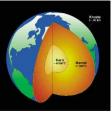


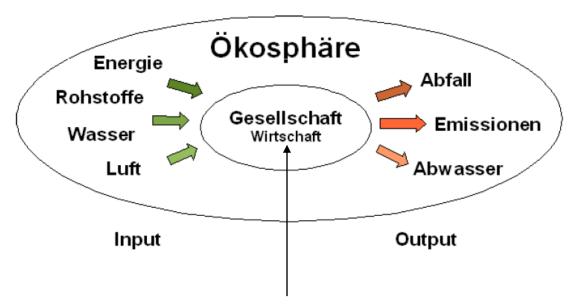
ulm university universität UUIM

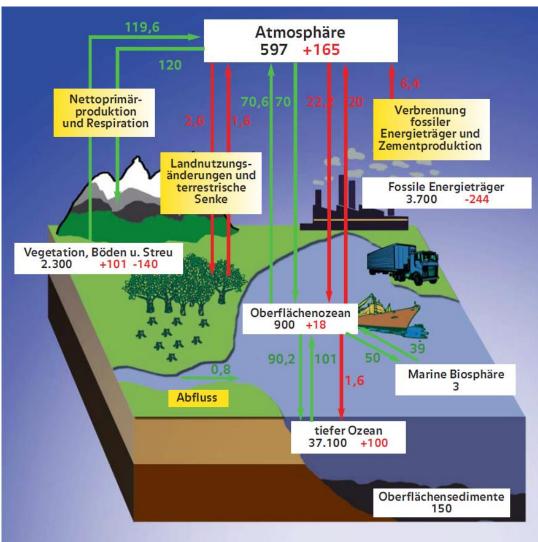

Klima & Energie

Teil 1: Einführung Klimathematik: Ursachen, Folgen, Konferenzen

Inhalt

- Einführung
 - Umwelt, Energie, Gesellschaft
 - Ökosphäre, Kohlenstoffkreislauf
- Treibhausgase
- Klimawandel
 - CO2-Konzentration
 - Erderwärmung
 - Natürlich und Anthropogen
 - Verursacher
 - "Kipp-Elemente" und Folgen
 - Szenarien
- Klimakonferenzen
 - Kyoto-Protokoll
 - Kopenhagen



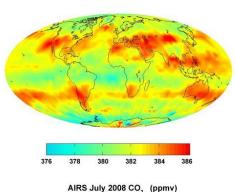

Einführung: Umwelt, Energie, Gesellschaft

- Umwelt im Sinne der Ökosphäre (Gesamtheit des globalen Systems)
- Ressourcen aus der Umwelt, die der Mensch nutzt
- Faktor Mensch mit völliger Abhängigkeit von seiner Umwelt

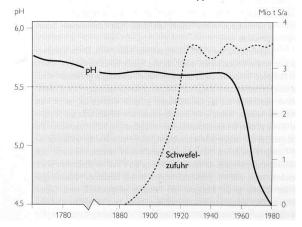
Superorganismus Menschheit (Anthroposphäre)

Einführung: Ökosphäre - Kohlenstoffkreislauf

Die Abbildung zeigt die Kohlenstoffreservoire (weiße Felder), die natürlichen Kohlenstoffflüsse (grüne Pfeile) und die Flüsse, die durch anthropogene Störungen verursacht werden (rote Pfeile) pro Jahr. Alle Angaben in Gigatonnen Kohlenstoff (GtC).


Die Flüsse zwischen Atmosphäre und Ozean sowie Atmosphäre und Landvegetation sind durchschnittliche Jahresnettowerte für die 1990er Jahre.

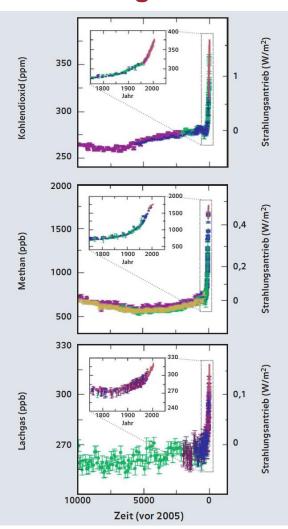
$$(101+165+18+100) = 384$$
$$-(140+244) = -(384)$$
$$= 0$$


[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach: http://www.hamburger-bildungsserver. de/welcome.phtml?unten=/klima/treibhaus/)]

Einführung: Ökosphäre – Output

 Neben- bzw. Abfallprodukte durch Verbrennung fossiler Energieträger (Braun- und Steinkohle, Erdöl, Erdgas)

- Großflächige Änderung der Landnutzung (Waldrodung, Viehwirtschaft, Reisanbau)
- Industrielle Prozesse
- Ökosysteme neigen zu "Grenzübergängen"
 - z.B. Großer Elchsee ("Big Elk See"): starke Sättigung mit Schwefel durch sauren Regen; nach langer Phase einer Pufferung, plötzlicher Abfall des pH Wertes



