Inform. Systems Vol. 11, No. 4, pp. 323-336, 1986
Printed in Great Britain

0306-4379/86  $3.00 4+ 0.00
Pergamon Journals Ltd

A DATABASE LANGUAGE FOR SETS, LISTS AND TABLES

P. PisTor! and R. TRAUNMUELLER?

1IBM Deutschiand GmbH, Heidelberg Scientific Center, Tiergartenstrasse 15, D-6900 Heidelberg,
" Federal Republic of Germany
2Johannes Kepler Universitit, Institut fir Imformatik, A-4040 Linz, Austria

(Received 16 October 1985; in revised form 12 June 1986)

1. INTRODUCTION

The classical relatigi=al model requests all data to be
in first normal form (INF) {1, 41]. While this require-
ment considerably simplifies the data model, it is not
indispensable [3]. In the past:.several proposals have
been made for data models supporting unnormalized
relations [4-6]. Often, they arose in environments
where the simplicity of the relational model was
perceived as being too restrictive. Examples are the
managmeent of scientific and engineering data [7, 8},
“form models” for office systems [9-11], or the
integrated management of formatted and un-
formatted (i.c. textual) data {12].

The NF? modelf [13] was one attempt to meet these
requirements. Algebraic aspects of this and of related
models have been addressed in numerous papers (e.g.
[14-17,43]). It has also been attempted to provide
interfaces for those data models [10, 13, 19-22], which
are inspired by the “high level” and ‘“non-
procedurality” paradigm of interfaces like SQL
[23,24] or QUEL [25]. These attempts correspond to
similar ones, e.g. for network and entity relationship
data models [2, 26, 27].

This paper describes a language interface for an
extended NF? model, i.e. a model which covers a
much broader range of data structures than the
original [17] NF? model. While the latter one does not
suffer from certain drawbacks of INF relations, it
does not appropriately match further vital needs of
new database applications (e.g. ordered items). To do
so, one could allow for a few selected field level data
types like vectors, possibly complemented by dedi-
cated operators. Instead of such an asymmetric ex-
tension we prefer an orthogonal approach. For in-
stance, tables may either be ordered (lists of tuples)
or unordered (relations, i.€. sets of tuples); lists are
not necessarily composed of scalars (like in Fig. 1) or
of tuples, but may have elements of type “list” or
“set”, instead. Similarly, sets are no longer restricted
to elements of type “tuple”.

An SQL-like query interface for those structures
has to meet quite a number of requirements. First of
all, it needs to provide some equivalent of
NF3-algebra operations, like extended projection

+*NF!" stands for “‘non first normal form".
tShorthand for “SELECT. .FROM. WHERE".
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(Section 3.1) and restriction (Section 3.2), or un-
nesting (Section 3.6.4) and nesting (Section 3.6.5).
Projection and restriction can readily be generalized
to accept not only ordered tables (Section 3.4), but
also any other kind of lists and sets (Section 3.5).
Furthermore, this is even possible for join, nest, and
unnest operations (Section 3.6). This achievement
was considerably facilitated by interpreting SQL’s
SFW1 construct as generic constructor for sets and
lists [28), and by embedding it into a collection of
appropriate expression primitives (Sections 3.3 and
3.8.1). While being the backbone of the query lan-
guage proposal, we believe that the SFW construct
needs to be complemented by other high-level con-
structs. In part, they are needed to provide capabili-
ties outside of the SFW scope (like ordering, see
Section 3.8.2), others are motivated by usability
considerations (Section 3.7), but also by attempts of
syntactically supporting query optimization (Sections
3.7.3, 3.8.2 and 3.8.3).

As in query support, the DML operations on NF?
structures require more powerful facilitics than those
needed in classical SQL. In the latter case, only two
jevels are essentially affected by DML operations, the
table level (insertion and deletion of tuples), or the
tuple field level (update). In contrast, we need in-
sertion and deletion operations (Sections 4.1and 4.2),
the targets of which may be any kind of lists or sets,
possibly being itself part of lists, sets, or tuples. The
targets of update operations (Sections 4.3 and 4.4)
may be objects of any type, again either being
self-contained or components of encompassing
objects.

2. DATA STRUCTURES OF THE NF? MODEL

2.1 An Introductory Example: Spectral Table

The NF? model is concerned with two kinds of
data, atomic data and composite (or non-atomic)
data. The atomic data may be of type

numeric
character
Boolean

Composite data are either sets, tuples, or lists, the
elements of which are either atomic or non-atomic. In
case of tuples, the elements need not necessarily have
the same type, whereas no element of a list or a set
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may differ in type from any other element of that list
or set. The spectral table in Fig. 1 might serve as an
illustration. This table comprises a set of rows—or
tuples—representing different SUBSTANCEs and
their associated SPECTRA. The SPECTRA for a
given substance differ due to different SOLVENTSs
and substance CONCENTRATION. The spectral
curves S_GRAPH are regularly sampled functions—
say f(x)—represented by the START value x,, the
(fixed) STEPWidth x;,—x;,_,, and a list of EX-
TINCTION values f(x;). Thus, at the top level the
SPECTRAL_TABLE can be understood as a binary
relation. At the next lower level, i.e. within the tuple
for a specific SUBSTANCE, the SPECTRA field
again contains a relation, this time with three
columns—or attributes—containing three atomic
fields (START, STEPW, CONCENTRATION) and
two non-atomic ones (character lists in SOLVENT,
numeric vectors in EXTINCTION). Note that the
restrictions on sets and lists (see above: “‘composite
data”) have been observed: all tuples within
SPECTRAL_TABLE or SPECTRA are equally
structured, and all lists (SUBSTANCE, SOLVENT,
EXTINCTION) contain elements of just one type.
This does not mean, of course, that all lists (e.g.
SUBSTANCE names or spectral curves (see
S_GRAPH) are of the same length.

Within this paper, examples will mainly be based
on the SPECTRAL_TABLE (Fig. 1). Minor exam-
ples for other kinds of composite objects (e.g. lists of
tuples, lists of lists, sets of lists, sets of sets etc.) are
given as needed for the illustration of selected oper-
ations.

2.2 Data Definition Language

The Data Definition Language (DDL) we propose
(see “Data Definition Facilities” in Appendix Al) is
best illustrated by the declaration of the spectral table
(given in Fig. 1):

(1.0) CREATE OBJECT

(1.1) SPECTRAL_TABLE({

(1.2) ¢|SUBSTANCE:CHAR,

(1.3) SPECTRA:{

(1.4) (]SOLVENT:CHAR, .-

(1.5) CONCENTRATION:REAL,

(1.6) S_GRAPH:({|START ‘REAL,
(1.7) STEPW ‘REAL,
(1.8) EXTINCTION:(REAL)
1.9 )2

(1.10) >
(.11 }
(1.12) N
(1.13) }

Taking into account that the pairs {...}, {...), and
{l...]> are used to indicate set, list, and tuple decla-
rations. the previous command CREATEs the data
base OBJECT SPECTRAL_TABLE as a set [cf. (1.1)
and (1.13)] of tuples [cf. (1.2) and (1.12)], consisting
of the character string field SUBSTANCE and the
relation-valued field SPECTRA [(1.3) through
(1.11)]. It is left to the reader to associate further

declarations like tuple-valued [(1.6) through (1.9)Jor ~

list-valued (1.8) fields with the description given in
Section 2.1.

