, followed by either the
keywords REQUIRING TOKEN FOR UPDATE or
the keywords NOT REQUIRING TOKEN FOR
UPDATE. “ADMIN” represents the fact that the
SQL-server and the datalinker together decide
whether a given user is authorized to update a file.

“REQUIRING TOKEN FOR UPDATE” indicates that
the token, which was included in the file reference
when the user requested it from the SQL-server, is
needed to update the column containing the datalink
value in question. Conversely, “NOT REQUIRING
TOKEN FOR UPDATE” indicates that this token is not
needed for the update of the column. Since the update
process involves more than one system (database server
and file server), the same token can be used as an
authentication method to indicate who can complete the
whole file update process. On the other hand, to use this
feature, an application has to remember the token
throughout the process. In the case where applications
may already have their own authentication mechanisms,
one might not want to maintain the token. Using the
NOT REQUIRING TOKEN FOR UPDATE option
may be a good alternative for such applications.

In order to write to a file linked by a datalink value,
two new string value functions are available that return
a character string representation of the datalink value
that includes also a write token. These functions, called
DLCOMPLETEWRITE and DLPATHWRITE, are
used by an application to retrieve the URL of the file
that is to be updated. The former function returns the
full URL, while the latter one returns only the file name
and path, without the address of the file server.

In addition to the existing datalink constructor
function DLVALUE, two new datalink value
constructors are being added to SQL/MED:
DLNEWCOPY and DLPREVIOUSCOPY. The
purpose of the DLNEWCOPY constructor is to create a
datalink value by which the SQL-server can tell that the
content of the file referenced by that datalink is
different (i.e., the content has changed, but not the
URL) from the value that was previously referenced by
the datalink. By contrast, the purpose of the
DLPREVIOUSCOPY constructor is to construct a
datalink value by which the SQL-server knows that the
content of the file might have changed, and that the user
is not interested in maintaining the changed file but
would like to revert to the file that was originally
referenced by the datalink. Each of the two new
datalink constructors has two input parameters. The
first parameter is a character string that contains the
location of the file. The second parameter is an
indicator of whether the write token is included in the
first argument; ‘1’ indicates that the token is included,
while ‘0’ means that a token is not included. The
datalinks constructed with the two new constructors are
only valid in an SQL UPDATE statement.

Examples
Several examples are shown below that demonstrate the
use of the update-in-place feature. All examples assume

that the table shown in Example 9 has been defined
and populated.

Example 9 — Table for demonstrating update-in-
place feature

CREATE TABLE EMPLOYEE (
 ID INTEGER NOT NULL,
 NAME VARCHAR(20),
 DEPT_NO SMALLINT,
 TITLE VARCHAR(50),
 PHOTO DATALINK
 FILE LINK CONTROL
 INTEGRITY ALL
 READ PERMISSION DB
 WRITE PERMISSION ADMIN
 REQUIRING TOKEN FOR UPDATE
 RECOVERY YES
 ON UNLINK RESTORE,
 RESUME DATALINK
 FILE LINK CONTROL
 INTEGRITY ALL
 READ PERMISSION DB
 WRITE PERMISSION ADMIN
 NOT REQUIRING TOKEN
 FOR UPDATE
 RECOVERY YES
 ON UNLINK RESTORE,
 PRIMARY KEY (ID)
)

How to update-in-place
An HR administrator wishes to update the picture of
the employee with ID = 50100. She connects to the
SQL-server and SELECTs the PHOTO column to
retrieve the URL, including the write token.

SELECT DLURLCOMPLETEWRITE(PHOTO)
FROM EMPLOYEE
WHERE ID = 50100;

Assume the returned value is

“HTTP://HR_SRV.XYZ.COM/hr/emp_pict/
xxxx;emp50100.gif”, where xxxx is the actual
write token (recall that SQL/MED does not specify
the format of write tokens). This file reference is then
used to open the file and copy the new picture over
the existing one. Assuming the new picture is in
/hr/tmp/emp50100.gif, the following Unix®
shell command accomplishes this task:

cp /hr/tmp/emp50100.gif

 /hr/emp_pict/xxxx;emp50100.gif

When the file copy is completed, an UPDATE

statement is issued to notify the SQL-server that the
new version of the file is ready to be linked.

UPDATE EMPLOYEE
 SET PHOTO = DLNEWCOPY (

'HTTP://HR_SRV.XYZ.COM/hr/emp_pict/xx
xx;emp50100.gif', 1)

WHERE ID = 50100;

How to “rollback” unwanted file changes
The HR administrator has updated the new picture as in
the example above. However, she wants to roll back the
changes, but the file system (or “file manager” in
SQL/MED terms) has no “undo” option. She can issue
the following UPDATE statement to replace the
modified file by the original file that was linked to the
database earlier.