Einige Treibhausgase und deren CO₂-Äquivalent

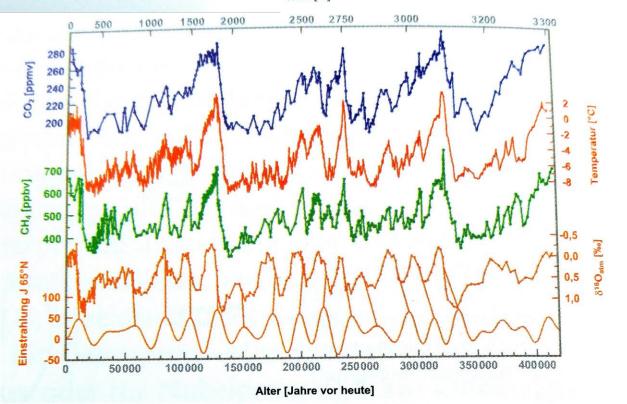
Spurengas	Anthropogene Herkunft	Derzeitige (und vorindustrielle) Konzentration	Konzentrations- anstieg pro Jahr	Anteil am anthropogenen Treibhauseffekt (seit 1750)	Treibhaus- potential pro Teilchen, CO ₂ = 1
Kohlendioxid (CO ₂)	Verbrennung fossiler Energien; Waldrodungen und Bodenerosion; Holzverbrennung	ca. 379 (280) ppm	1,5 ppm	60%	1
Methan (CH ₄)	Reisanbau; Viehhaltung; Erdgaslecks; Verbrennung von Biomasse; Mülldeponien; Nutzung fossiler Energien	ca. 1774 ppb (730 ppb)	-5 bis +5 ppb	15 %	ca. 23
Ozon (O ₃)	Wird indirekt gebildet durch fotochemische Reaktionen; Verbrennung fossiler Energieträger durch Verkehrsmittel	ca. 0,02 ppm in Troposphäre (regional unterschiedlich) (kleiner 0,01)	unklarer Trend	8 %	ca. 2.000
Distickstoffoxid (N ₂ O, Lachgas)	Verbrennen von Biomasse und fossilen Energieträgern; Düngemitteleinsatz	319 (270) ppb	0,8 ppb	4 %	ca. 200-300
Fluorchlorkoh- lenwasserstoffe (FCKW)	Treibmittel in Sprühdosen; Beimengung im Leitungs- system von Kühlaggregaten, Isoliermaterial, Reinigungsmittel	ca. 0,005 (0) ppm	tendenziell Rückgang	11%	ca. 14.000
Wasserdampf (H ₂ O)	Verbrennungsprozesse: hochfliegende Flugzeuge (führt zu Kondensstreifen und Zirruswolken)	0,2 - 0,3 ppm in Troposphäre (regional unterschiedlich)	k. A.	< 3 %	k. A.

ppm (parts per million): Teilchen pro Million; ppb (parts per billion): Teilchen pro Milliarde Quellen: IPCC 2007a, Jacobeit 2007, Hamburger Bildungsserver 2007

Atmosphärische Konzentration einiger Treibhausgase und Strahlungsantrieb

Klimafaktor	Strahlungsantrieb	Signal ¹⁵	Signalstruktur
Treibhausgase, TR (a)	2,07 bis 2,53 W/m ²	0,9 bis 1,3 °C	Progressiver Trend
Sulfataerosol, SU (a)	-0,1 bis -0,9 W/m ²	-0,2 bis -0,4 °C	Uneinheitl. Trend
Kombiniert, TR + SU (a)	1,8 bis 2,43 W/m ²	0,5 bis 0,7 °C	Uneinheitl. Trend
Vulkaneruptionen	max1 bis -3 W/m ^{2*}	-0,1 bis -0,2 °C	Episodisch (1-3 Jahre)
Sonnenaktivität	0,06 bis 0,3 W/m ²	0,1 bis 0,2 °C	Fluktuativ (+ Trend)
El Niño/Southern Oscillation	-	0,2 bis 0,3 °C	Episodisch

(a) anthropogen, * Pinatubo-Ausbruch 1991: 2,4 W/m², 1992: 3,2 W/m², 1993: 0,9 W/m²


Strahlungsantrieb:

Beschreibung externer Störung der Strahlungsbilanz des Klimasystems der Erde

Zusammenhang Energie & Klima

Abbildung 6: Temperatur (rot), CO₂ (Kohlendioxid, blau) und CH₄-Kurven (Methan, grün) in den zurückliegenden 420 000 Jahren gemäß dem Vostok-Eisbohrkern, plus Sonneneinstrahlung im Juni beim 65. Grad nördlicher Breite (ganz unten, orange). Die entsprechende Tiefe des Bohrkerns ist auf der oberen horizontalen Achse gekennzeichnet, das entsprechende Alter des Eises auf der unteren Achse (vgl. S.51).

Zusammenhang Energie & Klima

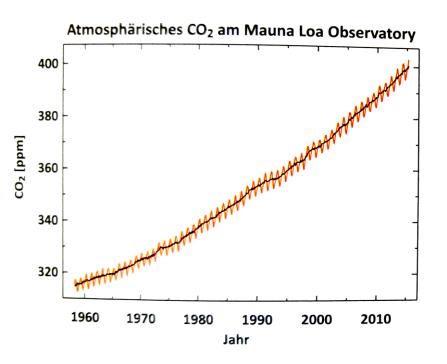


Abbildung 7: Die »Keeling-Kurve«, gemessen am Mauna Loa Observatory auf Hawaii. Diese seit 1958 kontinuierlich erhobenen Aufzeichnungen des CO₂-Gehalts der Luft belegen den Anstieg von 317 ppmv zu Beginn der Messungen auf über 400 ppmv heute (Stand Mai 2015). Die schwarze Kurve gleicht die in der roten Kurve sichtbaren jahreszeitlichen Schwankungen, bedingt durch das »Atmen« der Biosphäre, aus (vgl. S. 71).

