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Abstract
One of the important aspects of schedulability analysis
is the model used to describe the system and its timing
behavior. On one side, the accuracy of the test strongly
depends on the accuracy of the model. On the other
side, a detailed model could lead to an inaccaptable
evaluation time. In this paper we propose a new model,
the hierarchical event streams, which allows a high
accuracy. We provide an efficient feasibility test for the
model based on the context of demand and request
bound function. Additionally we will provide a
methodology to extract this model out of a control-flow
graph efficiently. Together this allows a more accurate
and efficient schedulability analysis of event driven
real- time systems.

1. Introduction
Finding cost optimal hardware solutions and verifying
existing hardware for hard real time systems requires an
expressive real time model. Appropriate models are
characterized by removing unnecessary information
while maintaining the important essence. The model for
real time analysis introduced in this paper takes the inner
state of tasks into account, but abstracts from it by
transforming the tasks control flow into its impact on the
overall system within arbitrary time intervals.
An accurate description of the timing of events is key to
an accurate determination of the load of the system and
therefore to an accurate real time analysis. This in turn
allows optimal hardware components to be chosen that
still satisfy the desired timings. Events can be generated
not only by the environment, for example by sensors,
but also by tasks within the system. A single execution
of a task can produce several events. For an accurate real
time analysis it is essential to determine the exact timing
behavior of these internal events.
In recent years a lot of work was published about real-
time analysis. However, many of these techniques have
an exponential run-time complexity. To avoid this
approximative algorithms with linear complexity were
developed in real-time schedulability theory. But most
of the models of computations used for embedded
system design are not suitable to be combined with real-
time schedulability theory. To bridge this gap we

suggest a new model for the schedulability analysis of
distributed embedded real-time systems. This new
model can automatically be derived out of the control
flow graph, a data structure which is readily available
during the design flow. The model regards the stimuli of
the system as well as a description of the interprocess
communication. The idea is to describe the
communication behavior of the tasks by the same model
as the systems stimuli. This internal communication
causes dynamic task activations. See for example Figure
1 where the task τ1 activates the tasks τ2 and τ3. These
activations are caused by events that are generated
during the execution of the task. Conventional models
assume the generation of events to occur only at the end
of a tasks execution. To capture this dynamic behavior a
new model is required. 
First the existing event stream model is extended to the
more expressive hierarchical event stream model. This
mathematical description allows to elegantly
characterize system stimuli which are containing both
bursts and complex periodic / aperiodic behavior. In this
context an efficient feasibility analysis for the
hierarchical event streams is presented which is based
on the concept of demand and request bound functions.
In the second part of the paper we provide the
methodology to derive the new model out of the
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system´s description given by control flow graphs. The
new model can be acquired without an expensive state-
based analysis. Our model is stateless and only based on a
quantitative description of the temporal density of events.

2. Related work
A well known model of computation for data dominated
systems are the synchronous data flow graphs (SDF).
Synchronous data flow graphs are a rate-based execution
model. Each node of the graph is annotated by the number
of fired and the number of consumed tokens. The model
has a close relationship to petri nets.
In the System-Property-Interval model (SPI) [10]
embedded systems are described as coupled processes;
input and output rates of the processes can be specified by
intervals. It is not possible to use efficient feasibility tests
on this model. Additionally it is difficult to use powerful
event models like event streams. This would require
complex mathematical transformations. However, the goal
for system models should be an acceptable run-time of the
applicable analysis algorithms.
An alternative attempt to connect the methods of the real-
time analysis with token-based procedures is described in
[14] and [16] by Goddard and Jeffay. In comparison to the
event stream model [15] this description is however
limited, because it is not possible to describe processes
with multiple rates and jitter. The model also does not
allow the description of overlapping executions of the
same task. The work of Goddard and Jeffay shows how
SDFs can be connected to scheduling theory. However, the
work is limited to the periodic task model and not suitable
for distributed systems with different processing elements
connected by communication structures without buffers. 
A very powerful model to describe distributed real-time
systems was introduced by Thiele et al. [8], [9] and is
called real-time calculus. The model works with
approximated arrival curves. So the model is limited to an
approximated analysis and can not be used for an exact
one. In [7] Chakraborty and Thiele propose a model
specifically designated for bursts. We will discuss this
model in the evaluation.
To the best of our knowledge there are no integrated
methodologies available so far which allow to extract the
exact event stimuli of a task out of the control flow graph
of the task activating that task if there is no restriction
which nodes of the control flow graph may cause task
activations.
In this work we will give such a methodology and also the
schedulability analysis for systems with static or dynamic
priorities.

3. Contributions
This paper provides several contributions. First, we
propose the hierarchical event stream model as a new
accurate and efficient model for the stimuli of real-time
systems. It allows for the first time to model efficiently
complicated stimuli including both bursts and aperiodic
behavior. We give an efficient feasibility test for this
model based on the concepts of demand and request bound
functions.
In the second part we introduce for the first time the event
dependency analysis. It is a methodology to calculate the
timing relationships of events generated by a task. This
approach is not limited to tasks that generate events at the

end of an instance. Instead with the new approach tasks can
be analyzed that generate events anytime during their
execution. We propose a methodology to extract the timing
relationship between these events out of the control flow
graph of the tasks. This allows a precise description of the
stimuli.