The CREATE command allows the declaration of
named sets or lists, as well as named tuples or even
named atomic data base objects. Sets and variable
length lists are initially empty, atomic objects are
initialized by “zero” (in case of types INTEGER or
REAL) or “blank” (in case of a *‘single character”
type S_CHAR). When a tuple or a fixed length list is
CREATE(J, its fields are initialized according to the
rules of top level sets, lists, tuples, or atoms.

As can be seen from our example, all tuple fields
have been given names {e.g. SUBSTANCE in (1.2)].
As to be seen from the data definition facilities (refer
to “Data Definition Facilities” in Appendix Al),
naming is not mandatory. This freedom is acceptable,
since we supply two addressing mechanisms for tuple
fields (see Section 3.3).

Lists and sets potentially may contain any number
of elements. The user may indicate a maximum
number of elements, e.g.

(2) ...SPECTRAL_TABLE{. .., (10000 VAR)}

or a fixed number of elements, as in
(3) EXTINCTION:(REAL, (100)). ..

Contrary to lists, the declaration of sets with a fixed
number of elements will not be allowed. This decision
has been taken to keep the initialization rules simple.

3. QUERY OPERATIONS

The probably most important classes of NF?
structures—Ilet us call them tables for short—are sets
and lists of tuples. The next three sections of this
chapter are concerned with the essential operations

. on NF? tables. These operations are purposely ori-

ented at the SFW construct of SQL-like languages
(e.g. [23, 24]), but give it an interpretation such that
the SEW construct, when used in a nested fashion,
supports projection (Section 3.1) and restriction (Sec-
tion 3.2) facilities as required for NF? tables. We then
show how the construct can be further generalized to
apply on lists and sets in general (Sections 3.4 and

3.9).
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Special attention is given to join facilities as pro-
vided by properly generalized SFW expressions. They
take both ordered and unordered tables, but also any
other kind of lists and sets. Furthermore, joins along
hierarchical paths (Section 3.6.4) are supported in a
fashion which covers even more than the unnesting
facilities required by the NF? algebra. Finally, the
nest operation (Section 3.6.5) can be supported by
nested SFW expressions.

In spite of its considerable syntactical resources, we
think that the SFW construct should not be over-
loaded. For that reason, ordering, grouping (Section
3.8.2), and quantifier facilities (Section 3.8.3) are
provided as dedicated constructs. However, their
format has been kept quite close to the SFW format.

Masking techniques and other useful shorthand
notations are treated in Sections 3.7 and 3.8.1.

3.1 Projection

Assume we want to retrieve the names of all
SUBSTANCE:s in SPECTRAL_TABLE. The query

(4.0) SELECT
@.n {|SUBSTANCE: x.SUBSTANCE|>
(4.2) FROM x IN SPECTRAL_TABLE

requests the DBMS to iterate over all tuples of the
table [see (4.2)], and to construct for each tuple “x”
a new tuple [denoted by tuple constructors |. .|> in
(4.1)] by just using the SUBSTANCE field value. In
our example, the field of the resulting tuple is given
the same field identifier as before.

We could equally well have chosen the SPECTRA
column for projection; by additionally renaming the
column, we end up with the expression.

(5.0) SELECT(|SPECTRUM :x.SPECTRA[)
(5.1) FROM x in SPECTRAL_TABLE

Except for the mandatory use of the tuple identifiers

and tuple constructors, projection expressions like (4)
and (5) are very similar to those used in languages
like SQL [24]. The situation is different, however,
when we want to retrieve, for example, for any
SUBSTANCE the names of the SOLVENTS and the
CONCENTRATION:S. In this case, a projection has
to be performed inside the SPECTRA values .

x.SPECTRA

of every tuple x in SPECTRAL_TABLE:

(6.0) SELECT
6.1) (] x.SUBSTANCE,

(6.2) (SELECT

(6.3) ¢| y.SOLVENT,

(6.4) y.CONCENTRATION|)
(6.5 FROM y IN x.SPECTRA)

(6.6)

>
(6.7) FROM x IN SPECTRAL_TABLE

In this nested projection we have intentionally omit-
ted field names in the tuple expressions [see (6.1),
(6.2), (6.3) and (6.4)]. This point will be discussed in
Section 3.3.

3.2. Restriction

Let us suppose that we want to retrieve those tuples
x of the SPECTRAL_TABLE which contain at least
one spectrum for the SOLVENT ‘C,H,OH’. The
formulas (7) and (8) show two semantically equiv-
alent queries serving that purpose:

(7.0) SELECT x

(7.1) FROM x IN SPECTRAL_TABLE
(7.2) WHERE {}—=

(1.3) (SELECT xx.SOLVENT
a4 FROM xx IN x.SPECTRA
1.5) WHERE xx.SOLVENT = ‘C,H,OH")

Note: The tuple constructors have intentionally been
omitted in (7.0) and (7.3) (see also Section 3.3).
(8.0) SELECT x ’
(8.1) FROM x IN SPECTRAL_TABLE

(8.2) WHERE (EXISTS xx IN x.SPECTRA:
8.3) xx.SOLVENT = ‘C,H,OH’)

While equations (7) and (8) are quite close to SQL-
like queries on flat tables, this is no longer true if we
modify our query such that only SPECTRA entries
for the SOLVENT *“alcohol™ are to be returned:

(9.0) SELECT

©.1) {] x.SUBSTANCE,

9.2) (SELECT xx

9.3) FROM xx IN x.SPECTRA

9.4) WHERE xx.SOLVENT = ‘C,H;OH")}>

(9.5) FROM x IN SPECTRAL_TABLE
(9.6) WHERE (EXISTS z IN x.SPECTRA
9.7) 2.SOLVENT = ‘C,H,OH’)

In this query, we nest restrictions in a similar way as
we have nested projections in query (6). Of course,
this kind of nesting would not make sense for flat
tables. [By the way: If we would not bother about
possibly empty SPECTRA fields in the query result,
we could omit the WHERE-clause (9.6-7) in the
previous query.]

3.3 Tuple Expressions

In the previous section, we have encountered oper-
ations like

constructing tuples [e.g. example (6)],
accessing tuple field values [e.g. (6.1)},
naming tuple fields [e.g. (4.1)].

In this section, tuple operations will be discussed in
some more detail.
Let z denote the tuple

(10) ¢|*H,0’, 10]) (note the different types!)

The value of the first field is ‘H,O’, the value of the
second field is 10. That is, in accordance with other
SQL-like languages, field order in tuples is relevant.
Therefore, we may access field values by the ordinal
numbers, e.g. ’

2.1 (yielding ‘H,0’), or
2.2 (yielding 10).

According to the DDL syntax (see ‘Data Definition
Facilities” in Appendix Al), tuple fields may option-
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ally be named. Accordingly we might construct (see
“Tuple Related Expressions” in Appendix A3.3) a
tuple, say z’, as

(10") ¢JSOLVENT: ‘H,0’, CONCENTRATION: 101>

We say that the fields of tuple (10) are anonymous; in
contrast, the fields of tuple (10) are explicitly named.

We may access e.g. the second field in tuple z in
two alternative fashions, both resulting in the same
value:

(1.1) z°.2

(11.2) z".CONCENTRATION

The important fact in expression (11) is, that access
to a tuple field gives ageess to the field value. The field
name is lost. Theréfure, the fields of the result tuples
constructed in (6.1) (first field) and (6.2) through (6.6)
(second field) are anonymous, as well as the fields of
the lower level tuples [see (6: 3).and (6. 4)].
Query expression (5) is an example of a query in
which the resulting tuples are constructed such that
their field names (here: actually one field at the top
level) do notr remain anonymous:

(5) SELECT(|SPECTRUM:x.SPECTRAJ...