Erderwärmung um ca. +1C⁰ innerhalb letztes Jahrhundert

Abbildung 8: Gleitendes 12-Monats-Mittel der globalen Oberflächentemperatur seit 1880 (einschließlich April 2015). Genau gesehen ist die »Temperaturanomalie« abgebildet, also die Abweichung vom Durchschnittswert der Periode 1951–1980 (vgl. S.81).

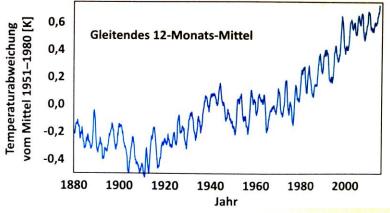
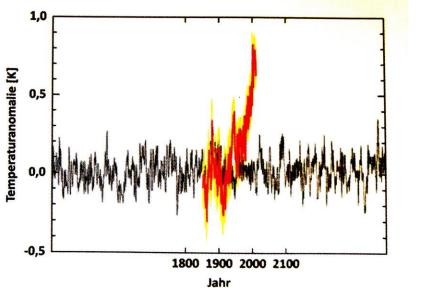
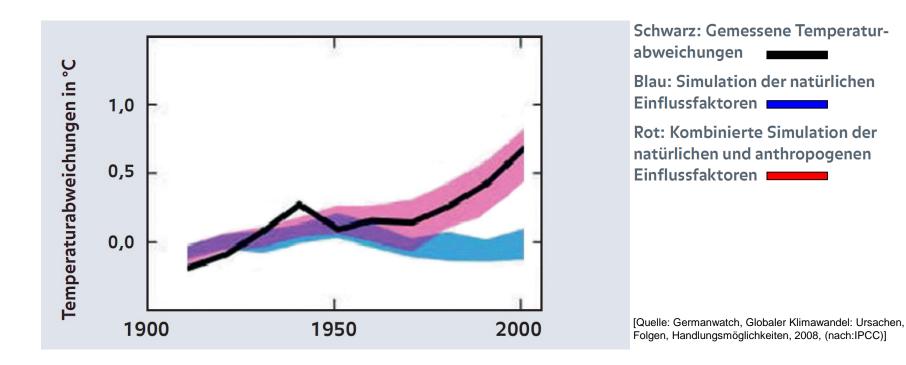
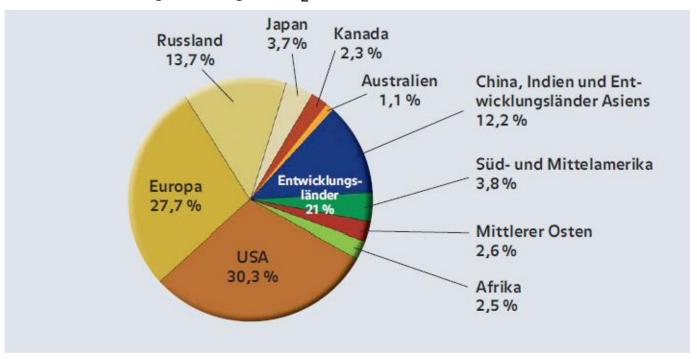
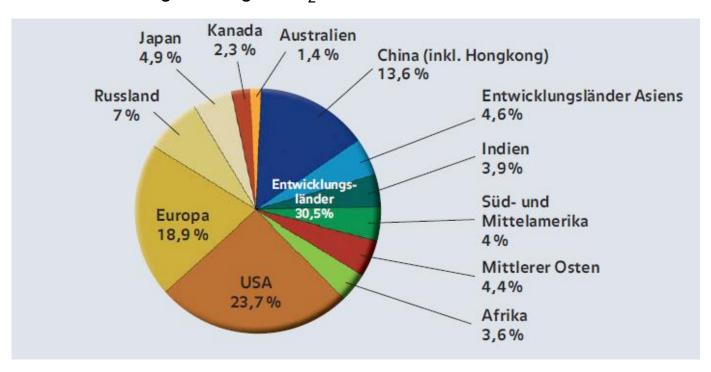




Abbildung 10: In Rot ist hier die beobachtete globale Mitteltemperatur 1850–2008 dargestellt (in Abweichung zum Zeitraum 1861–1899). Die Daten basieren auf dem HadCRUT3v-Datensatz, die Unsicherheitsspanne ist gelb eingezeichnet. Im Vergleich dazu erkennt man in Schwarz die globale Mitteltemperatur aus einer Kontrollsimulation des HadGEM1-Modells über 1000 Jahre – diese Version entspricht der computergestützten Berechnung eines "Was-wäre-wenn-Klimas« ohne externe Faktoren wie menschliche Einflüsse oder solare Schwankungen (vgl. S. 87).

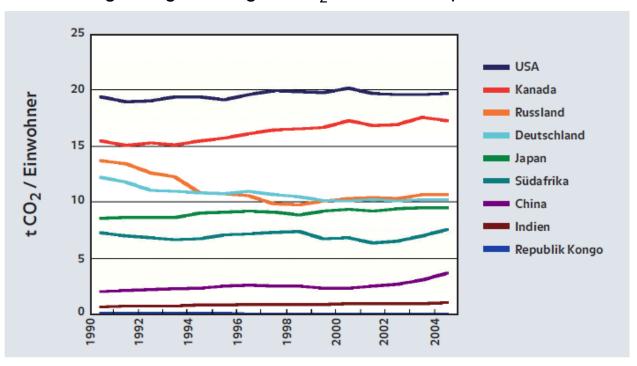

Klimawandel – natürlich oder anthropogen?