4. Model
The goal of the model used in this paper is to analyze the
real-time behavior of an embedded real-time system. The
question is, if it is possible to schedule all the needed jobs
of the system in such a way that all deadlines of the jobs are
met.
To achieve this goal the model needs a representation to
describe the stimuli and the required computational time of
the applications jobs. In the following we introduce the
model to describe the structure of the application followed
by the systems stimuli model. To model the stimuli of a
task we introduce for the first time hierarchical event
streams.
4.1. Task graph model
An embedded system consists of several different building
blocks. On the hardware side there are processing
elements, memories and communication components. On
the software side we have program code and data
structures. The application can be split up into parallel
running processes. In this model we assume that each
process does not itself contain further parallelism and can
therefore easily be transferred into a control flow graph.
Def. 1: Control Flow Graph: A control flow graph
consists of a set of nodes representing the basic blocks of a
program and a set of edges describing the control flow
between the basic blocks.
Using the control flow graph the static behavior of the
program such as the latency under worst-, best- and
average case conditions can be analyzed. Basic blocks that
create events for other tasks are represented by marked
nodes. These basic blocks create events at the end of each
of their executions. A task can contain several of these
marked nodes and they can trigger different tasks or all the
same task. We allow loops and branches within the control
flow. The maximum number of iterations of loops are
bounded. Parallel or pseudo parallel running processes of
the application can be modeled using task graphs:
Def. 2: Task: A task τ is an execution path through a
control flow graph. It is characterized by a 4-tuple

 where c is the worst case execution time, b
the best case execution time, d the relative deadline and 
the event stream triggering the task.
The definition for event streams follows in Section 4.2. For
the purpose of this paper we keep the definition of tasks
simple. Extensions for variable execution times can be
easily included following the approaches given in
[12],[13].
Def. 3: Task Graph: A task graph is a directed graph.
Nodes in a task graph represent the tasks of an application
while the edges (τ1,τ2) describe that the task τ1 can
activate task τ2. For activation from the environment the
task graph may include additional source nodes.
Activations of a task can result out of interrupts, data
dependencies, signals etc. An event is a single activation.
A task graph only describes the possibility of an activation.

τ c b d Θ, , ,( )=
Θ



                                          
For the analysis of real-time systems the timing
relationship between the events is essential. A well known
accurate model are synchronous data flow graphs (SDF).
However, in SDFs no information is provided about the
timing relationships of the events. This makes it difficult to
use SDFs as a data model for the well known real-time
feasibility analysis. To bridge the gap between the SDF
model and the scheduling theory the event dependency
graph is introduced:
Def. 4: Event Dependency Graph: An event dependency
graph is a task graph where the edges are additionally
weighted by the temporal density of activations. 
We will propose a methodology to extract the incoming
event streams for each task out of the control flow of the
triggering task graph.
4.2. Stimuli and Intertask Communication Model
The triggering stimuli for the tasks are modeled using
event streams. In contrast to the related work, we do not
only allow events to occur at the end of tasks, but also
within their executions. Each node of the control flow
graph can generate events triggering other tasks.
Considering this more accurate behavior is especially
interesting for tasks generating more than one event. The
model allows to represent the events in a more precise way.
In this work we will provide a methodology to extract the
exact outgoing event streams out of the control-flow
graphs of the tasks. We will also provide a new model to
describe event streams in a more precise and efficient way
than with the existing models.

4.2.1  Event Streams

Event streams where first defined in [15]. The purpose was
to give a generalized description for stimuli. The basic idea
is to provide an efficient general notation for the event
bound function. For every interval I the event bound
function EBF(I) can calculate the maximum number of
events which can occur within I. For this only the length of
I is relevant, not a specific start and end point. In the
following, when speaking of intervals we always refer to
its length only.
The goal of the event stream model is to provide an
efficient general notation for the event bound function. A
general way to represent events is by the set of the distance
of each event to a common start time. The distance can also
be regarded as a time interval between the start time and
the event. We will call this set an event sequence. 
Note that it is not possible to represent an infinite number
of events in this way. Therefore events are grouped into
periodic sequences. Such a periodic sequence can be
modeled by a single tupel consisting of a period and an
interval which describes the distance for the first event of
the sequence. An event sequence is a set of such tuples.
Events which do not fit in a periodic behavior are modeled
with an infinite period. Formally an event sequence  is
characterized by a set of event elements ω where ω is a
tuple (p,a) with p being the period and a the interval
describing the initial distance. The set can include equal
elements several times.
This formal description allows an efficient realization for
the event sequence function.
Def. 5: Event Sequence Function: An event sequence
function  provides the number of events

occurring within the interval I located at the start of the
sequence . 