If we compare query (5) with the input
SPECTRAL_TABLE, the question arises whether
the lower level tuples of the result will be composed
of anonymous tuples or not. The answer is “no”,
since the repeating groups, i.e. the x.SPECTRA field
values, are taken as a whole. For the same reason, the
~ result of query (7) does not contain anonymous
tuples, since the resulting table is constructed from
complete tuples x of the input SPECTRAL_TABLE.

Conventions on the treatment of tuple field names
are also required in the context of certain set/list
operations (see e.g. UNION, CAT in Section 3.8) or
in case of insertion and update operations (see Sec-
tion 4). Details need not be discussed here.

3.4. Queries Involving Lists

In the examples presented so far, the *“SE-
LECT.. . FROM.. . WHERE” construct has been
applied on sets of tuples, and these operations in
turn resulted in sets of tuples. On the other hand, we
could have created, instead of SPECTRAL_TABLE
[see mj a list-type equivalent, say
SPECTRAL_TABLE_L, as

(12.0) CREATE OBJECT
(12.1) SPECTRAL_TABLE_L
(12.2)
(12.3)
(12.4)
(12.5)
(12.6)
(12.7)
(12.8)
(12.9)
(12.10)
(12.11) 1>
(12.12) >
1213 P
(12.14)

{ISUBSTANCE:CHAR,
SPECTRA

(JSOLVENT
CONCENTRATION:REAL,
S_GRAPH

The examples seen so far would also apply on this
new object. However, the operations would result in
lists of tuples rather than sets of tuples. Different
from sets, the list elements would be accessed in list
order, and the order of the input table would there-
fore be preserved in the result.

Other than sets, lists allow duplicates. Therefore,
duplicates resulting from query operations (e.g.
projection on a list of tuples) will not be suppressed.
This may be important e.g. when queries are sup-
posed to provide statistical information.

The question might arise whether it is possible to
join lists of tuples, or even lists of tuples with sets of
tuples. This question will be addressed in Sectins 3.6.2
and 3.6.3. -

In the remainder of the current section, we will see
that we can also deal with other types of lists than just
lists of tuples. For that end, let

(13) V=(1,2,5,4,8)

If we want to retrieve from ¥ all elements which are
succeeded by a greater one, we could do so by

(14.0) SELECT

(14.1) V[il

(142) FROM i IN INDLE¥FS
(14.3) WHERE i < LEN(V)"AND
(14.4) Vil < Vi + 1]

Here, “V[i]" addresses the ith element of “V™.
“INDL” is a built-in function which takes a list and
returns an index vector 1, 2, ... The elements **i" of
this vector are accessed one after the other, and a
check is made whether there exists a successor ele-
ment *“i + 17, such that *“i + 1"’ does not exceed the
length of “V”. If so, “V[i]” is compared with
“V[i +17". The acceptable values “V{i]" are SE-
LECTed for the resulting list.

3.5 Queries Involving General Sets

For the sake of completeness we would like to
demonstrate that the SFW-construct is able to deal
also with sets of “non-tuples”. Let

(15) $={1,2,7,8,10, 13}

:CHAR,

:{ISTART :REAL,
STEPW :REAL,
EXTINCTION:(REAL)

>
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{TAB_S1}
c1 | c2 | c3
1 5 2
2 8 3
3 9 2

P. PisTorR and R. TRAUNMUELLER

CREATE OBJECT

TAB_S1 § <| C1: INTEGER,
C2: INTEGER,
C3: INTEGER |> }

Fig. 2. “TAB_S1*: Table with 3 integer type attributes Cl, C2, C3. The corresponding CREATE

command is also given.

{RES_Q17}
C1 c2 C3 Cy
1 5 2 2
1 5 2 3
2 8 3 3

Fig. 3. “RES_QI7": Join result of query (17); the table
represents a set of tuples.

To retrieve from “S™ all elements greater than 9, we
write
(16.0) SELECT
(16.1)

X
(16.2) FROM xIN §
(16.3) WHERE x>9

Since “S™ is composed of integers, the free variable
x stands for 1, 2, 7,..., or 13, in turn, when
evaluating the query. Thus, according to our rules,
the result of the query is again a set of integers.

3.6 Joins

3.6.1 Classical joins

Let us consider a simple ternary table TAB_SI as
sketched in Fig. 2. Using TAB_SI, let us generate a
new table (see Fig. 3) in which we combine each tuple
x of TAB_SI with all the tuples of that table having
a greater Cl-value than the tuple x. This result is
achieved by the join operation.

(17.0) SELECT

a7y (ICl:x.Cl,
(17.2) C2:x.C2,
(17.3) C3:x.C3,
(17.4) C4:y.Cl|>

(17.5) FROM x IN TAB_SI, y IN TAB_S!
(17.6) WHERE x.C1 < y.Cl

3.6.2 Joining ordered tables

Rather than having a set TAB_S! of tuples, let us
assume a /ist TAB_LI of tuples (see Fig. 4). Obvi-

<TAB_L1>
Al | A2 | A3
1 5 2
2 8 3
3 9 2

ously, the previously discussed join operation can be
generalized such that it applies not only on sets of
tuples, but also on /ists of tuples. Starting with the
first tuple, we try to combine it—in sequence—with
the first, second and third tuple of “TAB_L1”". Then
we do the same with the remaining ones to finally
obtain Fig. 5. ‘

The corresponding query statement is completely
analogous to the set case (17):

(18.0) SELECT

as.) (AL:x.Al
(18.2) A2:x.A2,
(18.3) A3:x.A3,
(18.4) Adiy Al
(18.5) FROM x IN TAB_LI, y IN TAB_LI

(18.6) WHERE x.Al < y.Al

As can be seen from the description given above, the
evaluation is different for (17) and (18). With sets
(here: TAB_S1) there is no predefined order in which
the set elements are accessed. With lists, the order is
important in a twofold way: First, the elements of
each input list are accessed in list order. Second, the
FROM-clause is logically equivalent to a sequence of
nested loops: the left-most list being addressed in the
FROM-clause defines the outermost loop, while the
right-most list defines the innermost loop (see Figs 4
and 5).

3.6.3 Joins involving both ordered and unordered tables

The rules given so far do not cover the join between
lists and tables, as in

(19.0) SELECT

(19.1) {Al:x.Al,

(19.2) A2:x.A2,

(19.3) Al:x.A3,

(19.4) Ad:y.Cl

(19.5) FROM x IN TAB_LI, y IN TAB_SI

(19.6) WHERE x.Al < y.Cl

Several ways are conceivable to fix the semantics of
this expression. Our proposal is captured in the
following rules:

CREATE OBJECT

TAB_L1 < <| Al: INTCGER,
- A2: INTEGER,
A3: INTEGER |> >

Fig. 4. “TAB_L1": List of tuples (ordered table), and corresponding CREATE command.
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<RES_Q18>

Al A2 A3 Al

—_
Q@
wnN
W w N

Fig. 5. “RES_QI18*: Result of join operation (18). Different
from Fig. 3, this table represents a /ist of tuples. Therefore,
order is important.

1. If at least one list is involved in the FROM-clause,
the result is a list.

2. The order of the-result elements is only partly
determined, ifZiot all of the operands in the
FROM-clause are lists.

3. If at least one list is involved in the FROM-clause,
then the FROM-clause musz be evaluated from left

(21.0) SELECT
Ly

(21.2)

(1.3)

(21.4)

(21.5) D
(21.6) FROM x IN FT

to right, such that for any two operands (e.g.
TAB_L1, TAB_S1) the iteration is slower for the
left one (“‘outer loop™), and faster for the right one
(“inner loop™).