- Simulation der Temperaturentwicklung
 - Natürliche Faktoren: Variation der Solarstrahlung, Vulkanausbrüche
 - Menschgemachte Faktoren: Treibhausgasemissionen (erwärmende Wirkung) und Emission von Sulfataerosolen (abkühlende Wirkung)


Welche Länder sind Hauptverursacher?

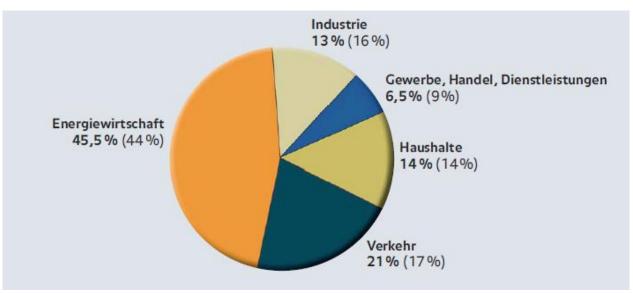
Kumulierte energiebedingte CO₂-Emissionen 1900-1999

Welche Länder sind Hauptverursacher?


Kumulierte energiebedingte CO₂-Emissionen 1992-2004

[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach: EIA 2004)]

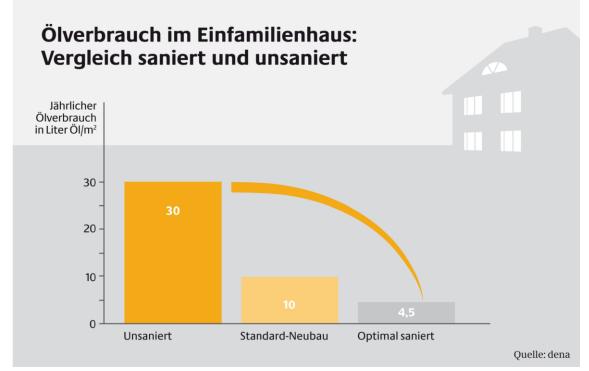
Welche Länder sind Hauptverursacher?


Entwicklung energiebedingter CO₂-Emissionen pro Einwohner 1990-2004

[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach: IEA 2006)]

Welche Sektoren sind Hauptverursacher?

Entwicklung energiebedingter CO₂-Emissionen in Deutschland



[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach: UBA 2007)]

Welche Faktoren sind Hauptverursacher?

Wohnen und Gebäude (In Deutschland 1/3 der CO₂-Emissionen)

[Quelle: Natürliche Ressourcen und Wohlstand, Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart]

Welche Faktoren sind Hauptverursacher?

Essen und Trinken

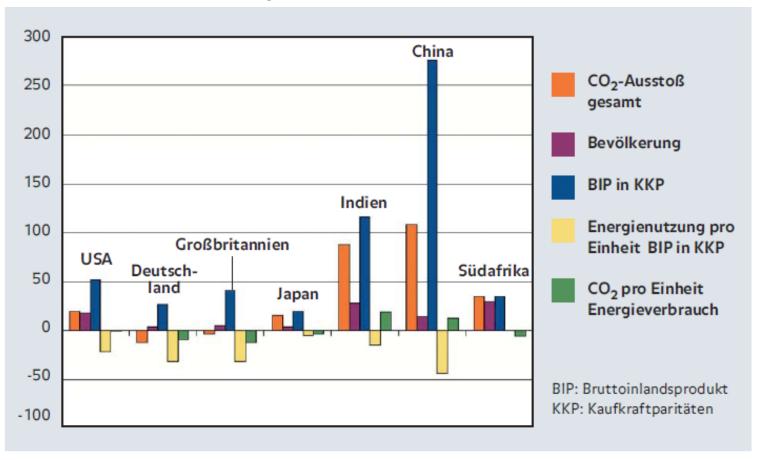
in g CO2-Äquivalent / kg Produkt

Nahrungsmittel	Konventioneller Anbau	Ökologischer Anbau
Geflügel	3.508	3.039
Rindfleisch	13.311	11.374
Rindfleisch, tiefgekühlt	14.341	12.402
Schweinefleisch	3.252	3 039
Gemüse, frisch	153	130
Gemüse, tiefgekühlt	415	378
Kartoffeln, frisch	199	138
Pommes frites, tiefgekühlt	5.728	5.568
Brötchen	661	553
Käse	8.512	7.951

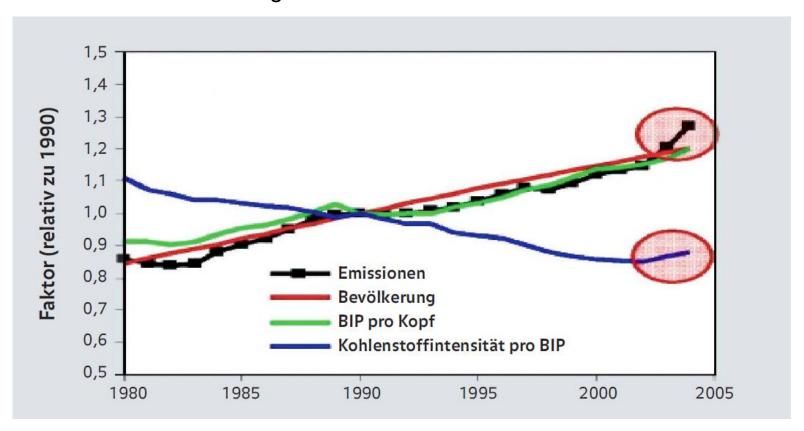
[Quelle: Natürliche Ressourcen und Wohlstand, Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart

Welche Faktoren sind Hauptverursacher?