UPDATE EMPLOYEE
 SET PHOTO = DLPREVIOUSCOPY (

'HTTP://HR_SRV.XYZ.COM/hr/emp_pict/xx
xx;emp50100.gif', 1)

WHERE ID = 50100;

The reader might wonder how the old copy of the

file can be restored when the file manager has no means
to do it. This functionality requires that the datalinker
and the SQL-server work closely together to provide
the means to restore the previous copy. The
functionality that is needed to accomplish this operation
is not much different from that required to do “point in
time” recovery which is already included in the first
version of SQL/MED.

How the SQL-server interacts with the
Datalinker
This example illustrates how the SQL-server interacts
with the datalinker to provide the update-in-place
functionality. Since the interaction between the SQL-
server and the datalinker is not standardized in
SQL/MED, but is left implementation-dependent, this
example shows only one possible way in which it could
be done. Different systems might choose to implement
it differently.

The application connects to the SQL-server and
retrieves a URL, with a write token, for a file:

SELECT DLCOMPLETEWRITE(PHOTO)
 INTO :url
FROM EMPLOYEE
WHERE ID = 66101

The URL is now stored in the host variable named

url.
The SQL-server checks with the datalinker to

determine whether the current user has authority to
update the specified file.

If the current user has authority to update the
file, the SQL-server returns a file reference with an
embedded write token. Here is an example of the
returned value:
“HTTP://XYZ.COM/a/b/xxxx;file1.txt”
 where xxxx is the write token.

The application uses this file reference to open
the file. For example, it might issue the following file
system call in a C program.

fptr =
 fopen("/a/b/xxxx;file1.txt");

The datalinker intercepts this file system call and

checks to see whether the write token is valid. If the
write token is valid, the datalinker allows the
“fopen” operation to proceed and return a pointer to
the file descriptor. The application then uses that file
descriptor to read/write data to the file.

When the file update is completed, the
application UPDATEs the same row with the original
file reference (including the write token) to notify the
SQL-server that the new version of the file is ready
and any implementation-dependent archiving process
can be started upon COMMIT.

Example 10 illustrates the use of the SQL
UPDATE statement.

Example 10 — Updating datalinked value

UPDATE EMPLOYEE
 SET PHOTO = DLNEWCOPY(:url, 1)
WHERE ID = 66101;

The SQL-server forwards the request to the

datalinker, which checks the validity of the write
token and possibly triggers the file archive process to
backup the modified file. Upon successful
completion, the SQL-server returns a successful
completion indication to the application.

SQL/MED’s Future
Even though the current version of SQL/MED
specification adds significant new capabilities
compared to the previous version, the wrapper
interface is still limited to read-only access to data
managed by foreign servers. Enhancing the wrapper
interface with the ability to insert, update, and delete
the contents of foreign tables is likely to be the focus
for the next version of the standard. Handling
additional query capabilities such as grouping and
evaluation of aggregate functions by foreign servers
may also be candidates for future work.

Summary
In this month’s column, we have reviewed the coming
new version of the SQL/MED standard, outlining new
capabilities that give more powerful access to foreign
servers and the foreign tables that they manage, as well
as new datalink facilities.

Like most standards, SQL/MED continues to
evolve. When the next edition is nearing completion,
we plan to provide yet another update — but don’t
expect this for at least another couple of years.

References
[1] J. Melton, J.-E. Michels, V. Josifovski, K.

Kulkarni, P. Schwarz, K. Zeidenstein, SQL and
Management of External Data, SIGMOD Record,
30(1): 70–77, March 2001
http://www.acm.org/sigmod/record/
issues/0103/JM-Sta.pdf

[2] ISO/IEC 9075-9:2001, Information technology —
Database language — SQL — Part 9:
Management of External Data (SQL/MED),
International Organization for Standardization,
June 2001

[3] FCD (Final Committee Draft) 9075-9:200x,
Information technology — Database language —
SQL — Part 9: Management of External Data
(SQL/MED), currently under ballot
http://sqlstandards.org/SC32/WG3/
Progression_Documents/FCD/4FCD1-
14-XML-2002-03.pdf

Web References
[1] International Committee for Information

Technology Standards (INCITS)
http://www.incits.org/

[2] INCITS Technical Committee H2 (Database)
http://www.incits.org/tc_home/h2.htm

[3] International Organization for Standardization
(ISO)
http://www.iso.org/

[4] ISO/IEC JTC 1/SC 32
http://www.jtc1sc32.org/

	q: SIGMOD Record, Vol. 31, No. 2, Sept. 2002