4. List elements are accessed in list order, set elements
are accessed in any order.

3.6.4 Unnesting by joins

Let us return to our SPECTRAL_TABLE (Fig. 1).
How could we “flatten” this table in such a way that
the SUBSTANCE name is repeated for any of its
SPECTRA? Here is an answer:

(20.0) SELECT(|SUBSTANCE:x.SUBSTANCE,

(20.1) SPECTRUM:y 1>

(20.2) FROM x IN SPECTRAL_TABLE,
(20.3) y IN x.SPECTRA

In this kind of join, each element of the Cartesian
product in (20.2-3) is conceptually formed by a
complete top level tuple and one of its SPECTRA
tuples. This kind of join will sometimes be referred to
as “‘implicit join” (see also [29]).

A note is in place here on the Cartesian product
given by (20.2-3). Each single tuple x of
SPECTRAL_TABLE is—conceptually—replicated
as often as we have tuples in the SPECTRA field.
Therefore, the cardinality of the Cartesian product is
given by the total number of SPECTRA tuples.
Consequently, a tuple must be discarded if the SPEC-
TRA field is empty. This is in accordance with the
fact that a Cartesian product of two sets is empty if
at least one of the sets is empty.

Instead of using the implicit join feature, the result
of expression (20) could also be achieved by using the
DUNION (“distributed union” operation, see Sec-
tion 3.8.1):

(20.0') DUNION(

(20.I')  SELECT(

(202") SELECT(|SUBSTANCE:x.SUBSTANCE,
(20.3) SPECTRUM:y|>

(204) FROM y IN x.SPECTRA )

(20.5) FROM x IN SPECTRAL_TABLE )

It is felt, however, that this approach is less elegant
and also harder to understand.

3.6.5 Establishing hierarchies

In the previous example, the join served as a means
to flatten a hierarchy. The reverse effect can be
achieved as well. Let the flat table “FT" denote the
result of (20). From the table “FT", the contents of
SPECTRAL_TABLE are recovered as follows:

¢|SUBSTANCE: x.SUBSTANCE,

SPECTRA: (SELECT y.SPECTRUM
FROM y IN FT A
WHERE x.SUBSTANCE = y.SUBSTANCE)

-Obviously, expression (21) is not a typical join expres-

sion, but some new kind of nested query. However,
in analogy to its inverses (20) and (20), it seems quite
right to discuss this nesting feature along with join
operations.

3.6.6 Joins of general sets or lists

Up to now, we have dealt with joins of tables, only.
However, joins of general sets or lists make sense as

. well. This can be demonstrated by rewriting expres-

sion (14) in form of a join between vectors:

(22.0) SELECT

2.1 Vil

(22.2) FROM i IN INDL(F), j IN INDL(¥)
(22.3) WHERE i+1=j

(22.4) AND

(22.5) Vil < VIl

3.7. Ease-of-Use Constructs

3.7.1 Handling of context conditions: Masking in lists

By context conditions we denote conditions where
the relative position of certain list elements to each
other is important. We have already been confronted
with context conditions in Section 3.4 (example 14)
and in Section 3.6.6 (example 22).

An important class of context conditions is en-
countered with predicates on text fields. For instance,
let us assume that we look for all tuples in
SPECTRAL_TABLE, where the SUBSTANCE field
somewhere contains the character string ‘SALICILO’.
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Rather than writing

(23.0) SELECT x
(23.1) FROM x IN SPECTRAL_TABLE

(23.2) WHERE EXISTS (i IN INDL (x.SUBSTANCE):
i £ 1+ LEN(x.SUBSTANCE) — 8
AND
SUBLIST (i, 8, x.SUBSTANCE) = ‘SALICILO’)

(23.3)
(23.4)
(23.5)

(“INDL”, “SUBLIST”, “LEN” are explained in
Section 3.8.1), we simply write [24]
(24.0) SELECT x

(24.1) FROM x IN SPECTRAL_TABLE
(24.2) WHERE x.SUBSTANCE LIKE ‘«SALICILO#’

YLl

Here, *“#” represents 0, 1, or more characters, or in
more general terms, one or more arbitrary list ele-
ments.

In addition to the masking (or don’t care) symbol
“s", we also use the masking symbol “_". The latter
represents just one arbitrary list element.

Obviously, the masking technique of the LIKE
feature can be used in a more general way than
indicated in [24]. Assume “x” to be a list of author
names. If we want to ask, whether this list contains
two subsequent names, the first of which is
‘SCHULTZ’, whereas the second one must end by
‘MUELLER’, then this condition could be specified
as

(25) x LIKE(s, ‘SCHULTZ, ‘+MUELLER’, )

This generalized LIKE expression features multilevel
masking in nested lists.

3.7.2 Masking in sets and tuples

The masking technique can be further generalized
to simplify conditions on sets and tuples:

(30.0) SELECT y
(30.1) FROM y IN
(30.2)
(30.3)
(30.4)
(30.5)
(30.6)

we could write

(31.0) USE

(1.2
(31.3)

(31.4)

(1.5)

(31.6) IN

(31.7) SELECT y
(31.8) FROM y IN AUXTAB
(31.9) WHERE ».SUBSTANCE

For example, let “S™ denote a set of integers.
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Then,
(26) S LIKE {1, _}

tests, whether *“S™ contains exactly two elements, one
of which is “1”". In

(27) S LIKE {1, _, +} _
S must contain at least 2 elements, one of which is
‘61’!‘

With tuples, “_" denotes one field, “+” may be
used to denote trailing fields which need not be
checked. Thus, -

(28) T LIKE {_, _, 5I>

tests, whether a tuple “T” of length 3 contains “4”
as its last field value. Similarly,

(29) T LIKE {|‘ABC’, +>

tests “T” on ‘ABC’ in its first field, while all sub-
sequent fields are irrelevant for the test.

3.7.3 Common sub-expressions

If NF? structures have a deep nesting structure,
queries may contain a considerable number of sub-
queries. To avoid a negative impact on readability,
suitable subexpressions should be factored out. This
can be done by the USE construct, which is offered
in two variants.

In the first variant, USE provides the facility to
define auxiliary values. For example, instead of

(SELECT{|SUBSTANCE: x.SUBSTANCE,
SPECTRA:

(SELECT z
FROM z IN x.SPECTRA)

D
FROM x IN SPECTRAL_TABLE) -
(30.7) WHERE y.SUBSTANCE LIKE ‘AMINOs’

(31.1) AUXTAB = SELECT{|SUBSTANCE: x.SUBSTANCE,
SPECTRA:

(SELECT z
FROM z IN x.SPECTRA)

»
FROM x IN SPECTRAL_TABLE

LIKE ‘AMINO»’

Obviously, this feature is especially helpful in case of
common subexpressions.
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The second variant of USE allows one to specify
auxiliary functions, e.g. parametrized queries. As-
sume for instance that we ask for all substances
having at least one spectrum with water as solvent.
For the qualifying substances, we want to see only the
spectra with water as solvent. Using the features
discussed so far, we could specify:

(32.0) SELECT

(32.1)  (Jx.SUBSTANCE,

(32.2)  (SELECT z

(32.3) FROM z IN x.SPECTRA
(32.4) WHERE z.SOLVENT = ‘H,0")

(32.5) FROM x IN SPECTRAL_TABLE

(32.6) WHERE {}—=(SELECT y

(327 FROM y in x.SPECTRA
(32.8) WHERE y.SOLVENT = ‘H,0")

A more elegant way would be

(33.0) USE ‘
(33.1) F(solv, y) =SELECT %

(33.2) FROM z IN y.SPECTRA
(33.3) WHERE z. SOLVENT = solv
(33.4) IN

(33.5) SELECT

(33.6) {|x.SUBSTANCE,

(33.7) F(H,0", X))

(33.8) FROM x IN SPECTRAL_TABLE

(33.9) WHERE {}—=F(H,0’, x)

3.8 Other Query Operations

3.8.1 Operation primitives

This subsection summarizes primitive operations;
most of them have already been presented in the
preceding text. Where appropriate, the meaning of
the operations is given in terms of illustrative equal-
ities. Further detail about their semantics as well as
additional operations may be found in [28, 30, 35].