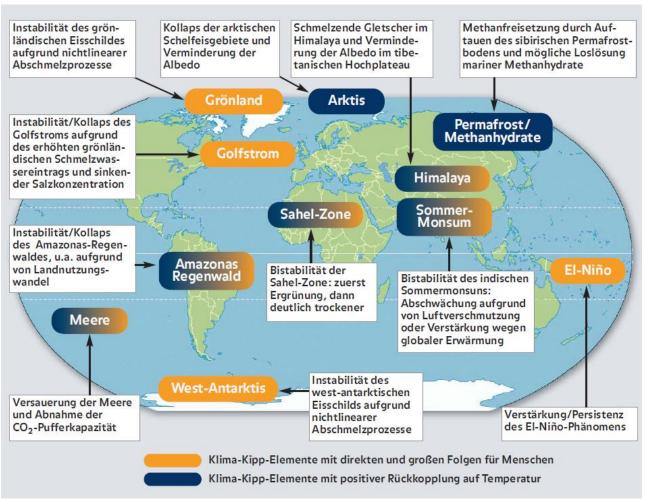
Mobilität


(siehe Folie 14, Verkehr für Deutschland)

 Problem: Zuordnung des internationalen Luft- und Schiffsverkehrs



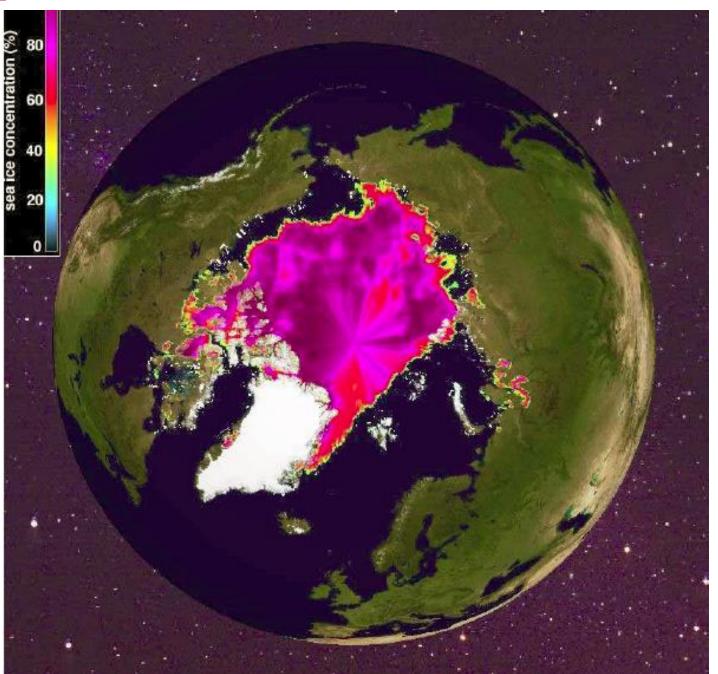
Prozentuale Änderung verschiedener Indikatoren 1990-2004


[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach: IEA 2006)]

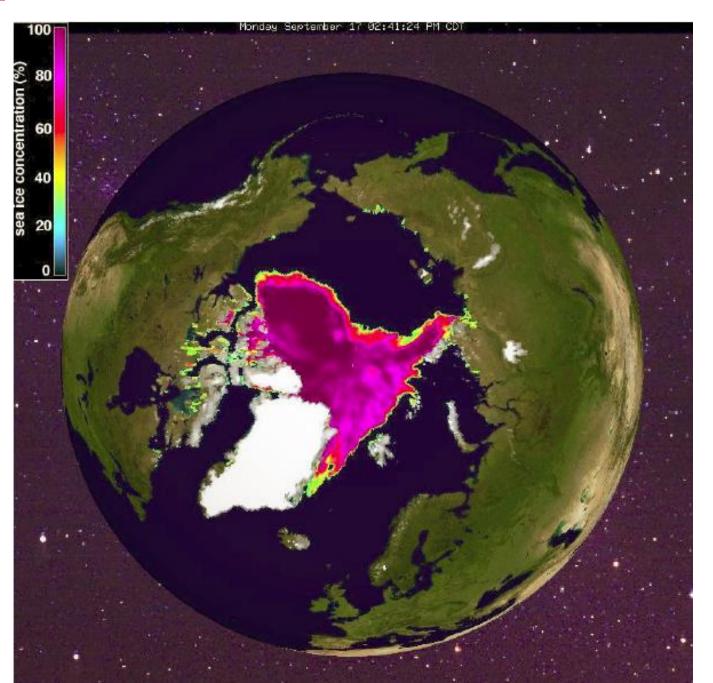
Weltweite Entwicklung von Emissionsfaktoren

[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach: Raupach et al.: Global and regioal drivers of accelerating CO₂-Emissions)]