Lemma 1:  The event sequence function for an event
sequence  and an interval I can be determined by the
following formula:

Proof:  See [15]. �
The event sequence function always shows a monotonic
non-decreasing behavior. As a shortcut for notation equal
elements are represented only one time together with their
quantity. An event sequence is called homogeneous if all
event elements share the same period or have an infinite
period. It is possible to transfer each event sequence into a
homogeneous one by exchanging each period within the
sequence by the least common multiple of the periods. To
compensate this step it is necessary to insert additional
event sequence elements.
For real time analysis it is necessary that the event bound
function is a sub-additive function. 
Def. 6: Event Stream: An event sequence  is called an
event stream if for all intervals I, J: 

That means the highest density of events occurs always at
the start of the sequence. An event sequence for which the
corresponding event seqeunce function fulfills this
condition is called event stream. Each homogeneous event
sequence can be transferred to an event stream by
reordering the events (and recalculating the intervals).
Def. 7: Event Bound Function: The event bound function
EBF(I, ) calculates the maximum number of events which
can occur within any interval of length I within the
sequence . 

Lemma 2:  If a sequence  is an event stream, the event
bound function EBF(I, ) is equivalent to the event
sequence function ESF(I, ).
Note, that for the purpose of real-time analysis it is not
necessary to model the event sequence first, because the
event stream can be directly extracted out of the system
description. In Figure 2 some examples for event streams
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can be found. The first shows the event stream for a strict
periodic stimuli. The second shows periodic stimuli in
which the single events can jitter within a jitter interval of
size j. In the worst case situation one event occurs at the
end of a jitter interval and one event occures and the start
of the following jitter interval. This leads to p-j as the
length of the minimal interval containing two events. For
three event the length of the interval is given if the first
events occurs at the end of a jitter interval and the third
event at the beginning of its jitter interval. The length is
given by p+p-j. For four event the length is 2p+p-j and so
on. This behavior can be exactly modeled with E2.The
third example shows an irregular behavior, with the
possibility for three events to occur at the same time and
the fourth to occur after a time t. This structure can be
repeated using a period of p. Obviously all these examples
can be described by event streams in an easy and intuitive
way.
In theory it is possible to describe each set of events by an
event stream. For some sets of events the number of tuples
needed for description can become quite large. Especially
the description of bursts is inefficient because it is
necessary to model each element of the burst with a
separate tuple. For the purpose of evaluation it is not
necessary to find the exact minimum intervals. It is
sufficient to find for all intervals a lower bound. This can
allow to simplify the event stream (also might mean to
accept an overly pessimistic description).
A detailed definition of the concept and the mathematical
foundation can be found in [2].
The inverse function for the event bound function is the
interval bound function.

Lemma 3:  The interval bound function returns for a given
number of events the minimum interval in which this
number can occur: 

For a homogeneous sequence the implementation of this
function is easy. It is only necessary to calculate the last
event sequence element and the number of completed
periods. 

4.2.2  Hierarchical Event Streams

The event stream model is a very general model. The
problem is that the description for burst can become quite
large. A burst consists of a number of events which occur
within a short amount of time followed by a waiting
period. Bursts can be the result of loops in the control flow
graph of previous tasks. Each iteration of the loop produces
one event. The number of iterations are bounded, therefore
the number of events occurring as the result of one
activation of the loop are bounded too. Together they form
the burst.
In Figure 1 we present an example task graph to illustrate
these bursts. τ1 is triggered by a period event stream. It
triggers two other tasks τ2 and τ3. The event stream for
both tasks shows a bursty behavior. The control flow graph
of τ1 consist of two nested loops. In the outer loop v1
generates the events triggering τ2. v4 is the node belonging
to the inner loop which generates the events triggering τ3.
One event is generated in every iteration of the loop.
Therefore the event streams ES2 and ES3 triggering τ2 and
τ3 shows a bursty behavior, whereby the behavior of τ3 is
complicated due to the nested loops. The purpose of this

paper is to present a model which is able to describe these
event streams in an easy and efficient way. We will also
present an efficient real-time analysis for this model.
The problem of the event stream model is that for each
event of a burst an additional event sequence element is
needed. For an efficient formal description of bursts we
propose an extension of this model. We allow an event
element to generate a set of events instead of just a single
event. The new hierarchical event sequence elements are a
4-tuple:

where p and a are the period and the initial interval, n is the
limitation for the number of events generated by this
element during one period.  is an embedded
(hierarchical) event sequence providing the pattern for the
generation of the events. If this pattern would generate
more than n events only the first n events are considered. A
hierarchical event sequence is either a set of event
sequence elements or a single event e.
Def. 8: Separation Condition: A hierarchical event
sequence element  fulfills the separation condition if 

It should not be possible that the events which are
generated within different periods can overlap. With this
condition it is easy to extract the event bound function.