3.8.1.1 Operations on tuples.

(34.1) {] SOLVENT:‘H,0’, CONCENTRATION:10 |} (tuple construction)

Expressions (34.2) feature access to tuple field values. The expressions given here all return “10™ as result:

(34.2) (] ‘H,0, 10]>.2

{] SOLVENT:‘H,0’, CONCENTRATION: 10 |>.CONCENTRATION = 10
{| SOLVENT:‘H,0’, CONCENTRATION:10 |>.2
(34.3) STRIP (<] | |) = 1 = STRIP (¢| THE_LONLY_FIELD: 1 |})
(An alternative technique to access the value of a one-field tuple)
(34.4) (| FLI: I, F22 D I (| F3: 3 > = : :

{ Fl: 1, F2:2, F3: 3 |)
(Tuple concatenation)

3.8.1.2 Operations on lists.

(35.1) <1, 5, 8, 3, 7> (list construction)

(352) <1, 5,2>2]=5
(access to list elements by subscripting)

(35.3) INDL (1. 5, 2)) = (1, 2, 3) (index list generation)

(35.4) <1, 2>1<€2, 3> = (1, 2, 2, 3) (list concatenation)

(35.5) DCAT (K1, 2), (2, 3%)=<(1, 2, 2, 3)
(distributed concatenation)

(35.6) SUBLIST (2, 31, 2, 3, 4,5, 6)) =2, 3, 4)
(extraction of sublists)

(35.7) STRIP (1)) =1
(an alternative way of accessing the element of a
one-element list)

(35.8) ELEMS (€1, 1, 2,2, 4,0>) = {1, 2, 4, 0}

(35.9) LEN ({1, 2, 3, 3)) = 4 (returns the length of a list)

3.8.1.3 Operations on sets
(36.1) {1, 2, 5, 8} (set construction)
(36.2) {1, 2} UNION {2, 3, 4} ={1, 2, 3, 4} (set union)
(36.3) {1, 2} INTERSECT {2, 3} = {2} (set intersection)
(36.4) {2, 3, 4} MINUS {2} ={3, 4} (set difference)
(36.5) ELEMS (MLIST ({1, 2, 3, 4})) = {1, 2, 3, 4}
(MLIST takes a set and returns a list;the system is
allowed to return the input elements in any order)
(36.6) DUNION ({{1, 2}, {2, 3}, (3. 4} ={1. 2, 3, 4}
(distributed union {40])
(36.7) STRIP ({i}h) =1
(returns the element of a single-element set)
(36.8) CARD ({1, 2, 3}) =3
(returns number of set elements)

3.8.2 Ordering, grouping
The ORDER operation is restricted to lists. For
instance,

(37) ORDER x IN (1, 3,2, 5, 0) BY x ASC

returns
{0,1,2,3,5>
Ordering may be performed on any value derivable

from the list elements which is suitable to define
order, e.g.

(38) ORDER x IN SPECTRAL_TABLE_L
BY CARD (x.SPECTRA) DESC
or

(39) ORDER x IN (1, 2, €0, 13, <5, 3>
BY SUM (x) ASC

In the last example, the sublist sums (1, 3, and 8,
respectively) and are used to produce

€0, 1D, (1, 2X¢5, 3»

=10

=10

An operation with similar syntactical structure is the
grouping operation. It takes a set or list and par-
titions it into subsets and sublists, respectively. For
instance,

(40) GROUP x IN {11,213, <12, 51, <11 1D} BY x.1
returns
@0 {2, AL DL {42 5D

When the GROUP operation is applied on a set, the
result may be undone by DUNION. With lists,
however, such a pair of operations does not exist. If
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GROUP is applied on a list, a subsequent DCAT
operation may return any permutation of the original
list.

The effect of GROUPing can also be obtained by
a SELECT expression: Instead of (40), we have (using
S={L 2D, <12, 5D, <11, 1D}

(42.0) SELECT (SELECT »

@2.1) FROM yIN §

(42.2) WHERE x.1 = y.1)
(42.3) FROM x IN §

One should note the similarity of (42) with the nesting
operation (21). While being semantically equivalent
to (40), it is felt, however, that expression (40) is more
transparent than expression (42). It might also be
simpler to optimize the evaluation of GROUP ex-
pressions rather than their SELECT equivalents.

3.8.3 Quantified Boolean expressions

In our query language, Boolean expressions mainly
serve as filtering or restriction conditions {see, e.g. (7)
or (8)]. Boolean expressions can be roughly sub-
divided into three categories,

(a) comparison expressions,
(b) prefixed and infix Boolean expressions,
(c) quantified Boolean expressions.

Examples of comparison expressions are

“ordinary”
B=0C),

set comparison operations {(e.g. A SUBSET_OF B,
I ELEMENT_OF A),

LIKE comparison operations (see Section 3.2.7).

comparison operations (e.g. 17 =35,

Category (b) involves negations and the Boolean
operators “AND” and “OR” [e.g. (22)].

Examples for quantified Boolean expressions have
already been given in (8), (9), and (23). Here, we shall
briefly describe further types of quantified expres-
sions.

While

(43.1) EXISTS xx in x.SPECTRA:
(43.2) xx.SOLVENT = ‘C,H,0H’

is true if at least one item ‘xx” meets condition (43.2),
the following expression

(44.1) FOR_ALL xx in x.SPECTRA:
(44.2) xx.SOLVENT = ‘C,H,OH’

means that (44.2) must be met by a/l items ‘xx’ of
‘x.SPECTRA".

Between these two extremes, we offer the possi-
bility of stating that exactly N [see (45), e.g. N = 5],
at least N [see (46)], or at most N [sce (47)] items must
meet a certain condition:

(45.1) EXIST (EXACTLY 5) xx IN x.SPECTRA:
45.2) xx.SOLVENT = 'C,H,0H’

(46.1) EXIST (AT_LEAST 5) xx IN x.SPECTRA:
(46.2) xx.SOLVENT = ‘C,H,0H’

P. PisTOR and R. TRAUNMUELLER

(47.1) EXIST (AT_MOST 5) xx IN x.SPECTRA: B
412) xx.SOLVENT = 'C,H,0H"

4. DATA MANIPULATION FACILITIES

Data manipulation facilities (DMF) operations
comprise

deletion operations,
insertion operations,
update operations.

DMF operations can further be subdivided into basic
DMF operations and compound DMF operations.
The distinction is most readily explained with delete
operations.