"Kipp-Elemente" des Klimasystems und ihre Folgen

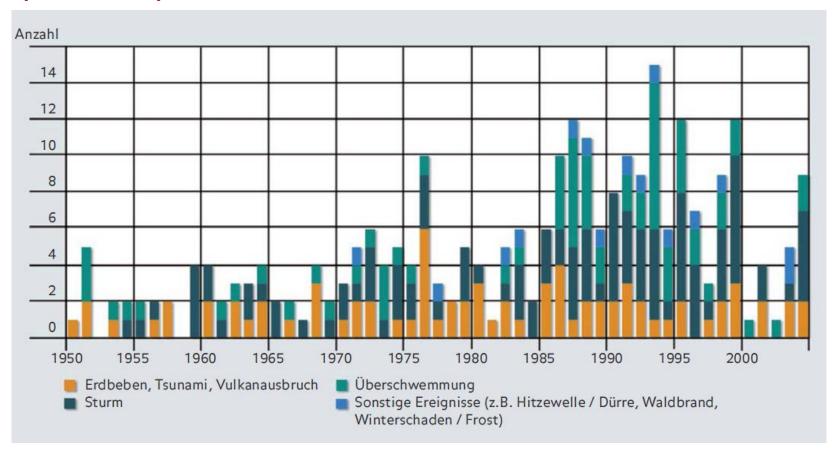

[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach Schellnhuber/Jäger 2006)]

$0^{\circ}C$ 1°C 2°C 3°C 4°C 5°C 6°C Kollaps des Verschärfung des regionalen Temperaturanstiegs durch Albedo-Effekt arktischen Schelfeises Verlust des Lebensraums bestimmter Tierarten (Eisbären, Seehunde) Abschmelzen Meeresspiegelanstieg um bis zu 7 m über mehrere Jahrhunderte (irreversibel) des grönländischen Temperaturrückkopplung durch Albedo-Effekt Eisschildes Kollaps des westantark-Anstieg des Meeresspiegels um weitere 5-6 m in mehreren Jahrhunderten tischen Eisschildes (irreversibel) Kollaps des Amazonas-Zusätzliche CO₂-Freisetzung verschärft Temperaturanstieg Regenwaldes Möglicherweise Umkehr der Senkenfunktion des Bodens und der Vegetation hin zur Freisetzung von großen Mengen CO₂ Rückgang der nordischen Klimawandel erhöht Stress durch Pfanzenschädlinge, Feuer und Stürme Nadelwälder Massive zusätzliche Freisetzung von Kohlendioxid Bistabilität der Sahelveränderte Niederschläge könnten Sahara/Sahel "ergrünen" lassen Zone, Verlagerung des verringerter Nährstofftransport könnte Amazonas-Kollaps beschleunigen Westafrikanischen Evtl. zeitversetzt Zunahme der Dürren in der Sahelzone durch Monsunschwan-Monsuns kungen (Bistabilität) Verstärkung/Häufung des El-Niño-Phänomens Verstärkung von Wetterextremen (Dürrekatastrophen, Überschwemmungsereignisse), v.a. in Südostasien und Südamerika, aber auch anderen Erdteilen Abschwächung des ■ Verlangsamung des durch den Klimawandel zu erwartenden Temperaturanstiegs "Golfstroms" im in Europa, möglicherweise zusätzlicher Anstieg in anderen Regionen Nordatlantik zusätzlicher Meeresspiegelanstieg im Nordatlantik (bis zu einem Meter beim vollständigen Aussetzen des Golfstroms) und im globalen Durchschnitt Mit dem zunehmenden Temperaturanstieg (gegenüber heutigem Niveau) steigt die Eintrittswahrscheinlichkeit der Ereignisse. Die unteren Abschätzungen dafür beginnen beim Übergang von weiß zu gelb.


Albedo-Effekt:

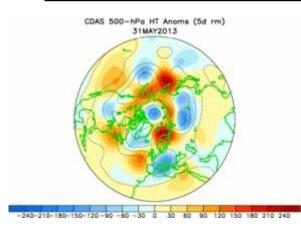
Maß für Rückstrahlvermögen, Strahlenantrieb beeinflussender Faktor

[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach Schellnhuber, Warren)]



September 1997

September 2007


Weltweite Entwicklung der Anzahl von Großkatastrophen (1950-2004)

[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach: Münchener Rück)]

Folgen der Erderwärmung (2 Beispiele)

National (Hochwasser Mai/Juni 2013)

[Quelle: Wikipedia]

International

WWW.TAGESSPIEGEL.DE

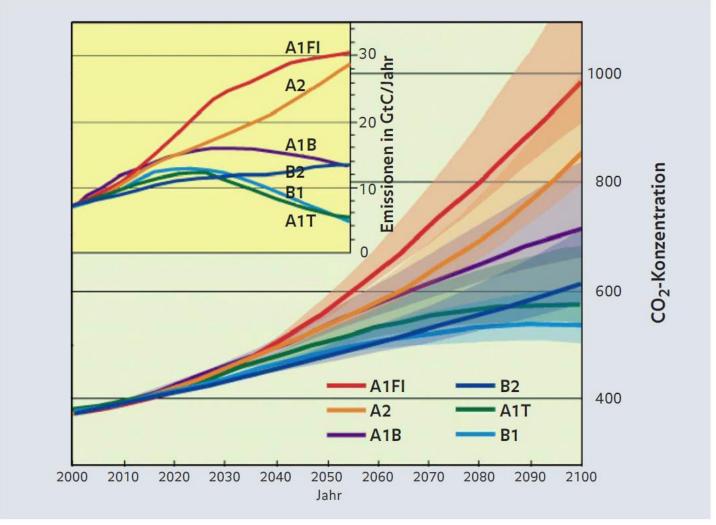
Zahl der Klimaflüchtlinge nimmt dramatisch zu

Bis 2050 werden 200 Millionen Menschen auf der Welt vor den Folgen von Stürmen, Dürren oder Überschwemmungen flüchten. Wenn nicht bald etwas getan wird, hat das fatale Folgen, prophezeit eine Studie der UN.