Lemma 4: Hierarchical Event Sequence Function: For
a hierarchical event sequence  fulfilling the separation
condition the event sequence function can be determined
as follows:

Proof:  Due to the separation condition it is always
possible to include the maximum allowed number of
events for the completed periods. The calculation is
corresponding to the event sequence function. Only the last
possible incomplete period has to be considered separately.
This incomplete period is calculated by the modulo
operation between I-ai and pi. The number of events which
can be generated in this interval at maximum, can be
evaluated by the event seqeunce function of the sub event
sequence limited by the maximum allowed number of
events for this sequence. If the sub event sequence consist
of a single event only, the maximum number of generated
events is one.�
As a short notation for a hierarchical event tuple with a
single event we can use a normal event sequence element:

It is not necessary for the sequences to be homogenous. 
The defintions of hierachical event streams and the
hierachical event bound function is corresponding to the
defintions in Section 4.2.1.
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5. Feasibility Analysis
The feasibility analysis closely follows the analysis
proposed by Baruah in [3] and therefore we keep its
explanation short.
For our feasibility analysis we use the concepts of the
demand and request bound function, similar to the one
introduced by Baruah. These concepts can be combined
with event streams as shown in [2] and there is an
approximation [2] and a fast analysis [1] available, too. 
The demand bound function calculates for an interval of a
given length the worst case amount of processor time
which might be needed by intervals of these length to
guarantee all deadlines within this interval. The idea for the
feasibility analysis is to test for each possible interval if the
processor capacity which is at least available within
intervals of this length is sufficient to satisfy the demand
for this interval. For simplicity the capacity is usually
considered to have a constant growth and as the demand is
measured in computation time the test can simply compare
the demand with the length of the interval.
Def. 9: Request Bound Function: The request bound
function gives the maximum amount of computation time
which is requested by a task set in any interval of length I.

Def. 10: Demand Bound Function: The demand bound
function describes the amount of requested computation
time for a given time interval:

This demand bound function can be used to define a
feasibility test for real-time systems with dynamic
priorities, such as earliest deadline first scheduling (EDF),
and scheduling with fixed priorities like rate monotonic
scheduling.
Theorem 1: Processor Demand Test: A set of real-time
tasks is feasible if and only if

A task set is feasible if the above condition holds for all
intervals. It is only necessary to test special well known
intervals (those for which the demand bound function can
change) and it is possible to calculate an upper test bound
for these intervals. See [2] and [3] for more details on the
test and [1] for efficient algorithms to perform it.
For static priorities it is necessary to find an interval which
is smaller than the deadline and in which the sum of the
demand bound function of the actual task and the request
bound functions of all tasks with a higher priority is equal
or smaller than the length of the interval. See [3] for details.

6. Event Dependency Analysis
The purpose of the event dependency analysis is to
quantify the event activity on the nodes of the event
dependency graph. We describe this activity using the
hierarchical event stream model. A methodology is needed
to extract for a given task and an input event stream the
outgoing event stream of the task. Different kinds of events
lead to different event streams. The idea behind this
analysis is to abstract from the internal control flow of the
task. In contrast to the SPI model which allows the
description of different output rates depending on the

internal state of the task, the event dependency analysis
delivers the worst-case behavior of the task for all possible
execution paths of the task.
In our model the task consists of a control flow graph that
may include branches and loops. Events can be generated
at particular nodes of the graph. These nodes can for
example be activations of other tasks or accesses to
common memory. The purpose of event dependency
analysis is to extract timing behavior of these events taking
the different path of the control flow graph into account.
In the event dependency analysis the following steps have
to be performed:
1. Traverse the graph step by step
2. Update at each step the event stream and additional 

event sequences necessary for the further calculation 
of the event stream. These event sequences will be 
introduced in the following chapter.

Let us consider graphs without loops first. Figure 3
illustrates the traversal through the graph. It starts at the
node triggered by the external event stream. The graph is
traversed node by node. At each step the successor of the
last node is concatenated to the sub-graph visited so far.
For nodes with more than one successor (due to if-
statements) each following branch is considered
separately. A union of the results is done at the nodes
where the branches flow together again. Remaining
branches are unified at the completion of the traversal.
The idea of the event dependency analysis is to calculate
and update for each node the minimum event stream for all
traversed nodes. At the end, when all nodes have been
traversed, this minimum event stream is the resulting event
stream for the whole task. 
As basic operations we need methods to extract the event
stream when (1) concatenating a node to a previously
evaluated part of the graph (concatenation operation) or (2)
unifying two different branches of the graph (merge
operation). 
6.1. Sequences
For these operations we need to define some specific
sequences. There are four types of sequences to consider:
The start sequence, the end sequence, the inner sequence
and the total sequence. Note that for the different
operations only a subset of all sequences are needed.
Def. 11: Start Sequence (StS): The start sequence is a
sequence were all intervals start with the beginning of the
first node.
Def. 12: End Sequence (ES): The end sequence is a
sequence where all intervals have the end of the graph as
the common end point. 
Def. 13: Inner Sequence (IS): The inner sequence
includes for all possible numbers of events the shortest
intervals that can be found somewhere in the graph and
include at least these number of events. 
This inner sequence is also the resulting event stream. 
Def. 14: Total Sequence (TS): A total sequence is a
sequence where all intervals have the start of the first node
as common start point and the end of the last node as
common end point. Each interval can represent another
path through the graph. The different paths can generate
different numbers of events and lead to different length of
intervals. The total sequence includes for all possible
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number of events the shortest path through the complete
graph which includes at least this number of events.
A problem is that we can have a path through the graph
which does not generate any events. We need to represent
this path too. 
So we denote the total sequence as a tuple consisting on
one side of the minimum interval α needed to traverse the
graph and an event sequence describing the minimum
intervals needed to traverse the graph and generate n
events. 
The total sequence is especially interesting for loop
constructions. For its calculation not only the maximum
number of iterations is taken into consideration but also
each number of iterations less than the maximum number.
Of course it is possible to define also a minimum number
of iterations. In this case the length of each of the inner
sequences has to cover at least this minimum number of
iterations. 
6.2. Initial values
The smallest possible unit that can be characterized by
these sequences is a single node. It is then possible to build
up entire graphs out of single nodes. Each node of the
control flow graph is itself a graph and can be
characterized by an initial start, end, inner and total
sequence. We have two sets of initial sequences depending
on whether the node generates an event or not.
A node with a best case execution time b generating an
event has the following sequence:

For a node which does not generate an event the sequences
looks as follows:

Note that we consider (without loss of generality) events to
be generated at the end of the nodes.
6.3. Operators
To build up the sequences for complex graphs out of the
initial sequences two basic operations are needed, the
merge and the concatenation operation. 
Def. 15: Merge Operation: A sequence  is the merged
sequence of two sequences  and  if for all intervals
I: 
With the merge operation the maximum number of events
of the two seqeunces for any interval can be calculated. If
the sequences are valid event streams the resulting
sequence will also be a valid event stream.
Def. 16: Concatenation Operation: A sequence  is
the concatenation of two sequences  and  if for all
intervals IA, IB, IC the event bound function  is

equal to the maximum sum of the event bound functions
 and  for all possible

combinations of IB and IC fullfilling .
The implementation of these operations will be discussed
in Section 7.1 and Section 7.2.
6.4. Evaluation of simple task graphs
First the simple case that the task is triggered only once
will be considered. Every traversal step is a merge
operation between a previously traversed part of the graph
and the following node. As the node is itself a graph, the
merge can be regarded as a merge operation between two
graphs. The problem is therefore reduced to the problem to
calculate the sequences of the merged graph using only the
sequences of the two parts of the graph. 
Let us consider each kind of sequence separately. The
different possible paths resulting out of the merge can lead
to intervals of different length for the same number of
events. The resulting sequence includes for each possible
number of events the minimum of these intervals leading
to the maximum sequence.
Let us consider the concatenation of two graphs A and B to
a resulting graph C. The intervals for the start sequence of
C can either come from the start sequence of A or from
paths which include A completely. These paths are the
result of a concatenation between the total sequence of A
and the start sequence of B. 
For the end sequence of C we need a union of the end
sequence of B and the concatenation between the inner
sequence of B and the end sequence of A.
The inner sequence of C can be generated by a union of the
inner sequence of A and B and an additional union of the
result with the concatenation between the end sequence of
A and the start sequence of B.
The new total sequence of C results from a concatenation
of the total sequences of A and B.
For the union of branches the resulting start, end, inner and
total sequences are calculated by a union between the
corresponding sequences of the parts.
The resulting event stream is the inner sequence. For
calculating the inner sequence only the inner and the end
sequence of A are needed, the start and the total sequence
are of no relevance. Therefore it is only necessary to keep
track of the end and inner sequences during the traversal of
a graph.

Lemma 5:  The resulting inner sequence is a valid event
stream. This event stream represents the worst case density
of events in any possible path of the graph.
Proof:  This lemma is obviously true for single nodes. It is
necessary to show that the previous operations preserves
this condition. The proof is done by induction. Let us first
consider the merge of two graphs. The worst case density
for a certain number of events in the resulting inner
sequence has to be included in one of the previous inner
sequences. Due to the definition of the merge operation it
therefore remains in the resulting inner sequence. For the
start, end and total sequence the condition is the same. For
the concatenation the resulting worst case density for a
certain number of events in the inner sequence has to exist
either in one of the previous inner sequences or has to
include the connection point between the previous
sequences. All these cases are merged, so the resulting
inner sequence includes the worst case of all possibilities.
The proof for the start and end sequence follows
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 Figure 3: Principles of the event dependency analysis
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accordingly. �

7. Concepts for Implementation
The implementation that we introduce next is not limited to
homogenous sequences. Instead it is advisable to introduce
a weaker condition.
Def. 17: Strict Order Condition: A hierarchical se-
quence is in strict order if in any period the event of an
element occurs before the event of another element in the
same period, its events must in all allowed periods occur
before the corresponding events of the other element. 
The allowed periods are given by the limitation of the
hierarchical event sequence elements. A homogeneous
event sequence is always in strict order. An non-
homogeneous event sequence can only be in strict order if
the number of generated events is limited.