4.1 Delete Operations

Delete operations are intended to remove set or list
elements. B

Assume some list “L”. If we want to erase the
second element—assuming of course the length of L
is not smaller than 2—we can achieve this by

(48) DELETE Lf2]

The operation is an example of a basic deletion
operation; it mainly consists of two parts, the key-
word (here: DELETE) and the denotation of the
object to be deleted (here: the second element of
“L”). This mechanism is not able, however, to ad-
dress set or list elements by their contents. For
example, we cannot remove all negative items. For
that end, a compound operation, the “FOR_EACH”
construct, is provided:

(49.0) FOR_EACH

(49.1) x IN L WHERE x <0

(49.2) DO

(49.3) DELETE x
(49.4) END

It enables one to associatively address [see (49.1)] the
components of a data base object which are to be
operated upon. The operation itself is specified in the
DO-END part [see (49.249.4)]. In the DO-END
part, we may encounter primitive DMF operations,
as in (49.3), or again a FOR_EACH operation. The
latter possibility enables one to delete lower level set
or list elements, as in

(50.0) FOR_EACH
(50.1) item IN SPECTRAL_TABLE

(50.2) DO

(50.3) FOR_EACH

(50.4) spectrum IN item. SPECTRA

(50.5) WHERE spectrum. SOLVENT = 'H,0’
(50.6) DO

(50.7) DELETE spectrum

(50.8) END

(50.9) END

In (50), no top level tuple is removed from the
SPECTRAL_TABLE. Instead, only tuples of the
SPECTRA field are deleted, provided they are asso-
ciated with the SOLVENT “‘water”.



A database language for sets, lists and tables 329

<RES_Q18>

Al A2 A3 Al

1
1
2

[¢-RC,RV,]
W
W W

Fig. 5. “RES_QI8": Result of join operation (18). Different
from Fig. 3, this table represents a list of tuples. Therefore,
order is important.

1. If at least one list is involved in the FROM-clause,
the result is a list.

2. The order of the_result elements is only partly
determined, ifiot all of the operands in the
FROM-clause are lists.

3. If at least one list is involved in the FROM-clause,
then the FROM-clause rmust be evaluated from left

(21.0) SELECT
QLD

(21.2)

(21.3)

(21.4)

(2L.5) D
(21.6) FROM x IN FT

to right, such that for any two operands (e.g.
TAB_L1, TAB_S1) the iteration is slower for the
left one (“‘outer loop™), and faster for the right one
(“inner loop™).

4. List elements are accessed in list order, set elements
are accessed in any order.

3.6.4 Unnesting by joins

Let us return to our SPECTRAL_TABLE (Fig. 1).

How could we “flatten” this table in such a way that
the SUBSTANCE name is repeated for any of its
SPECTRA? Here is an answer:

(20.0) SELECT (|SUBSTANCE:x.SUBSTANCE,
(20.1) SPECTRUM:y

(20.2) FROM x IN SPECTRAL_TABLE,
(20.3) y IN x.SPECTRA

In this kind of join, each element of the Cartesian
product in (20.2-3) is conceptually formed by a
complete top level tuple and one of its SPECTRA
tuples. This kind of join will sometimes be referred to
as “implicit join” (see also [29]).

A note is in place here on the Cartesian product
given by (20.2-3). Each single tuple x of
SPECTRAL_TABLE is—conceptually—replicated
as often as we have tuples in the SPECTRA field.
Therefore, the cardinality of the Cartesian product is
given by the total number of SPECTRA tuples.
Consequently, a tuple must be discarded if the SPEC-
TRA field is empty. This is in accordance with the
fact that a Cartesian product of two sets is empty if
at least one of the sets is empty.

Instead of using the implicit join feature, the result
of expression (20) could also be achieved by using the
DUNION (“distributed union™ operation, see Sec-
tion 3.8.1):

(20.0) DUNION(

(20.1") SELECT(

(20.2") SELECT(|SUBSTANCE:x. SUBSTANCE,
(20.3) SPECTRUM:»|>

(20.4°) FROM y IN x.SPECTRA )

(20.5) FROM x IN SPECTRAL_TABLE )

It is felt, however, that this approach is less elegant
and also harder to understand.

3.6.5 Establishing hierarchies

In the previous example, the join served as a means
to flatten a hierarchy. The reverse effect can be
achieved as well. Let the flat table “FT” denote the
result of (20). From the table “FT”, the contents of
SPECTRAL_TABLE are recovered as follows:

{ISUBSTANCE: x.SUBSTANCE,

SPECTRA: (SELECT y.SPECTRUM
FROM y IN FT _
WHERE x.SUBSTANCE = y.SUBSTAXCE)

‘Obviously, expression (21) is not a typical join expres-

sion, but some new kind of nested query. However,
in analogy to its inverses (20) and (20"), it seems quite
right to discuss this nesting feature along with join
operations.

3.6.6 Joins of general sets or lists

Up to now, we have dealt with joins of tables, only.
However, joins of general sets or lists make sense as
well. This can be demonstrated by rewriting expres-
sion (14) in form of a join between vectors:

(22.0) SELECT

(22.1) 40

(22.2) FROM i IN INDL(V), j IN INDL(V)
(22.3) WHERE i+1=j

(2.4 AND

(22.5) Vii} < V]

3.7. Ease-of-Use Constructs

3.7.1 Handling of context conditions: Masking in lists

By context conditions we denote conditions where
the relative position of certain list elements to each
other is important. We have already been confronted
with context conditions in Section 3.4 (example 14)
and in Section 3.6.6 (example 22).

An important class of context conditions is en-
countered with predicates on text fields. For instance,
let us assume that we look for all tuples in
SPECTRAL_TABLE, where the SUBSTANCE field
somewhere contains the character string ‘SALICILO".
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Rather than writing

(23.0) SELECT x

(23.1) FROM x IN SPECTRAL_TABLE
(23.2) WHERE EXISTS (i IN INDL (x.SUBSTANCE):
i <1+ LEN(x.SUBSTANCE) — 8
AND
SUBLIST (i, 8, x.SUBSTANCE) = ‘SALICILO’)

(23.3)
(23.4)
(23.5)

(“INDL”, “SUBLIST”, “LEN” are explained in
Section 3.8.1), we simply write [24]
(24.0) SELECT x

(24.1) FROM x IN SPECTRAL_TABLE
(24.2) WHERE x.SUBSTANCE LIKE ‘sSALICILO«’

9

Here, “+” represents 0, 1, or more characters, or in
more general terms, one or more arbitrary list ele-
ments.

In addition to the masking (or don’t care) symbol
“»”, we also use the masking symbol “_". The latter
represents just one arbitrary list element.

Obviously, the masking technique of the LIKE
feature can be used in a more general way than
indicated in [24]. Assume “x” to be a list of author
names. If we want to ask, whether this list contains
two subsequent names, the first of which is
‘SCHULTZ’, whereas the second one must end by
‘MUELLER’, then this condition could be specified
as

(25) x LIKE(+, ‘SCHULTZ’, ‘** MUELLER’,*)

This generalized LIKE expression features multilevel
masking in nested lists.

3.7.2 Masking in sets and tuples

The masking technique can be further generalized
to simplify conditions on sets and tuples:

(30.0) SELECT y
(30.1) FROM y IN
(30.2)
(30.3)
(30.4)
(30.5)
(30.6)

we could write

(31.0) USE

(31.2)

(31.3)

(31.4)

(31.5)

(31.6) IN

(31.7) SELECT y

For example, let “S™ denote a set of integers.
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Then,
(26) S LIKE {1, _}

tests, whether “S”’ contains exactly two elements, one
of which is “1”. In

(27) S LIKE {1, _, +}

S must contain at least 2 elements, one of which is
l‘l”.

With tuples, “_" denotes one field, “*” may be
used to denote trailing fields which need not be
checked. Thus,

(28) T LIKE (L, _, 5

tests, whether a tuple “7” of length 3 contains “4”
as its last field value. Similarly,

(29) T LIKE {J‘ABC, #>

tests “7” on ‘ABC’ in its first field, while all sub-
sequent fields are irrelevant for the test.