10.6.2009 14:17 Uhr

Wenn keine konsequenten Maßnahmen gegen die globale Erderwärmung ergriffen werden, könnten bis zur Mitte dieses Jahrhunderts rund 200 Millionen Menschen –

Szenarien und Auswirkungen des Klimawandels


- Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES)
- 4 Szenariofamilien (A1, A2, B1, B2)
 - Ziffer 1: Welt entwickelt sich konvergent (regionale Unterschiede nehmen ab)
 - Ziffer 2: Weiterhin regionale Unterschiede
 - A: Kein Leitgedanke einer nachhaltigen und gerechten Entwicklung
 - B: Leitgedanke einer nachhaltigen und gerechten Entwicklung

Szenarien und Auswirkungen des Klimawandels

Szenarienfamilie	Leitgedanken	Technologien / wirtschaftliche Strukturen	Weltbevölkerung
A1	Konvergenz zwischen Regionen	Schnelles Wirtschaftswachstum, schnelle Einführung effizienter Technologien (A1FI: fossil-intensiv, A1T: nicht-fossil, A1B: gemischt)	Ab Mitte 21. Jh. abnehmend
A2	Heterogene Welt, Entwicklung aus eigener Kraft	Technologische Entwicklung und Wachstum der Pro-Kopf-Einkommen langsam und regional stark unterschied- lich	Kontinuierlich wachsend
B1	Konvergenz zwischen Regionen, Fokus auf Nachhaltigkeit + Gerechtigkeit	Schneller Wandel in Richtung Dienstleistungs- und Informations- ökonomie, abnehmende Material- intensität, saubere + ressourcenschonen- de Technologien	Ab Mitte 21. Jh. abnehmend
B2	Heterogene Welt, Fokus auf Nachhaltigkeit + Gerechtigkeit	Entwicklung relativ langsam und sehr heterogen	Wachsend (aber langsamer als in A2)

[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach:IPCC)]

Szenarien des CO₂-Ausstoßes bis zum Jahr 2100

[Quelle: Germanwatch, Globaler Klimawandel: Ursachen, Folgen, Handlungsmöglichkeiten, 2008, (nach:IPCC)]

Szenarien und deren Ergebnisse

- <u>Treibhausgase:</u> CO2-Konzentration im Jahr 2100 zwischen 400 und 790 ppm (vgl. heute 380 ppm)
 - Unteres Ende der Skala nur mit drastischem Klimaschutz zu erreichen
 - Globale Emissionen müssten bis 2050 um 50-85% sinken
- <u>Temperatur:</u> Für 1990-2100 Erhöhung der mittleren globalen Erdoberflächentemperatur von 1,1 6,4 °C
 - Erwärmung nicht gleichmäßig
 - Temperaturen in nördlichen Breiten steigen überdurchschnittlich
- Hydrologischer Kreislauf: Steigerung der Niederschlagssummen um bis zu 20% bis 2100
 - Erwärmte Atmosphäre kann mehr Wasserdampf aufnehmen
 - Ebenfalls regional sehr unterschiedlich (Erhöhung der Regenmengen, Verwüstung)

Klimakonferenzen

1992:

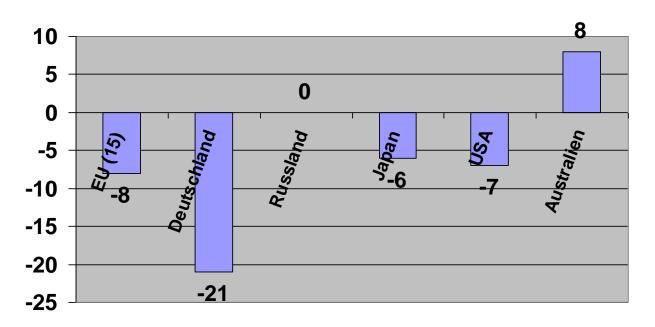
- UN-Konferenz über Umwelt und Entwicklung (UNCED) in Rio de Janeiro
- historische "Rio-Konferenz"
- Verabschiedung Klimarahmenkonvention, völkerrechtliche Vertragsgrundlage für den internationalen Klimaschutz (von 158 Staaten unterzeichnet und trat 1994 in Kraft)
- Ziel: Konzentration von Treibhausgasen in der Atmosphäre auf einem Niveau zu stabilisieren, bei dem gefährliche Einwirkungen des Menschen auf das Klimasystem vermieden werden

1995:

- 1. Vertragsstaatenkonferenz der Klimarahmenkonvention in Berlin (COP I, Conference of the Parties)
- Keine Einigung der Industriestaaten auf konkrete Ziele und Fristen

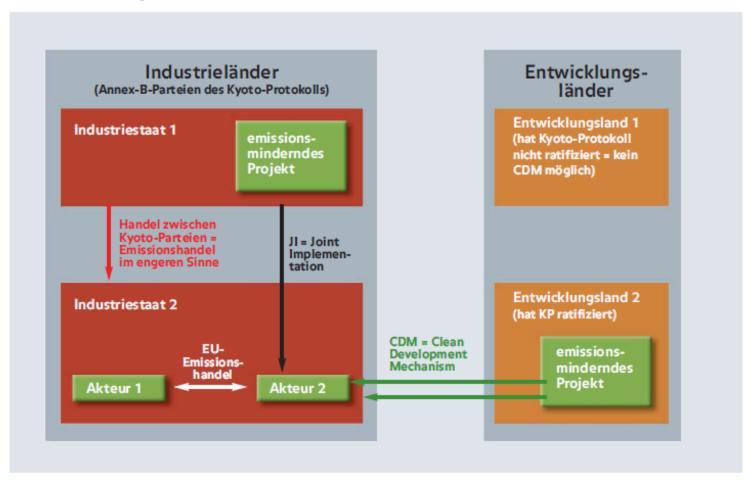
Klimakonferenzen

1997:


- 3. Vertragsstaatenkonferenz der Klimarahmenkonvention in Kyoto (COP III) => Kyoto-Protokoll
- Verpflichtet die Industriestaaten, die Emissionen von insgesamt sechs Treibhausgasen (Kohlendioxid (CO2), Methan (CH4), Lachgas (NO2), wasserstoffhaltige Fluorkohlenwasserstoffe (FKW), perfluorierte Fluorkohlenwasserstoffe (PFC) und Schwefelhexafluorid (SF6)) zu reduzieren
- Reduktionsverpflichtung von insgesamt 5,2 Prozent bis zum Zeitraum 2008-2012 (Vergleichsjahr: 1990)
- Inkrafttreten 2005
 - 1. Bedingung: Ratifizierung durch mind. 55 Staaten
 - <u>2. Bedingung:</u> Staaten müssen zusammen mind. 55% der CO₂-Emissionen der Industrieländer von 1990 verursachen
 - Ratifizierung durch Russland (2005) => beide Bedingungen erfüllt
 - Ablehnung durch USA

Kyoto-Protokoll: z.B. EU-Ziel

- EU: Reduzierung Treibhausgase um 8%
- EU-Ziel auf 15 Mitgliedstaaten verteilt
- z.B. Deutschland: -21%
- Berücksichtigung:
 - Bisherige Emissionen pro Kopf
 - Nachholbedarf bei Entwicklung


Kyoto-Protokoll: Ziele einiger Länder

Kyoto-Ziel 2008/12 im Vergleich zu 1990 (in %)

Kyoto-Protokoll: Zielerreichung einiger Länder

Land	Kyoto-Ziel (Vergleich zu 1990)	Veränderung Emissionen 2007 (Vergleich zu 1990)
Deutschland	-21,0%	-21,3%
EU	-8,0%	-4,3%
USA	-7,0%	16,8%
Russland	0,0%	-33,9%
Spanien	15,0%	53,5%

Die Industriestaaten haben – soweit sie das Kyoto-Protokoll ratifiziert haben – verbindliche Emissionsziele. Die Entwicklungsländer haben bis 2012 keine verbindlichen Emissionsziele.

- 1. Emission Trading (ET)
 - Zuteilung:
 - → Menge pro Land: je nach Reduktionsziel
 - Handel:
 - → bei Übererfüllung des Reduktionsziels: Verkauf von Zertifikaten
 - → bei Nichteinhalten des Reduktionsziels: Zukauf von Zertifikaten

- 2. Joint Implementation (JI)
 - Gemeinsame Klimaschutzprojekte zwischen zwei Industriestaaten, die beide bestimmtes Reduktionsziel erfüllen müssen
 - Industrieland 1 führt in Industrieland 2 Projekt durch
 - Industrieland 1 finanziert Projekt
 - Emissionsminderungen werden Industrieland 1 gutgeschrieben

- 3. Clean Development Mechanism (CDM)
 - Gemeinsame Klimaschutzprojekte zwischen Industrieland (mit Reduktionsziel) und Entwicklungsland (ohne Reduktionsziel)
 - Industrieland führt in Entwicklungsland Projekt durch
 - Emissionseinsparungen werden Industrieland gutgeschrieben
 - Entwicklungsland profitiert von kostenlosem Technologietransfer

Kyoto und danach?

- Was soll jetzt geschehen und was können die unterschiedlichen Akteure beitragen?
- Weltklimakonferenz in Kopenhagen 2009: "Klimabazar" oder "Wunder von Kopenhagen"
- Im weiteren Verlauf der Vorlesung: Weltklimapolitik nach Kopenhagen Umsetzung neuer Potentiale (Franz-Josef Radermacher)
 - Vertragsgerüst für einen Weltklimavertrag (15 Paragraphen)
 - Identifikation der zentralen Rolle eines Weltaufforstungsprogramms
 - Kosten und Finanzierung eines ambitionierten Weltwaldregimes
 - Bonisystem für Schwellenländer
 - Vollumfängliches Cap- und Tradesystem zwischen den Staaten
 - Klimaneutralitätsoption für Organisationen, Unternehmen und Privatpersonen
 - Einbindung des internationalen Schiffs- und Flugverkehrs
 - Verknüpfung von Klimaregime und Welthandelsorganisation WTO
 - Dimensionierung WTO-kompatibler Grenzausgleichsabgaben
 - Hinweise zu den Themen Durchsetzbarkeit und Compliance
 - Kapitalisierung verbliebener Emissionszuwachsrechte
 - Abschätzung der Kapitalisierungskosten (100-125 Mrd. USD)
 - Adressierung der WBGU-Budgetrestriktion bis 2050
 - Einbettung in die Vision eines doppelten Faktor 10
 - Vision für Rio+20
 - Orientierung für die anstehenden Klimaverhandlungen

Vielen Dank für Ihre Aufmerksamkeit!