7.1. Merge Operation
In the following we will discuss the principles of
implementation for the merging operation of two (or more)
event sequences. The resulting (merged) event sequence
includes for all intervals the maximum number of events
which can occur in one of the original sequences. If they
are valid event streams the resulting hierarchical event
sequence will also be a valid event stream. 
Def. 18: Domination: An event sequence dominates
an event sequence for a specific number of events n if 

It is necessary to split the complete range of numbers of
events into parts which have a clear unique domination of
a sequence. We call these parts domination ranges.
In Figure 5 the process of determining the domination for
two simple event sequence elements is shown. Remember
that a simple element is characterized by a period and an
initial interval. The event bound function of each element
is a straight line with the initial interval as start value and
the period as gradient. Comparing two simple event
sequence elements leads to two possible scenarios. Either
one element dominates over the complete range, or the
domination changes. This can happen if one sequence has

a smaller initial interval but a larger period than the other
sequence. Then this sequence will dominate first until the
intersection of the two lines. There the domination
changes. For two sequence elements  the
intersection x is:
In the first case the dominating element is added to the
resulting event sequence. In the second case two elements
are added. The first dominating element is added with a
limitation that covers all events up to the intersection. Next
the second dominating element is added with the
intersection as additional offset.
For an event sequence consisting of several elements the
domination can change frequently. To re-establish the
behavior it is necessary to split the sequence into single
elements. The idea behind the merging operation is to
compare those elements of both sequences which lead to
the same numbers of events. After sorting, elements on the
same position can be compared with each other. It is
necessary to expand the contributing sequences to the same
number of elements. This is the least common multiple
(LCM) of the number of the elements of all contributing
sequences. Note that the periods are of no concern here.
For hierarchical sequence elements the length of the
straight line is limited by the number of events possible by
this element. 
We will now give a little example. Consider Figure 6. It
shows two control flow graphs each consisting of a loop.
The event sequence representing these loops can be written
as follows:

To merge these streams  has to be expanded to two

 Figure 4: Sequences of the event dependency analysis
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event stream elements using a new period of 24: 

Than the event stream elements of both streams can be
compared pairwise. The first element of each stream is
responsible for the intervals containing at most 1,3,5,7,9,...
events, the second element is responsible for the intervals
containing 2,4,6,8,... elements. Figure 7 shows the
domination graph for the example. Next the domination
intervals can be calculated. The resulting event sequence
is:

The same sequence can be also rewritten as:

The resulting sequences can be extracted step by step. The
original sequences are compared step by step to find for
each segment the domination elements and to merge these
elements to the resulting sequence. In the example above,
the first segment ends at the event with the number 100. In
this segment for the respective first elements of the
contributing sequences  dominates within the complete
segment. This leads to one resulting element. For the
respective second elements the domination changes within
the segment. This results in two elements, one for the first
part of the segment up to the intersection, one for the
second part. The second segment runs from event 101 to
event 200 and in it only  can contribute which results in
one element in the resulting sequence for each of the
elements of .
7.2. Concatenation operation
The concatenation of the end sequence of a graph with the
start sequence of the following graph is done to find out if
this leads to new more strict elements for the inner
sequence. For the merge operation each element in a
sequence could generate the intervals for specific numbers
of events. For the concatenation operation the contribution
scheme is different. Each element can generate intervals
for each possible number of events which is larger than the
initial number of events of the element.
The reason is that the intervals can be completed to the
necessary number of events by a corresponding element of

the other sequence. Consider the following example which
is illustrated in Figure 8:

 is an end sequence and  is a start sequence. Let us
first consider the embedded sequences alone and than
introduce the limitation. For one event it is not possible to
find an interval including the connection point between the
two graphs, therefore the initial interval is added to the
resulting sequence. For two events there is only one
possibility, the concatenation of the first elements of both
sequences. This leads in this example to an interval of size
7. So we have 

as contribution for the aperiodic part. For 3,5,7,9,... events
either combinations of the second element of the first
sequence ( ) and the first element of the second
sequence ( ) or the combination of  and  are
possible. For 5,7,9... events these combinations can be
extended periodically by the periods of one or both of the
elements involved in the combination. For the dominating
intervals only the smaller period in a combination is
important because both periods start with the same offset.
This offset is the distance between the first events of both
elements. For four events the combination  and 
(extended by one period) and the combination  and

 are possible. They can be extended using the periods
of the elements to 6,8,10,12,... events. Again, the element
with the shorter period dominates. Some combinations
never dominate. These combinations can be found and
removed by comparing the initial distances between the
elements and the periods with each other element, as
shown in Figure 9. For 3,5,7,9,... events we have the
following possible combinations:
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For 4,6,8,10,... events these combinations are possible:

Only Pareto-optimal points can dominate for some time.
These are all points having no point better in one condition
and at least equal in the others. So for 3,5,7,9... events we
have the following initial sequence:

And for 4,6,8... events:

This would be sufficient for simple event sequences with
infinite periods. For hierarchical event sequences the
limitation of the number of events has to be considered.
For a combination the element with the smaller period is
used first to generate events. When reaching the limitation
for this element, the possible following domination can be
either a following element in the sequence or the partner
element of the other sequence. 
Taking all this into account the event seqeunce for the
example is:

8. Loops
A simple approach is to unroll the loops and consider the
chain of nodes with additional edges modelling the
conditional exit of the loop before the maximum number of
allowed iterations is reached. However with loop-unrolling
the number of iterations of the loop affects the complexity
of the analysis. To efficiently evaluate a loop we first
calculate the necessary sequences for the inner part of the
loop. This can be done using the methodology introduced
in the previous chapters. After that we have to combine the
sequences with the maximum and minimum allowed
iterations. This can be done by a continuous concatenation
of the inner parts of the loop. So for five iterations we have
to concatenate the inner part five times. Note that for the
resulting total sequence we have to merge each allowed
number of iterations, that means each number between the
minimum and the maximum number of iterations. 
Because the same graphs are concatenated repeatedly it is
evident that the resulting event sequences will have
recurring patterns. These patterns can elegantly be
described using hierarchical event sequences. Therefore it
is possible to extract these resulting hierarchical sequences
directly out of the structure of the loop.

9. Complexity
We have to differentiate between the complexity of the
analysis and the complexity to achieve the hierarchical
event streams. The real-time analysis itself has pseudo-
polynomial complexity in the number of elements.
Adapting the approximations proposed in [1],[2],[11]
would lead to a polynomial-time approximation for both
static and dynamic priority systems. 
The algorithm to extract the event streams generally has a
polynomial complexity (O(n2)) with regard to the number
of nodes that generate events. The algorithm leads to a
linear grows of the number of elements in the resulting
event stream at most. However it can have exponential
complexity with regard to the number of those loops which
can generate events. This complexity is bound by the
cumulated number of iterations of these loops. It is
important that the complexity of the model and the
approximation analysis is independent of the number of
loop iterations.

10.Case Study
In the following we will show the advantages of the new
model using a well known case study. 
The Synthetic Aperture Radar application is used to create
high resolution pictures even under adverse visiability
conditions. The benchmark is the standard simplified
version of the original system where the size of data
packages has been reduced. 
To show the possibilities and advantages of the new model
we will consider the system implementation shown in Fig
12. We consider the system to run nearly completely on
one processor, only the calculation for the fast fourier
transformation are considered to be implemented on a
specialized co-processor. As we are interested in the load
on the co-processor we need the triggering event stream for
it. We have transferred the original C-code of the
benchmark into control-flow-graphs and then into an event
dependency graph. We used ChronEst [18] to extract
execution times for the single nodes of the graphs. 
The resulting hierarchical event stream looks as follows:

It can be seen that the stimuli are generated within a nested
loop. The first two events have a distance of 4.9 time units
followed by three bursts. The first burst consist of 512
additional events each having a distance of 9.58 to the
previous event. It is followed by two bursts with 64 and 63
events, both having a period for the inner events of 12.42.
The distances between the three bursts are different.
In the following we show our attempts to model the same
behavior with previously existing models. Our focus was
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to model the stream exactly, e.g. without the loss of
information and accuracy. 
In the previous event stream model it would be necessary
to add one event sequence element for each of the 2560
events. This would greatly increase the run-time of the
analysis as it is determined by the number of elements.
Even if the outer loop would continue infinitely, each
element of the burst would have to be modeled by its own
element which would lead to an event stream with 640
tuples.
But even considering a model specifically designed to
cover bursts does not improve the situation. In the model
of Chakraborty and Thiele [7] the stimuli is represented as
a set of tuples  where α is the maximum number of
events that can occur in an interval of length ∆. An interval
of size 2∆, can than contain a maximum of 2α events and
so on. Each interval is limited by all tuples and for the
analysis it is necessary to calculate all possible linear
combinations of the tuples. This leads to exponential
complexity of the analysis and would also include a
complete unrolling of the loops, an additional complexity
prevented in our approach.
A first attempt to model the stimuli can be as follows:

But this description of the stimuli is too pessimistic. It
allows the first 512 events to occur with a distance of 4.9
to their successor. Just as in the other bursts the internal
period would be 4.9. To capture the behavior exactly it is
necessary to add a tuple for each element within the burst,
just as in the classical event stream model. Even a possible
extension of this model with offsets would not be
satisfactory due to the analysis complexity of the model.
Additionally such an extension would come close to our
proposed model, for which an efficient analysis is
available. The new model combines both bursts and
periodic / aperiodic behavior and captures complicated
systems accurately and efficiently.