3.7.3 Common sub-expressions

If NF? structures have a deep nesting structure,
queries may contain a considerable number of sub-
queries. To avoid a negative impact on readability,
suitable subexpressions should be factored out. This
can be done by the USE construct, which is offered
in two variants.

In the first variant, USE provides the facility to
define auxiliary values. For example, instead of

(SELECT{jSUBSTANCE: x.SUBSTANCE,

SPECTRA: (SELECT 2

FROM z IN x.SPECTRA)

)
FROM x IN SPECTRAL_TABLE) -
(30.7) WHERE y.SUBSTANCE LIKE ‘AMINO«’

(31.1) AUXTAB = SELECT(|SUBSTANCE: x.SUBSTANCE,
SPECTRA:

(SELECT ¢
FROM z IN x.SPECTRA)

>
FROM x IN SPECTRAL_TABLE

(31.8) FROM y IN AUXTAB
(31.9) WHERE y.SUBSTANCE LIKE ‘AMINOs’

Obviously, this feature is especially helpful in case of
common subexpressions.
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4.2 Insertion Operations

We distinguish two types of basic insertion oper-
ations,

insertion into sets (INSERT),
insertion into lists (EXTEND).

With list insertions, the user is requested to specify
not only the values of the elements to be inserted [see
51.1) below}, but also the position where these ele-
ments shall go (51.2):

(51.0) EXTEND L
(51.1) WITH (5, 6
(51.2) AFTER 3

With sets, posmon"l “information would be meaning-
less. Adding the ¥alues 5 and 6 to a set S of i integers
is simply achieved by

(52.1) INSERT {5, 6}  *__

(522) INTO S =
Again, insertion requires a FOR_EACH variant, if
we want to add new elements to lower level sets or
lists in objects like SPECTRAL_TABLEf:

(53.0) FOR_EACH item IN SPECTRAL_TABLE

(53.1) WHERE item.SUBSTANCE = ‘ASPIRIN’
(53.2) DO INSERT

(53.3) I'CH;0H%, 100, {10, 1, O D D
(53.4)  INTO item.SPECTRA
(53.5) END

Here, a new tuple is added to the SPECTRA field of
the ‘ASPIRIN’ entry.

In the previous examples [compare (51.1), (52.1),
(53.3)], the values of the new items have been
specified as user defined constants. Alternatively,
these values may be specified by a query, provided the
query results in a single element or in a list (set) of
elements compatible with the receiving list (set).

4.3 Update (or Assignment) Operations

While deletion and insertion operations are appli-
cable for sets and list only, new values may be
assigned to objects of any type, e.g.

(54) L[1]): =6 (assigns 5 to first item of L)

(55) SPECTRAL_TABLE: = {}
(removes all entries from SPECTRAL_TABLE by
overwriting the contents by an empty set)

Again, the FOR_EACH construct is needed to
specify objects that cannot be directly addressed. A
first example increases by 10% every element of S
which is larger than 5:

(56.0) FOR_.EACH xIN §

(56.1) WHERE x>5
(56.2) DO x: = x=*1.1 END

A second example shows updates of lower level
elements in a non-flat table. For every tupel in the

tFor simplicity reasons, the spectral values have been
specified by an empty vector “{)" in (53.3).

SPECTRAL_TABLE, we want to update every tuple
of the SPECTRA field:

(57.0) FOR_EACH item IN SPECTRAL_TABLE

(¢57.1) DO

(57.2) FOR_EACH spectrum IN item.SPECTRA
(57.3) DO

(57.4) spectrum.S_GRAPH.START: = 0.0;
(57.9) spectrum.S_GRAPH.STEPW: = 5.0
(57.6) END

(57.7) END

Note that the DO-END-block (57.3—6) of the inner
FOR_EACH embraces two basic update operations.
This block feature is especially useful, if several fields
of a tuple have to be updated. Of course, such an
operation sequence can be understood as another
compound DMF operation.

4.4 Keeping Intermediate Results
Consider the subsequent assignment statement:
(58.0) RESULT: =

(58.1) SELECT x

(582) FROM x IN SPECTRAL_TABLE
(58.3) WHERE (EXISTS xx IN x.SPECTRA:
(58.4) xx.SOLVENT = ‘C,H,0H")

If RESULT has explicitly been. declared in advance
(see Section 2.2), statement {58) will be accepted if its
elements (i.e. tuples) have the same type as the tuples
resulting from (58.1-4).

On the other hand, RESULT needs not necessarily
be declared explicitly since the necessary type infor-
mation can be deduced from (58.1-4).

We propose to exploit these facts in the following
way: If the target of an assignment has not been
declared explicitly, the lifetime of the target will end
with the current data base session.

This proposal complements the USE construct
discussed in Section 3.7.3. While the USE feature
should be used for intermediate values which are
exclusively used in the scope of the USE construct,
the generation of a temporary object by assignment
is preferred for intermediate data to be repeatedly
used in different scopes.

5. CONCLUSIONS

In this paper an SQL-like langugage for an ex-
tended NF? data model has been presented. It is the
intention of this data model to provide appropriate
data structures for applications which cannot be
supported in a natural way by the classical relational
approach. Obviously, those data structures require a
richer repertoire of operations for manipulation.
However, it can be shown [31] that the necessary
extensions of traditional language concepts does not
increase the complexity of simple operations on sim-
ple INF data structures. On the other hand. when
applications require complex NF? structures, the
corresponding operations remain manageable; when
using simple structures instead, complexity of
operations may even be increased [13, 31].
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Contrasted with other proposals (e.g. [32, 33]) our
extension of SQL can be considered as a more
evolutionary approach, the potential of which has
not even been fully exploited yet. For instance,

@ Additional basic data types (e.g. “reference”
type)

@ Additional primitive operations

@ More liberal syntax (e.g. mandatory use of free
identifiers only in case of ambiguities)

@ Generalized projection facilities using a result
scheme specification (e.g. [19])

® Grouping and ordering operations
enhanced reformatting facilities

@ Multilevel nesting and unnesting operations
(e.g. [19D)

are worthwhile for consideration. In addition to these
“usability” extensions, further model extensions
proper are attractive, too. The “reference” data type
[8, 34], for instance, is not only a handy means to
support n:m relationships, but it also provides a
considerable potential for model extensions, e.g. with
respect to recursive (rather than nested) data struc-
tures. Of course, extensions of this type require
appropriate operations (see [30, 35]), e.g. transitive
closure operations, or operations avoiding excessive
explicit join specifications. A further non-trivial ex-
tension would be provided by the non-atomic data
type “multiset” [36]. Its merits should be obvious and
need not be discussed here.

In the last few years, treatment of time in DBMS
has become popular (e.g. [37]). While the extended
NF? model offers quite comfortable facilities to han-
dle different time aspects (e.g. lists to model histories
of attribute values), an NF? model with system
controlled time support is even more attractive.

A project group of the IBM Heidelberg Scientific
Center has been involved for 3 years in the imple-
mentation of an experimental DBMS [38, 39], which
is intended to support not only the extended NF?
model as presented in Section 2, but also to adopt
some of the ideas (e.g. time support) mentioned in the
previous paragraphs.
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{general-expr)

APPENDIX A

Syntax Overview
For the language proposed in this paper, we present a
simplified syntax here. It straightforwardly transliterates a
subset of the abstract syntax as specified in [28). The
presentation emphasizes readability rather than rigor.

Al. Data Definition Facilities

{ddl-stmt) :: = CREATE OBJECT <(obj-name)
{type-def>

(type-def) :: = (basic-type)|{comp-type)

{basic-type) :: = {num-type)>|S_CHAR|BOOL

{num-type) ::=INTEGER|...

{comp-type) <1 = {set-type) | (list-type i {tuple-type>

{set-type) =" (type-def) [*,” “("(integer)

{VAR]) “}”
:: = {g-list-type| ) {char-list-type)
:=CHAR [*(" (integer) [VAR}*)"}
= ¢ Ctypesdef %, “(" (integer)
[VAR] "] 5"
= u<|n <ﬁeld'5pec> [{u,"
spec)}*] “P”
11 = [{field-id) “”] (type-del)

A2. Data Manipulation Facilities

(list-type)
{char-list-type)
{g-list-type)
{tuple-type) (field-

(field-spec)

{dml-stmt) :: = {for-each)[{delete ) { {update }|
(insert)|{extend|{}block)

(insert) 1: = INSERT (expr) INTO (obj-expr)

{obj-expr) :: = {id)|{index-expr)

{extend) :: = EXTEND (obj-expr) WITH
(list-expr)
(BEFORE|AFTER){num-expr)

{delete) ::=DELETE <{obj-expr)

(for-each) :: =FOR_EACH free-id ) IN (Is-expr)
[WHERE{bool-expr)]{dml-stmt}

{update) :: = {obj-expr) “:="" {expr)

{block> :: = (block-elem) {*;" (block-elem>}*

{block-elem) :: = {for-each)|<{delete | Cupdate)|

(insert )| {extend)
A3. Query Facilities

12 = (list-expr) | {tuple-expr)|
{set-expr){{num-expr)|{char-
expr) |[{bool-expr) |{use-expr)

11 = (id)|(index-expr)|{query}|
{group)|{apply-fct)

:: = {indexed-list-expr)|
{indexed-tuple-expr)

:: = (field-id | {num-const)

1+ = (list-expr)|{set-expry

Cexpr)

{index-expr)

(field-den)>
(Is-expr)

A3.1 group and select expressions

{query) :: = SELECT (expr) FROM
{from-expr-list)
[WHERE (bool-expr)]

i = (from-expry {*," (from-expr)}*

i1 = (free-id) IN (Is-expr)

.+ = GROUP (free-id) IN (ls-expr)
BY (expr-list)

{from-expr-list)
{from-expr)
{group)

A3.2 List related expressions

(list-expr) :: = ¢{m-list) | order-by )| {cat)}
(l-conslr)l(sublisl)l(d—cat>|
{general-expr)
{m-list) 2= MLIST (" {set-expr) )"
(eat) o+ = (list-expr) “||"(list-expr)
{d-cat) 1= DCAT “(” (list-expr) “)"
{l-constr) sr= o Cexpr-list) U O
“ef{char-const)}*™
{expr-list) 1= Cexpr) {*," (expr)}*
{sublist) .1 =SUBLIST “(" (list-expr) *,"

(start-pos) *,” (len) “y
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{start-pos) 1= (num-expr)

(len) 11 = {num-expr)

{order-by) :: = ORDER (free-id) IN (list-expr)
BY (order-spec){*, ¢order-spec)}*

{order-spec) :: = (num-expr) [DESC]

{indexed-list-expr) ::= (list-expr) “[” {num-expr) “I*

A3.3 Tuple related expressions

{tuple-expr) :: = {t-constr|{t-cat)|(general-expr)

{t-constr) s=%(|" (field-expr) {“,”
{field-expr)}* “[>”

{field-expr) i = [(field-id) “:"} {expr)

(t-cat) :: = (tuple-expr) “||” {tuple-expr)

{indexed-tuple-expr):: = {tuple-expr) “.”
{field-den)

A3.4 Set related expressions

{set-expr) = {elems) | {union)|{intersect)|
{d-union)|{minus)|{s-constr)|
{general-expr)
(elems) ::=ELEMS “(" (list-expr) “)”
{union) 11 = (set-expr) UNION (set-expr)
{intersect) 11 = (set-expr)INTERSECT (set-expr)
{d-union) =DUNION “(* {set-expr) “)”
{minus) = (set-expr) MINUS (set-expr)
{s-constr) ={" Cexpr-list) “}"{“{" “}"

A3.5 Numeric and character expressions

{num-expr) .1 = {infix-num-expr) |
{prefix-num-expr) | {(num-cost)|
{general-expr)

{num-expr) num-op {nuUm-expr)
g | e

“~" (num-expr)|

“+ " (num-expr)

{infix-num-expr)
{num-op)
{prefix-num-expr)

{num-const) 11 = (integer)|...
{char-expr) :: = {char-const) | {general-expr)
{char-const) = A|B|C]...

A3.6 Boolean and masking expressions

{bool-expr) :: = (quant-b-expr)| {neg-b-expr)|
infix-b-expr) | {primary-b-expr)|
{general-expr)

11 =NOT {(bool-expr)

11 = (bool-expr) {infix-bool-op)
{bool-expr)

::=AND|OR

:: = (quantor) {from-expr-list)
“:” (bool-expr)

:: = FOR_ALL|EXISTS
EXIST “(" EXACTLY
{num-const) *)”
EXIST “(” AT_-LEAST
{num-const) “)"”
|EXIST “(" AT-MOST.
{num-const) *)"

{neg-b-expr)
{infix-b-expr)

{infix-bool-op)
{quant-b-expr)

{quantor)

11 = (set-comp)| {equality|
{nn-comp)|{bool-const}|
(template-expr)

{primary-b-expr)

{nn-comp) 12 = {num-expr) {comp-op>
{num-expr)

¢comp-op) N NN

{equality) :: = {expr) {eq-op) {expr)

¢eq-op) ==

{set-comp) = {elemof) | (subset)

{elemof) . :: = {expr) ELEMENT_OF {set-expr)

{subset) 11 = (set-expr) {set-comp-op)
{set-expr)

{set-comp-op) :: = SUBSET_OF|SUPERSET_OF|
P_SUBSET_OF|

P_SUPERSET_OF

:: = ¢expr) LIKE (template)

:: = (list-template) | (set-template)|
{tuple-template)

11 =" (template-elem-list) -
QT
“*(string-template)

{template-elem-list) :: = (template-elem) {*,”
(template-elem)}*

:: = (template) | {dontcare )| {expr)

1= {{cchar)}* =

:: = {char-const) | {dontcare)

;=" (template-elem-list) “}”|"{"

6o

(template-expr)
(template)

(list-template)

se9ry

{template-elem)
{string-template)
{c-char)
{set-template)

{tuple-template)
{dontcare)
{bool-const)

1r=" (template-elem-list) “[>”

G o peszigieRr

:: = TRUE|FALSE

A3.7 Use and function expressions

{use-expr) 11 = USE (use-def) {“,” (use-def) }*
IN {expr)
(use-def) :: = {interm-fact) [{interm-dat)

{interm-dat)
{interm-fct)

o= {freeid) * =" (expr)
:: = userdef-fct-id) (" (form-
param-list) )" “="" {expr)
:: = {form-param-list)
{*,” (form-param) }*
= (id)
o= (fet-id) *“(* {act-param)
{ > {act-param)}* *)”
:: = (built-in) | {userdef-fct-id)
:+=STRIP|LEN{CARDJINDL]...
::=“not further specified”

{form-param-list)

{form-param}
{apply-fact

Lfet-id)

{built-in)>
(userdef-fet-id)

A4. Numerals and Identifiers

{obj-name) 1=(id)
(free-id) =J(id)
(field-id) —n=(id)
(Gd) 11 ="not further specified”
(integer = *not further specified”