11.Conclusion
In this paper we have introduced a new complete
methodology, called event dependency analysis, for the
analysis of event driven distributed real-time systems

covering the path from source-code level to the real-time
analysis. This methodology allows to extract accurately the
timing of dynamic task activations. These are activations
of tasks generated by other tasks anytime during their
execution. 
We proposed a method to extract the timing of theses
dynamic task activations out of the control flow graphs of
the system. 
We have introduced a new model for the description of the
timing behavior of events which is able for the first time to
efficiently describe both bursts and aperiodic behavior
which in turn allows an efficient description of events
generated within loops. It is well suited not only for the
event dependency analysis. We provided an efficient
feasibility analysis for real time systems based on the
concepts of the demand and request bound function. The
quantitative description of the model allows the extension
to approximative feasibility analysis which we have
postponed to future work.
We validated the suitability of our approach using the SAR
benchmark. We especially showed that the hierarchical
event streams can model situations accurately and
efficiently which cannot be captured with the same
precision by competing models. 

12.References
[1] K. Albers, F. Slomka. Efficient Feasibility Analysis for Real-Time Systems

with EDF Scheduling. IEEE Proceedings of the Design Automation and Test
in Europe Conference (DATE‘05), pp. 492-497, 2005.

[2] K. Albers, F.Slomka. An Event Stream Driven Approximation for the Anal-
ysis of Real-Time Systems, IEEE Proceedings of the 16th Euromicro Confer-
ence on Real-Time Systems, pp. 187-195, 2004.

[3] S. Baruah. Dynamic and static-priority scheduling of recurring real-time
tasks. Real-Time Systems, 24(1) pp. 93-128, 2003

[4] S. Baruah, D. Chen, S. Gorinsky, A. Mok. Generalized Multiframe Tasks.
The International Journal of Time-Critical Computing Systems, 17, 5-22,
1999.

[5] S. Baruah, A. Mok, L. Rosier. Preemptive Scheduling Hard-Real-Time Spo-
radic Tasks on One Processor. Proceedings of the Real-Time Systems Sym-
posium, 182-190, 1990.

[6] J.Y. Le Boudec, P. Thiran. Network Calculus - A Theory of deterministic
Queuing Systems for the Internet. LNCS 2050, Springer Verlag, 2001.

[7] S. Chakraborty, L. Thiele. A New Task Model for Streaming Applications
and its Schedulability Analysis. IEEE Proceedings of the Design Automa-
tion and Test in Europe Conference (DATE‘05), pp. 486-491, 2005

[8] S. Chakraborty, S. Künzli, L. Thiele. A. Herkersdorf, P. Sagmeister. Perfor-
mace Evaluation of Network Processor Architectures: Combining Simula-
tion with Analytical Estimation, Computer Networks, Vol. 41, No. 5, pp.
641-665, 2003.

[9] S. Chakraborty, S. Künzli, L. Thiele. Approximate Schedulability Analysis.
23rd IEEE Real-Time Systems Symposium (RTSS), IEEE Press, 159-168,
2002.

[10] R. Ernst, D. Ziegenbein, K. Richter, L. Thiele, and J. Teich. Hardware/soft-
ware codesign of embedded systems - the spi workbench. In Proceedings of
the IEEE Computer Society Workshop on VLSI’99, 1999.

[11] N. Fisher, S. Baruah A polynomial-time approximation scheme for feasibil-
ity analysis in static-priority systems with arbitrary relative deadlines. Pro-
ceeding of the 17th Euromicro Conference on Real-Time Systems, Palma de
Mallorca, Spain. July 2005

[12] A. Maxiaguine, S. Künzli, L. Thiele. Workload Characterization for Tasks
with Variable Execution Demand. IEEE Proceedings of the Design Automa-
tion and Test in Europe Conference (DATE‘04), pp. 1040-1045, 2004

[13] M. Jersak, R. Henia, R.Ernst. Context-Aware Performance Analysis for Ef-
ficient Embedded System Design. IEEE Proceedings of the Design Automa-
tion and Test in Europe Conference (DATE‘04), pp. 1046-1051, 2004

[14] S. Goddard, X. Liu. A Variable Rate Execution Model. Proceedings of the
16th Euromicro Conference on Real-Time Systems, 2004

[15] K. Gresser. An event model for deadline verification of hard real-time sys-
tems. In 5th Euromicro Workshop on Real-Time Systems, Finland, 1993.

[16] K. Jeffay, S. Goddard. A Theory of Rate-Based Execution. Proceedings of
the 20th IEEE Real-Time Systems Symposium, pp. 304-314, 1999

[17] C. Liu, J. Layland. Scheduling Algorithms for Multiprogramming in Hard
Real-Time Environments. Journal of the ACM, 20(1), 46-61, 1973.

[18] F. Slomka. New Techniques for the Design of Distributed Embedded Real-
Time Systems. Proceedings of the Embedded World Conference. Nürnberg,
Germany. February 2005.

Co-Processor

Zero Fill

Azimuth
IFFT

Kernel
Mult

Range
FFT

Azimut
FFT

Corner
Turn

ProcessorPort

Window
Data

RCS Mult

Processor Co-Processor

Source

Sink

 Figure 10: Used Hardware Binding for the SAR Application
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